

Escola Tècnica Superior d'Enginyeria

Departament d´Enginyeria Electrònica

Intelligent Data Analysis Laboratory http://idal.uv.es

Diagnóstico por la imagen Imágenes por Rayos X

Imágenes por Rayos X

- Instrumentación para Rayos X
 - El aparato de Rayos X
 - Radiología en película
 - Radiología Computarizada (CR)
 - Radiología Digital (DR)

Características de las imágenes por Rayos X

- Calidad de imagen
- Atenuación de los Rayos X
- Radiación difusa

Escola Tècnica Superior d'Enginyeria

Departament d´Enginyeria Electrònica

Intelligent Data Analysis Laboratory http://idal.uv.es

Imágenes por Rayos X Instrumentación para Rayos X

producción de los Rayos X

Diagnóstico por la imagen [SIM – Máster IB]

Joan Vila Francés

NIGHTS N

Rizado de tensión en el tubo según tipo de generador y rectificación

Tubo con ánodo fijo

Diagnóstico por la imagen [SIM – Máster IB]

Joan Vila Francés

NZ LEKDIN

Tubo con ánodo rotatorio

Joan Vila Francés

NICERDIN

- Factores que modifican el espectro de rayos X:
 - Filtrado
 - Voltaje aplicado
 - Tipo de tensión y rectificación
 - Forma del ánodo
 - Corriente en el tubo

Filtrado

IONALS

Voltaje aplicado

Tipo de tensión, número de fases y rectificación

ONAL SI

Forma del ánodo

Fig. 2.9. a Radiation directionality of a Hertz dipole producing *bremsstrahlung* during relativistic electron deceleration. **b** *Heel* effect: Intensity reduction of X-ray due to self absorption at the anode surface. **c** X-ray spectra of a tungsten anode simulated for different anode angles at $U_a = 120$ kV and 2 mm Al filtering (courtesy of B. David, Philips Research Labs)

Corriente en el tubo

Diagnóstico por la imagen [SIM – Máster IB]

NIGNES SI

filamento y copa focalizadora

Normalmente el filamento es de Tungsteno (W, Z=74) dopado con un 1%-2% de Torio (Th, Z=90)

cátodo de doble foco

Joan Vila Francés

TONIS SI

Ánodo rotatorio

ICARE SI

foco real y foco aparente

Ángulo del ánodo

Joan Vila Francés

NICEBBIN

Relación del tamaño del foco aparente con la longitud del filamento y el ángulo del ánodo

variación del tamaño del foco en el campo irradiado

influencia del ángulo del bisel en la intensidad del haz de Rayos X en el campo de imagen: efecto tacón (heel effect)

Envoltura protectora:

la envoltura controla la radiación difusa y las fugas, aisla de las altas tensiones y proporciona un medio para enfriar el tubo

THEFT SI

Límite térmico:

- Ios tubos de Rayos X tienen un *límite* de disipación térmica, por encima del cual pueden sufrir daños.
- El límite se especifica en Julios disipados o en H.U. (Heat Units), que equivalen a los kVp x mAs aplicados.
 - 1.4 HU = 1 J

Límite térmico:

- Disminuye con el aumento del tiempo de exposición
- Disminuye en proporción inversa al kV aplicado
- Aumenta con el tamaño del foco efectivo y es mayor para menores ángulos de bisel
- Es mayor para los tubos rotatorios
- Aumenta con el tamaño del disco (en tubos rotatorios)
- aumenta con la velocidad de giro del ánodo (en tubos rotatorios)
- Depende del factor de rectificación del generador de tensión

Límite térmico del tubo de Rayos X:

máximo = Factor_{rectificación} x kVp x mA x s [Heat Units, H.U.]

Generator Type	V _{rms} as a fraction of V _{peak}
Single-phase	0.71
Three-phase six-pulse	0.95
Three-phase 12-pulse	0.99
High-frequency	0.95-0.99
Constant-potential	1.00

I HKDI

Ejemplo de especificaciones térmicas según el n° de fases, tamaño focal y velocidad de rotación

Diagnóstico por la imagen [SIM – Máster IB]

rejilla antidifusora

Joan Vila Francés

VIONIS SI

control automático de la exposición

Formación de la imagen

- Un haz de Rayos X incide en el paciente.
- El haz de salida sigue un patrón de intensidad dependiente del grosor y composición de los órganos, junto a cierta radiación difusa.
- Este haz emergente es capturado y convertido en una imagen visible.

Formación de la imagen

- Una estructura concreta del paciente se detecta gracias a:
 - La resolución o enfoque alcanzado en sus bordes.
 - El contraste entre tejidos adjacentes debido a la transmisión diferencial de los Rayos X.
 - Este contraste depende de la absorción diferencial de los Rayos X en cada estructura (µ1 y µ2) y su grosor (t):

$$C \propto (\mu_1 - \mu_2) \cdot t$$

Formación de la imagen

- El contraste entre grasa (Z_{eff}=6) y músculo (Z_{eff}=7.4) es mayor a menor E, porque el efecto fotoeléctrico (proporcional a Z) decrece con la E
- El uso de agentes de contraste (p. ej. Yodo, Z=53) aumenta mucho la atenuación debido al efecto fotoeléctrico

Diagnóstico por la imagen [SIM – Máster IB]

Joan Vila Francés

Radiología en película

El sistema de imagen basado en la placa radiológica captura la imagen de la intensidad del haz de Rayos X con una combinación de película fotosensible (*film*) y pantalla intensificadora (*screen*)

Radiología en película

la película captura un 1% de los fotones

la pantalla intensificadora captura un 30% de los fotones

Radiología en película

- La película de Rayos X es una emulsión fotográfica que contiene cristales de haluro de plata.
- Al absorber un fotón, los granos de cristales se convierten en plata metálica, opaca a la luz (negra).
- El revelado fija la plata metálica a la película y elimina los cristales no transformados.
- A mayor cantidad de radiación recibida, mayor cantidad de granos se transforman, y por tanto más se oscurece la película tras el revelado.
- La densidad óptica mide el oscurecimiento de la película como consecuencia de la exposición a los Rayos X:

D = log₁₀(luz incidente / luz transmitida)

Pantallas intensificadoras

Una pantalla proporciona un factor de intensificación de entre 30 y 100 veces la eficiencia de captura del film solo.

Las pantallas tradicionales utilizaban un compuesto de calcio y tungsteno (CaWO₄) Actualmente se utilizan tierras raras, como el Gd₂O₂S

Curva característica: respuesta de una película a los Rayos X, expresada como la densidad óptica alcanzada en función de la exposición en escala
Iogarítmica

- Propiedades derivadas de la curva característica:
 - Base+fog: densidad óptica de la película no expuesta.
 - Velocidad: inversa de la exposición necesaria para alcanzar una densidad óptica de 1
 - Gamma: pendiente media de la curva característica
 - Latitud: rango de exposiciones que generan un rango de densidades útiles

Joan Vila Francés

- La cantidad de radiación que recibe la película depende de:
 - Potencial del tubo (kV)
 - Carga del disparo (Q): corriente del tubo (mA) x tiempo de exposición (s)
 - Distancia entre el tubo de rayos X y la película (SID, Source to Image receptor Distance)
- La exposición es proporcional a (kV)² x mA x s
- La exposición se reduce con el cuadrado de la distancia.

- Selección del kV y Q:
 - A mayor kV, menor dosis en el paciente y mayor latitud de exposición.
 - A mayor kV, menor mA·s requeridos.
 - A mayor kV, menor contraste obtenido.
- Al doblar la carga Q se dobla la densidad óptica.
- Al multiplicar los kV por 1,15 se dobla la densidad óptica.

Escola Tècnica Superior d'Enginyeria

Departament d´Enginyeria Electrònica

Intelligent Data Analysis Laboratory http://idal.uv.es

Imágenes por Rayos X

Características de la imagen

Calidad de imagen

- Parámetro que mide la apariencia global de la imagen y su adecuación a su propósito (diagnóstico médico).
- Definida por:
 - Contraste: habilidad para distinguir regiones en la imagen
 - Resolución espacial: habilidad para distinguir detalles finos
 - Ruido: variación de intensidad en la imagen no relacionada con las estructuras observadas

Calidad de imagen

Contraste:

- Es la diferencia de densidad óptica de dos regiones contiguas.
- Es proporcional a la diferencia de exposición recibida por cada región.
 - Una película de mayor gamma tiene más contraste pero una menor latitud

Signal-to-Noise Ratio

- El contraste de la imagen se ve limitado por el ruido:
 - Ruido: variación de la intensidad en la imagen para una exposición homogénea a los Rayos X.
 - Debido sobretodo al "quantum mottle": variación estadística del número de fotones de Rayos X por área:
 - Para N fotones por área, la variación es proporcional a la raíz de N
 - Se cuantifica con el SNR (Signal-to-Noise Ratio): la relación entre la intensidad de la señal y la del ruido.

Signal-to-Noise Ratio

- Factores que afectan al SNR:
 - Tiempo de exposición y corriente del tubo de Rayos X
 - Valor de kV
 - Grado de filtración del haz
 - Tamaño del paciente

 - Geometría de la rejilla antidifusora

Resolución espacial

- Habilidad para detectar detalles pequeños.
- Se cuantifica como el tamaño del menor detalle visible o su inversa, el nº de pares de líneas / mm que se pueden resolver en la imagen.
- Se especifica mediante dos funciones:
 - LSF (Line Spread Function)
 - MTF (Modulation Transfer Function)

Line Spread Function (LSF)

función de densidad óptica generada por una línea opaca a los Rayos X PERDI

atenuación de la variaciones de intensidades registrada en función de la frecuencia de variación

Joan Vila Francés

Resolución espacial

- Factores que afectan a la resolución:
 - Dependientes del detector:
 - Radiología en película: grosor de la pantalla intensificadora, velocidad de la película
 - Radiología digital: tamaño del píxel
 - Tamaño efectivo del punto focal
 - Factor de magnificación

Resolución espacial

 Zona de penumbra: desenfoque causado por el tamaño del foco efectivo

Contrast-to-Noise Ratio

- La capacidad de interpretar una imagen en función de su contraste se mide como el CNR.
- Depende del SNR de la imagen y su resolución espacial, y además de:
 - Energía del haz de Rayos X: a mayor E, mayor efecto Compton y por tanto menor contraste
 - Field Of View (FOV): la dispersión Compton es proporcional al FOV
 - Grosor del paciente
 - Geometría de la rejilla antidifusión

Efectos de la radiación difusa

- La radiación primaria (P) aporta la información a la imagen.
- La radiación secundaria o difusa (S) reduce el contraste.

Efectos de la radiación difusa

efecto de un aumento en la difusión Compton

Joan Vila Francés

Reducción de la radiación difusa

- Reducción del volumen de tejido irradiado:
 - Colimación del haz de Rayos X
 - Compresión del paciente
- Reducción del kV aplicado
- Uso de rejillas antidifusoras
- Uso de un hueco entre el paciente y el detector

NICEBOIN

Diagnóstico por la imagen [SIM – Máster IB]

Diagnóstico por la imagen [SIM – Máster IB]

Escola Tècnica Superior d'Enginyeria

Departament d´Enginyeria Electrònica

Intelligent Data Analysis Laboratory http://idal.uv.es

Imágenes por Rayos X

Imagen digital

Radiología Digital

- Imágenes digitales
- Fluoroscopía digital
- Computed Radiography (CR)
- Digital Radiography (DR)
 - Panel directo
 - Panel indirecto
- Características de imagen

Imágenes digitales

- Una imagen digital es una matriz bidimensional de datos que representa visualmente un objeto o escena.
- Cada elemento de esta matriz, pixel, está representado por un valor numérico (finito).
- En radiología, una imagen digital representa el patrón de intensidades de Rayos X transmitidos a través del paciente.

Implantación de la imagen digital en radiología

- El primer uso fue en fluoroscopía (imágenes de Rayos X en tiempo real)
 - Se utilizó para realizar Angiografía de Substracción Digital (DSA, Digital Substraction Angiography)
- En radiología convencional se usa:
 - Al digitalizar imágenes de Rayos X en película
 - Con placas de fósforo fotoestimulables (Computed Radiography)
 - Con sensores de adquisición digital (Digital Radiography)

Fluososcopía digital

• El sensor CCD (Change-Coupled Device) digitaliza la imagen de los Rayos X

Digitalización de imágenes por rayos X

película y posteriormente se digitaliza

Computed Radiography (CR)

- Sistema para generar imágenes digitales de intensidad de Rayos X.
- Utiliza un panel de fósforo fotoestimulable:
 - El panel atrapa la energía de los fotones de Rayos X
 - Al excitar el panel con un haz de luz láser se libera la energía en forma de luz visible

Computed Radiography (CR)

proceso de generación de una imagen digital por CR

Diagnóstico por la imagen [SIM – Máster IB]

Joan Vila Francés

VENIONIS SN

CR: almacenamiento y lectura

RED LASER

CR Plate Moved Translationally

a) b) Photon Conduction band X-ray Electron Electron quantum Recombination Spontaneous traps traps (Charging light emission Stimulated discharching » 0.5 Activators Activators Valence Electron band o "Hole" 0 1.0 stimulation emission Rotating **Relative Amplitude** 9.0 9.0 7.0 7.0 Polygon > Stimulating Laser Mirror Photomultiplier Tube Digitized ADC signal Fibre Optical Coupling

Diagnóstico por la imagen [SIM – Máster IB]

400

0.0

blue-green

500

Wavelength (nm)

600

red

800

700

BLUE PHOTONS

CR: Rango dinámico

Digital Radiography (DR)

- Sistemas que generan una imagen radiológica digital directa e instantánea en el propio aparato de RX.
- Utilizan un detector de Rayos X de panel plano –array de thin-film transistors (TFT)– que convierte la intensidad de Rayos X en valores digitales.
 - Existen dos tipos:
 - De conversión indirecta
 - De conversión directa
Film vs. CR vs. DR

Diagnóstico por la imagen [SIM – Máster IB]

Joan Vila Francés

DEELS S.

Necessary

equipments

a cable

by

cted

0

Panel de conversión indirecta

- Una pantalla fosforescente (centelleador) convierte los fotones de RX en luz visible.
- La luz es detectada por los fotodiodos del array TFT y convertida a corriente.

Panel de conversión indirecta

- El centelleador suele estar formado por cristales de CsI en forma de agua.
 - La forma de aguja minimiza la dispersión de los fotones de luz visible.

Panel de conversión directa

- El panel tiene una capa de Selenio amorfo.
 - Cuando un fotón de RX incide en el panel ioniza el Se creando una carga eléctrica.
 - Esta carga es acumulada por los transistores del panel y luego medida píxel a píxel.

Panel de conversión directa

El panel tiene una capa de Selenio amorfo.

- Cuando un fotón de RX incide en el panel ioniza el Se creando una carga eléctrica.
- Esta carga es acumulada por los transistores del panel y luego medida píxel a píxel.

- Las imágenes de radiología digital se definen por:
 - Tamaño de detector y de píxel
 - Resolución espacial
 - Modulation Transfer Function (MTF)
 - Rango dinámico
 - Eficiencia cuántica de detección (DQE)
 - Dosis de radiación

Tamaño de detector y resolución espacial:

- El tamaño del detector define el área máxima a explorar.
- El tamaño y separación entre píxels definen la resolución espacial:
 - Por el Teorema de Nyquist, la máxima resolución espacial alcanzable es la mitad del tamaño de pixel

Función de Modulación (MTF):

- Define la capacidad de transferir una modulación de la señal en frecuencia en la imagen de salida.
- Define el contraste que generan los objetos en función de su tamaño

Joan Vila Francés

Rango Dinámico:

- Medida de la capacidad de respuesta del detector a la exposición a los rayos X
- Los paneles planos tienen un rango de detección muy amplio y lineal.

Diagnóstico por la imagen [SIM – Máster IB]

	Type of System						
Feature	Screen- Film	Storage- Phosphor	Lens-coupled CCD	Slot-Scan CCD	Direct FPD	Indirect FPD	Indirect FPD
Converter Readout	Gd ₂ O ₂ S Film	BaSrFBr:Eu Laser	Gd ₂ O ₂ S CCD	CsI:TI CCD	Selenium Active sele- nium matrix	Gd ₂ O ₂ S Active silicon matrix	CsI:TI Active silicon matrix
Detector size (in)	14 imes 17	14 imes 17	14 imes 17	17 imes 17	14 imes 17	17 imes 17	17 imes 17
Pixel size (µm)		200	167	162	139	160	143
Matrix		1760 imes 2140	2000×2500	2736×2736	2560×3072	2688 imes 2688	3121×3121
Nyquist frequency (cycles/ mm)	5	2.5	3.0	3.1	3.6	3.1	3.5
Dynamic range	1:30	1:40,000	>1:4000	1:10,000	>1:10,000	>1:10,000	>1:10,000

RadioGraphics May-June 2007 vol. 27 no. 3 675-686

Diagnóstico por la imagen [SIM – Máster IB]

Eficiencia cuántica de detección (DQE):

 Mide la eficiencia de la conversión de los RX incidentes en señal de imagen.

Dosis de radiación:

- Los sistemas de imagen digital reducen la dosis de radiación al tener mayor eficiencia cuántica.
- Sin embargo, al tener un rango dinámico mayor que la película, se puede producir una sobre-exposición sin ser detectada.