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Abstract—We present an adaptation algorithm focused on
the description of the data changes under different acquisition
conditions. When considering two acquisition conditions in a
source and a destination domains, the adaptation is carried out
by transforming one data set to the other using an appropriate
nonlinear deformation. The eventually non-linear transform is
based on vector quantization and graph matching. The transfer
learning mapping is defined in an unsupervised manner. Once
this mapping has been defined, the samples in one domain are
projected onto the other, thus allowing the application of any
classifier or regressor in the transformed domain. Experiments
on challenging remote sensing scenarios, such as multitemporal
VHR image classification and angular effects compensation, show
the validity of the proposed method to match related domains
and enhance the application of cross-domains image processing
techniques.

Index Terms—Multitemporal classification, Domain adapta-
tion, Transfer learning, SVM, model portability.

I. INTRODUCTION

HE problem of adapting models to a new unseen but

related dataset is one of the major challenges for future
remote sensing image processing. For instance, the increase in
temporal resolution of image acquisitions of modern sensors
allows data users to acquire several scenes of the same
area, thus making multitemporal analysis [1]-[3], multian-
gular studies [4]-[6] and accurate change detection [7]-
[9] possible. However, since new generation satellites such
as QuickBird or WorldView 2 acquire images at an almost
daily frequency, it is not realistic to provide supervised la-
beled information for each image to perform accurate image
classification or biophysical parameter retrieval. Users must
thus often rely on single acquisition ground truth to process
series of images. Although tempting, direct application of
classifiers or regressors on newly acquired and similar images
can lead to catastrophic results: even if the objects represented
in the images are roughly the same, differences in reflectance,
illumination, and atmospheric conditions may induce local
changes in the probability distribution function (PDF) instead
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of simple global linear changes. Therefore, finding an efficient
PDF matching strategy becomes an urgent and complex task
for new generation remote sensing processing chains.

In machine learning literature, the problem of model adap-
tation is usually referred to as domain adaptation or transfer
learning [10]. Transfer learning aims at describing the changes
occurring among data distribution and to adapt models to
related tasks. This recent field of research attempts to re-
solve the deformations occurring among similar domains but
acquired under different conditions: in remote sensing, this
would correspond to data sets coming from similar images.
This means that, in transfer learning, we are particularly
interested in transferring the knowledge from one or more
source domains to a target domain rather than learning all
source and target domains simultaneously [11].

In remote sensing literature, generic attempts to describe
changes in manifolds are hardly found. Currently, the adapta-
tion problem has been mainly considered from the perspective
of specific classifiers, i.e. improve/modify the classifier so
that it can cope with the shifted distribution. In the 1970s
such changes were studied under the name of ‘signature
extension’ [12], but the field received little interest until
recently and remained specific to simple models and mid
resolution land-use applications [13]-[16]. Textural filters have
also been considered for increasing the robustness of classifiers
among acquisitions: in [17], the authors observe that the
use of textural features reduces spectral variability and thus
allows successful classification of unseen scenes sharing the
same classes. However, this approach only describes indirect
adaptation, as no direct attempt to compensate for dataset shift
is done and the improvement in performance is related to the
well known decrease of intraclass variability related to the use
of contextual features.

The advent of transfer learning theory renewed the interest
of the community for these problems, but in most cases the
effort is mainly focused on modifying the classifier while
the transform between the domains is not explicitly studied.
In [18], the samples in the new domain are used to re-
estimate the classifier based on a Gaussian Mixture model.
This way, the Gaussian clusters optimized for the first domain
are expected to match the data observed in the second. In
case of strong shifts there is no guarantee of appropriate cor-
respondence between the identified clusters. In [19], randomly
generated classifiers are applied in the destination domain. A
measure of the diversity of the predictions is used to prune the
classifiers ensemble. In [20], a support vector machine (SVM)
classifier is modified by adding and removing support vectors
from both domains in an iterative fashion: the model discards
contradictory old training samples and uses the distribution
of the new image to adapt the model to the new conditions.
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In [21], matching of the first order statistics of the data
clusters in source and destination domains is performed in
a kernel space. Two kernels accounting for similarities among
samples and clusters are combined and the SVM weights are
computed using the labels from samples in the first domain.
Finally, in [22] the shifts are compensated using a small set
of examples sampled on the new distribution: the algorithm
learns the shifts among domains iteratively and active learning
queries [23], [24] are used to maximize the ratio between
samples and increase in performance. Although adaptable to
any classifier, the above methods consider data set shift in an
indirect way since they are focused in the modifications to be
done in the classifier.

Recently, some remote sensing researches have explicitly
considered the distortions occurring between data manifolds:
In [25], multitemporal sequences for each pixel are aligned
based on a measure of similarity between sequences barycen-
ters, thus consisting into a global measure of alignment. In
[26], pixel’s spectra are spatially detrended using Gaussian
processes in order to avoid shifts related to geometrical dif-
ferences or to localized class variability. Even if very efficient
when applied to subregions of the same area, the approach
can difficultly be extended to spatially disconnected areas.
Finally, in [27], a kernel machine is regularized iteratively to
ensure matching between the original and test distributions.
Also, the use of manifold learning [28] techniques based on
graph-Laplacian have been shown very accurate in problems
with a reduced number of samples. Approximate methods for
out-of-sample prediction [29] are required to apply this last
approach to large-scale problems.

In this paper, we also study the possibility of using local
manifold techniques for adaptation. This is justified by the
generally nonlinear and low-dimensional structure of remote
sensing data [30], [31]. To propose a simple and easily scalable
solution, we focus on the description of the changes in the
manifold by defining a non-linear transform based on vector
quantization and graph matching. Vector quantization is used
to retrieve local properties of the data clouds. A clustering
algorithm is used to define a proximity graph in each domain,
where the nodes of the graph are the cluster centroids (or
codebook vectors). Graph matching has been strongly used in
pattern recognition and computer vision to study similarities
among data structures representing objects [32]-[34]. The need
of matching procedures relying to other criteria than Euclidean
distances has generated a wide field of research about the def-
inition of similarity measures between graphs [32], [35], opti-
mization techniques [36]-[38], and structured estimations [39].
In the proposed algorithm, the graphs of the two domains
are matched using a procedure aiming at maximizing their
similarity, while at the same time preserving the structure
of the transformed graph. In our case, the number of nodes
remains unchanged during the procedure and no supervised
information (e.g. class labels) about the nodes is required.

Once the non-linear transform has been defined, the training
samples in the source are matched to the data distribution of
the target domain, or inversely depending on the needs.

The proposed adaptation approach (i.e. matching cluster
centroids linked through a topographical structure) could be

taken using alternative data representations. In the case of
using local PCA or local ICA models [40], [41], the problem
is that the local models are not linked in any way so there is
no guarantee for a proper identification of the correspondence
under strong deformations. Related methods that integrate the
set of local representations into a single global non-linear
representation [42], [43] solve this identification problem and
have been used in adaptation [44]. However, they are hard
to use in manifolds including bifurcations. The same is true
for vector quantization techniques that assume an underlying
topology, such as Self Organizing Maps [45]. As opposed
to [42]-[45], the graph structure proposed here is more flexible
than a d-dimensional reticle.

The proposed transform can be used in many ways: in a
supervised context, labeled pixels in the source domain can
be transformed and then used in the destination domain for
training a supervised classifier. In the reverse direction, the
image data in the destination domain can be transformed and
then the model built for the source can be directly used on the
transformed image without model retraining. Matching of the
images can be also used for unsupervised tasks such as the
correction of local artifacts [46], and illumination or angular
effects [47], [48], such as the hot-spot example [49] used in
the experiments.

The remainder of the paper is organized as follows: Sec-
tion II presents the graph-based manifold matching procedure
proposed, as well as the regularization on the matching se-
quence based on ensembles. Section III presents the datasets
used in the experiments illustrated and discussed in Section I'V.
Section V concludes the paper.

II. GRAPH-BASED MANIFOLD MATCHING

This section presents the graph matching algorithm pro-
posed. The manifold deformation problem appears in situa-
tions such as the one illustrated in Fig. 1. Labeled samples
from objects in Fig. 1 (top row) can be obtained in particular
acquisition conditions giving rise to data (XlS ,YlS ) for the
source image. Data from the same objects can be obtained at
a different time, as in Fig. 1 (middle), or at a different time
and location, as in Fig. 1 (bottom). In general, the samples
in the destination image are affected by seasonal changes
and different illumination conditions, giving rise to different
samples X? for which no labeled information is available.
The source and destination images do not have to be registered
not even have the same number of pixels. The scope of the
proposed method is to find a local transform R(X®) that
adapts X° into a new set X* that matches the PDF found in
the destination domain X?. Even though Fig. 1 shows labels
in each acquisition condition for the reader convenience, the
labels are never used in the proposed adaptation transform.

A. Vector quantization

Rather than looking for a unique global mapping of all
samples, we prefer to match a small number of representers
obtained by vector quantization. Therefore, we reduce the n
pixels of X° to a series of centroids ¢ using a quantization
(or clustering) algorithm. The same process is applied to the
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Y{> Not available

Fig. 1. Tllustration of the domain adaptation problem. Source image X (top)
and the same kind of objects, destination images, taken at a different time
(XP1 middle) and at a different time and location (XzD bottom). The right
column shows the respective labeled pixels (colors are detailed in Table I).
Note that YZD1 and YlD2 are usually not available and are used here only
for validation purposes. Details on the images are given in Section III-B.

m pixels of X to obtain the representers c”. The number
of centroids is a trade-off between flexibility and simplicity.
Also note that the number of centroids can differ for the
two domains. The important fact is that this number must be
high enough to capture the nonlinear shape of the manifold.
However, increasing the number of centroids beyond certain
limit does not provide additional structural information but just
increases the computational burden. Figure 2 shows k = 100
centroids obtained for the images X° and X”' of Fig. 1,
respectively. Note that differences in acquisition conditions
result in local manifold deformations, but that the overall shape
of the manifolds (and the structure of the associated graphs)
remains similar for the two acquisitions. These properties
(similar structure and smooth deformations of limited extent)
are important conditions to have an efficient matching.

B. Graph matching

We would like to match the most similar centroids in both
domains. An Euclidean match, i.e. assigning each centroid to

cS

Fig. 2. Examples of centroids and cP obtained from the images X<
(top row of Fig. 1) and X1 (middle row of Fig 1), represented in the space
defined by the green (G), red (R), and infrared (IR) bands of the QuickBird
image. In this example, the centroids neighborhood relations are depicted by
an undirected 2-nearest neighbor graph. Even though just three components
are shown in these plots for visualization purposes, note that the centroids are
computed using the full 4-dimensional vectors.

its nearest neighbor in the new domain, is not recommendable,
since Euclidean distances between the two structures may
not represent the manifold distances [28]. The concept is
schematized in Fig. 3 for two hypothetical datasets. Euclidean
matching of the centroids —illustrated in the middle panel of
the second row— changes the structure of the transformed data,
that loses the difference between the two extremities of the
right part. The correct match should preserve such structure,
as illustrated in the bottom-right panel of the same figure.
The algorithm proposed in this paper enforces this desirable
property.

We propose to consider the set of centroids as a graph. A
graph is a set composed of nodes connected by edges when
they are considered similar. Common criteria to establish such
similarity are nearest neighbors rules or local e-balls. Using a
graph, only local distances make sense and geodesic distances
following the manifold structure can be computed [28].

A compact representation of a graph is given by the adja-
cency matrix W. Using a k-nearest neighbors rule, this matrix
has elements

1 if 7 and j are neighbors

Wi, j) = { 0  otherwise M

Graphs for domains X and X1 are illustrated in Fig. 2. Each
edge connecting two centroids represents a local neighborhood
relationship.
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Our approach to graph matching for manifold deformation
description can be seen as the joint optimization of two
criteria: (1) minimization of centroid displacement, and (2)
structure preservation. The rationale behind the first criterion is
that transitions in the manifolds are generally smooth so large
displacements of the destination centroids, c¢*, from their initial
position, ¢, should be avoided. The second criterion refers
to the fact that local nearest-neighbor structures are generally
preserved in manifold deformations. According to this, large
modifications in the graph structure, as encoded in the WS
matrix, should be avoided. These two criteria are combined in
the following cost function to be minimized:

Cope = min { ¥ — <"+ [WS =W} @

The first term aims at minimizing the deformation, while
the second aims at structure preservation by comparing the
initial adjacency matrix WS with the adjacency matrix after
displacement W*. In Fig. 4, three undirected graphs with
five nodes and their corresponding adjacency matrices are
represented. They illustrate the structure criterion for two
possible modifications of the nodes.

Graph matching optimization routines are usually NP-hard
problems [33], [39]. To make the problem solvable, we used
a reduced algorithm considering cross-domains relationships:
since transitions among remote sensing acquisition are gener-
ally smooth, we limit the number of allowed displacements to
those between nearest neighbors between graphs, as illustrated
in Fig. 5(a). We will refer to this displacements graph as the
cross-domains graph.

Once these possible destinations have been defined, the
centroids are considered sequentially for matching. At each
step, a centroid and its neighbors in ¢® are considered for
being moved towards their respective possible destinations.
In this way, each centroid is displaced smoothly with its
neighboring centroids and only a specific section of the graph
is considered at each displacement. Only combinations where
the scene centroids do not move to the same centroid in c”
are considered admissible (local injectivity constraint). The
result of the sequential procedure optimizing Eq. (2) for each
centroid is illustrated in Fig. 5(b). Note that this does not

1) Superposition

Euclidean match
(bad)

Superposition
(centroids)

Structure preserving
match (good)

Fig. 3. Examples of Euclidean and structure preserving matching. Top row:
two similar artificial data sets are quantized and their superposition shows
a local difference in the right part of the PDF. Bottom row: examples of
Euclidean (middle) and structure preserving (right) matching.
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Fig. 4. Graph regularization. Top row: three 5-nodes graphs. Bottom row:
representation of the corresponding adjacency matrices and result of the right
term of Eq. (2) assessing similarity of W1 and W2 with respect to the original

(b)

Fig. 5. Graph matching procedure. (a) Displacements considered for
adaptation (cross-domains graph): in this case, each centroid in ¢ (blue
squares M) can attract two centroids in ¢S (red circles o). (b) Selected
displacements: each centroid of ¢ (red circles o) is displaced towards its new
position ¢* (green diamonds ¢). The plot (b) shows the local transformations
applied to the training data.

provide a globally injective result (a result where for each
centroid a different destination is chosen): the local injectivity
constraint is applied to each centroid and to its neighbors for
a given iteration in the sequence, but not among sequences.
Consider a centroid in the source ¢ and its neighbors ¢z, : if
centroid cf moves towards c’, the ¢, won’t be allowed to

move towards c’. On the contrary, there is nothing avoiding
the following centroid in the sequence, c, or its neighbors to
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Fig. 6. Histograms of selected destinations for three centroids over 100
sequences: (top) clear assignment, (cls ) = 0; (middle) uncertain assignment

S ) = 0.20; (bottom) uncertain assignment

on a single matching result H(c%
on a many matching results H(c3) = 0.41. Red filled dots e are the origin

centroid and blue crosses X are destinations selected by at least one member
of the committee among the possible destinations o. The numbers relative to
each X correspond to the horizontal axis of the corresponding histogram.

move towards c?’. We added this local injectivity constraint 1)
to avoid local structures to collapse into a single destination,
and 2) to reduce computational complexity, as we are reducing
the combinatory of possible source-destination mappings.

C. Dependence on matching sequence and ensemble methods

Since adaptation is performed locally and following a given
sequence, i.e., each centroid is considered with its neighbor-
hood sequentially, the final matching result may depend on
the order of consideration of the centroids adopted by the
algorithm. Therefore, relying on a single matching result could
lead into a local minimum, as it depends on the sequence
of consideration of the centroids. To cope with this risk, we
considered ensemble methods [50], that have shown to in-
crease robustness when considering sequential algorithms that
approach optimal solutions in remote sensing problems [51]-
[53]. In our case, we build a committee of experts by running
the proposed matching algorithm several times varying the
sequence of consideration of the centroids. The sequences
are randomly drawn. The final assignment between nodes is
determined by majority vote on the committee.

Figure 6 illustrates the variability or uncertainty in the
committee of graph matching solutions. As an example, we
used the graphs of Figures 2 and 5. The uncertainty of
committee vote is measured in terms of normalized entropy
of the frequency that a node c; is matched to a node CJD .

Such quantity is computed as H(c]) = Z’; —p(ef —

D S D + + . .
c;)log(p(c; — ¢;))/H™, where HT is a normalization

constant given by the maximum possible entropy obtained
when all destinations are equiprobable (H(c) € [0,1]). In
analyzing the result of possible assignments given by the
committee one can find three situations depending on the
agreement of the committee:

- Total agreement. The centroid is systematically attributed
to the same destination c” and show an entropy of
assignation of 0 (top row of Fig. 6).

- Different assignments are made with very different prob-
abilities (middle row of Fig. 6). In this case, related to
small entropy values (0 < H(c) < 0.3), the effect of
the committee is important, because it fixes single wrong
assignments; in the example reported, a wrong attribution
to centroid #9 is corrected by the rest of the committee.

- Many equiprobable assignments (bottom row of Fig. 6).
In this case, related to high entropy values (H(cf) >
0.3), the equiprobable assignations correspond to cen-
troids that are very close between each other, thus making
the choice of the specific destination less important; in
the example reported, centroids #3 and #29 are extremely
close. Please note that this scenario contains a limit case
where the most probable destination is ‘non assignation’:
in this case, the algorithm decides not to move the
centroid, even if there is a strong second best option.

III. DATA AND SETUP

This section presents the datasets used and the setup of the
experiments performed. In particular we consider (1) a syn-
thetic example in order to assess the relevance of the structural
term of the proposed cost functional and the difference with
Euclidean matching; (2) two classification examples in which
the proposed local graph matching is compared to Euclidean
Matching, global histogram matching [54], and to the no-
adaptation baseline; (3) a radiometric correction example.

A. Toy dataset

From a data processing point of view, we can distinguish
two types of deformations: global (such as translations, scaling
and rotations of the feature space) and local (same, but
locally). The first can be corrected with known methods such
as a common PCA or histogram matching [54], but the second
requires a specialized algorithm, such as the graph matching
procedure proposed here. Regarding local transformations, we
studied which amount of deformation could be managed by the
proposed algorithm. To study this important point, we consider
a synthetic dataset consisting of two dimensional series of
centroids and we try to reproduce the qualitative behavior
found in remote sensing data with a local rotation as the one
shown in Fig. 3. This dataset will be used to study convergence
properties of the proposed graph matching technique and to
compare it to different types of Euclidean matching. Three
increasing levels of distortion are considered, as illustrated
in Fig. 7. The three levels of distortion basically impact the
upper right part of the X° graph (red e) only and convert
the adaptation problem from a relatively simple one (low
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Fig. 7. 2-D toy dataset used in the first experiment for three levels of local
distortion. cSe — cPm.

distortion, left column) to a hard one (strong distortion, right
column). We compare the proposed graph matching procedure
with three progressively simplified local matching algorithms:

- Graph matching without structural constraint: the pro-
posed graph matching, but without the graph structure
constraint. With this setting, only the constraint on the
movements of the centroids is considered. This setting is
used to assess the importance of the structural constraint
on the final result.

- Injective Euclidean matching (‘E-Inj.’), where each cen-
troid is mapped to its closest neighbor, which is then
removed from the list of possible destinations.

- Euclidean matching (‘Eucl’), where each centroid is
mapped to its closest neighbor in the c? centroids.

B. Classification in different environments

This example considers a series of three images acquired by
the QuickBird satellite, one the 2nd of August 2002 (image
X5 and two the 6th of October 2006 (images Xt and XP2).
The images provide 3 bands in the visible and 1 band in
the near infrared regions of the spectrum. Images X° and
X D1 jllustrated in top and middle rows of Fig. 1, describe a
residential neighborhood of the region of Brutisellen, down-
town Zurich (Switzerland). They are coregistered, even though
this is not a requirement of the proposed method, and have a
resolution of 2.4 m. The third image, XDz jllustrated in the
bottom row of Fig. 1, is another area of the 2006 Zurich image,
near the Rieterpark on the West side of the Zurich lake.

Adaptation is required because of the differences in acquisi-
tion conditions of the images. Both images have been acquired
between 10 and 11 a.m. with similar sun azimuth angles
and sun zenith angles around 60 and 30 deg, respectively.
Moreover, the 2002 image is taken with an off-nadir angle of
5.6 degrees, while the 2006 image with a 12.2 degrees oft-
nadir angle, thus enhancing the shadowing effect. Seasonal
effect of vegetation cycle is also visible, as the first image is
taken in summer, while the second in autumn.

For each acquisition, between 20000 and 30000 labeled
pixels were extracted by accurate photo-interpretation. For the
source image a series of labeled pixels is available, Xls =
{x;}l_; with Y7 = {y;}._,. These data generalize well the
rest of the data of the source domain X3 = {x;}7,,. Note that
in the classification experiments the labeled information in the
destination domain is used only for validation purposes. Five
classes of interest have been retained for the two first images
(see Table I for details), while for the Rieterpark dataset only
three of them were present in the scene. Changes between

image X and X are not considered as change class, since
the objective of this experiment is to perform multitemporal
classification, rather than change detection.

For these experiments, two quantization methods have been
used, k-means and fuzzy c-means (FCM). Note that any
clustering algorithm can be used for the definition of the cen-
troids and we selected these because they are well established,
simple and allowed to consider the cases of crisp and fuzzy
assignments. Two quantizations, with ¥ = 50 and k£ = 100
have been considered and 100 sequences have been generated
to build the committee. Once the matched centroids c¢* and the
corresponding transforms have been defined, a SVM is trained
for different numbers of training pixels, randomly selected
but respecting the proportions per class in the ground truth:
[0.5 % = 143, 1% = 286, 5% = 1430, 10% = 2860]. SVM
parameters have been optimized by 4-fold cross validation.
Ten realizations of the classification with independent training
sets have been performed to ensure stability of the result.

In these experiments, two adaptation settings are compared:

1) Adaptation of the training samples to X" (Xls —
X — XP): once the transform has been determined
for each centroid, the training samples undergo the
same transform as the centroid they have been assigned
to by the clustering algorithm. The model is retrained
with the adapted training samples, X; = {x;}._, with
Y? = {y;}l_,, and used to predict the data in the
destination domain XP.

2) Adaptation of the image in the destination domain
(Xf +— X* + XP): the whole PDF in X” can
be adapted backwards to the distribution of X*°. This
solution has the advantage to allow the use of the same
model developed for X without retraining, since the
labeled pixels Xf have not been moved and keep their
mutual relationships.

C. Hot spot correction

The last adaptation problem considers the correction of
angular effects. To this end, we studied a set of two HyMap
hyperspectral images taken over the Barrax test site in 1999
during the DAISEX99 ESA campaign. The flight was de-
signed to enhance angular effects, so that two overpasses
were acquired over the same site at noon: one in North-
South direction along the solar principal plane and the other in
East-West direction along the orthogonal plane (Fig. 8d). This
flight configuration allowed the observation of an interesting

TABLE I
LABELED POINTS X; AVAILABLE FOR THE SOURCE AND DESTINATION
DOMAINS FOR THE ZURICH IMAGES.

2002 2006
Class xS XD X D2
! (samelarea) (# zlirea) Legend color
Residential 6746 5245 13481 Orange
Commercial 5277 4992 4402 Red
Vegetation 14218 9454 11150 Green
Harvested vegetation 2523 2883 - Brown
Water 269 165 - Blue
Total 29033 22739 29033
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(b) Destination image XP
.' “;'

(d) Flight pattern

(c) Difference X*° vs XP

Fig. 8. DAISEX dataset. Top left: acquisition perpendicular to the principal
plane, with hot spot maximizing angular effects. Top right: acquisition parallel
to the principal plane, without hot spot. Bottom left: differences between
X5 and XP, corresponding to angular hot spot. Bottom right: flight pattern
followed for DAISEX99 at Barrax (Spain).

directional anisotropy effect called hot spot in the east-west
flight line at noon. The hot spot is characterized by a sharp
increase in reflectance when the surface is viewed in the same
direction as it is illuminated by the Sun. This phenomenon,
although only appearing under unusual angular configurations,
provides an excellent opportunity to test the proposed adapta-
tion method in a challenging scenario where a high reflectance
peak appears in the affected region (see Fig. 8a-c). In a
previous publication [49], a method for compensating for the
angular effects based on bidirectional reflectance distribution
function (BRDF) modeling was proposed. However, such a
compensation also requires knowledge of the land covers at
the surface, that were estimated using a classification result.
In this paper, we propose to perform this correction without
prior knowledge of the surfaces on the ground and their BRDF
characterization.

Figure 9 illustrates the manifold of the two acquisitions.
Globally, the main manifold shape is similar, as illustrated
in Figs. 9a and 9b respectively. However, pixels located in
the hot spot region in Fig. 8 behave differently: their values
observed in Fig. 9 (highlighted in light blue) show 1) that the
hot spot corresponds to an increase of the reflectivity values,
and 2) that the hot spot is localized in the spectral space,
thus allowing to consider a compensation strategy based on
vector quantization as the one proposed. For this experiment,
we considered a single adaptation setting, where the image
with the hot spot (X*) is adapted to the one without it (X ),
i.e. X® — X*. Classification is not the aim of this example, so
no labeled information is used for these experiments. Quality
of the transform will be assessed by comparing the radiometric
and spectral differences with respect to the X” image.

0.4 0.4
g g
§ 0.2 § 0.2
b= 3
0 0
2 % A
0 5 0 5
2> % 2>, 0!
’6 s 76 o
OO 0860V tp, 00 0880 Y
(a) X¥ (b) XP

Fig. 9. Data manifolds for the images with [X® (a)] and without [XP (b)]
hot spot. In light blue, pixels corresponding to the hot spot area, which are
those that should be adapted between the domains.

IV. RESULTS AND DISCUSSION

A. Toy dataset

Results for the toy dataset are shown in Fig. 10: in almost all
the situations, the proposed graph matching procedure (second
column of Fig. 10) finds a suitable match for each centroid
(compare with the expected assignments in the first column),
given that a correct displacement is present in the possible
movements. The only exception is observed when some cen-
troids are not attributed: this case occurs when the current
centroid position is more suitable than any possible movement
for a given set of centroids. The committee, alternating the
sequences, corrects only partially this behavior, since for
peripheral centroids the amount of non-attributions is higher
than the amount of corrected attributions (see the discussion
at the end of Section II-C). As an example, the centroid that
remains still (upper right side for the low distortion case) is
attributed correctly by about 40% of the committee members,
while in 60% of the cases it does not move. This behavior
could be handled by adding specific cases regarding non-
attributed centroids, but it will result in an ad-hoc solution
which is out of the scope of this paper. The other matching
strategies are illustrated in the third to fifth columns of Fig. 10:

- Graph matching without structural constraint (third col-
umn of Fig. 10): removing the structural constraint on
the W matrices has little effect in the simplest case
of low distortion, where the Euclidean matching can
also provide a good solution (see discussion below). On
the contrary, when the distortion become stronger and
Euclidean distances will lead to wrong assignations, the
algorithm become more and more sensitive to the level
of distortion. Some correct matches are still found, but
this is related to the fact that the possible movements are
limited by the cross-domains graph.

- Injective Euclidean matching (‘E-Inj.’, fourth column of
Fig. 10): this case is injective, in the sense that each
centroid in ¢® must be mapped to a different centroid
in ¢”. Adding such a constraint implies that when all
proximal centroids have been attributed, centroids start
to be mapped to centroids of the destination domain that
may be too far away (and become the nearest neighbors,
just because the others are already occupied). This results
in wrong assignations, as those observed in the bottom
row, where centroids of the lower structure of c¢° are
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Fig. 10.

Graph matching adaptation with increasing distortions on a 2D toy example and k = 4 nearest neighbors in the cross-domains graph. Euclidean

matches to the closest centroids in a single sequence, Euclidean injective matches to the closest unmatched centroid.

mapped to centroids of the upper structure of c¢”. This
case is very dangerous, since it maps to centroids that 1)
are far away and ii) do not respect the graph structure.

- Euclidean matching (‘Eucl.’, fifth column of Fig. 10): in
this case, each centroid is mapped to its nearest neighbor
in the c” graph. Even if the solution retrieved is correct
for small levels of distortion (top row), an Euclidean
match ends up providing wrong matches as soon as
the lower part of the c” graph become closer than the
upper part. In this matching, being non-injective (i.e., it
allowing more than one centroid to be mapped to the
same centroid in cP), few errors other than errors of
proximity are observed, but overall, the algorithm cannot
find the correspondences.

The observed behavior shows the power, but also the
limitations of the proposed matching system proposed: the
graph matching strategy works well for low to mid distortions,
but when the distortion becomes strong, a rich enough cross-
domains graph is mandatory to allow the matching procedure
to find good correspondences. The structure criterion is robust
enough to discard wrong assignments, but only if the correct
ones are present in the list of possible attributions.

B. Classification in different environments

Table II summarizes the numerical results obtained while
considering adaptation from X* to XP1, i.e. between coreg-
istered images. The last two rows show the results obtained
by a model without adaptation (lower bound on performance),
as well as those by a model using labeled pixels in the X1
image (upper bound on performance). We observe a that the
difference in performance is between 5 and 10%, depending

on the number of labeled examples. It is worth noting that for
low numbers of training samples, results for adapted models
are even better than when using labeled samples from the
destination domains, however, o in these cases is higher and
the differences are thus not statistically different.

A general trend observed in the proposed adaptation models
is that all experiments improve the results of classifiers without
adaptation by about 7% both in overall accuracy and kappa
statistics. This confirms that the shifts between the acquisitions
are present and that the proposed adaptation strategy corrects
the local distortions. Secondly, the proposed graph matching
procedure always outperforms global histogram matching [54]
by 2-5%, thus showing the interest of a local correction method
maintaining the local data structures instead of a correction
method based on global statistics of the images. Finally, with
respect to other local methods such as Euclidean matching
and Euclidean injective, we can still observe an improvement
around 2% and 8% in classification, respectively. As for the
toy example in the previous section, the Euclidean injective
matching leads to a deterioration of the solution resulting in
lower accuracies than the case without adaptation.

Backward adaptation (displacement of destination domain
X7 ¢+ X* « XDP2) provides slightly lower results than
forward adaptation. However, this setting has the advantage of
keeping the relationships among training samples unchanged,
thus avoiding re-training of the SVM. The robust solutions
provided by backward adaptation show that the destination
domain can be adapted efficiently to the source domain, thus
opening interesting opportunities for multitemporal classifica-
tion of large image time series.

Regarding the size of the committee, a minimal size of 50
members seems necessary to minimize the average entropy
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TABLE I

AVERAGE CLASSIFICATION RESULTS FOR THE BRUTISELLEN IMAGE X P1USING TWO QUANTIZATION ALGORITHMS AND DIFFERENT PARAMETERS

SETTINGS. RESULTS USING COMMITTEES OF 100 MODELS ARE REPORTED FOR THE GRAPH MATCHING ALGORITHM. IN BOLD, THE BEST RESULT FOR

EACH ADAPTATION SETTING. (EUCL = EUCLIDEAN MATCHING; E-INJ. = EUCLIDEAN INJECTIVE MATCHING; HM = HISTOGRAM MATCHING).

Clustering k

# training from XlS

Overall Accuracy (OA)
143 286 1430 2860
W o u o pu o u o

Kappa statistics (k)
143 286 1430 2860
I o I o T o I o

86.26 2.42 88.37 2.29 89.46 1.37 89.97 0.55
86.94 2.33 86.98 2.43 88.79 1.03 89.19 0.61
85.56 1.68 87.30 1.80 88.06 0.54 88.09 1.08
87.41 2.29 88.25 1.87 87.25 0.74 88.42 0.80

0.802 0.035 0.833 0.034 0.848 0.020 0.856 0.008
0.811 0.035 0.812 0.035 0.839 0.015 0.844 0.009
0.790 0.025 0.816 0.026 0.827 0.008 0.828 0016
0.819 0.033 0.832 0.027 0.818 0.011 0.835 0.012

85.72 1.61 87.44 1.20 87.82 0.81 88.39 0.52
86.36 1.22 87.29 1.40 87.12 0.79 87.72 0.49
85.08 1.74 86.80 0.99 87.39 0.68 88.31 0.66
85.87 1.46 87.65 1.59 86.97 0.79 88.40 0.64

0.793 0.024 0.819 0.017 0.824 0.012 0.832 0.008
0.803 0.018 0.817 0.019 0.815 0.011 0.823 0.007
0.784 0.026 0.810 0.014 0.819 0.010 0.832 0.010
0.797 0.022 0.824 0.022 0.815 0.011 0.835 0.010

k-means 50
2 100 X5 — X; — XP1
S| rem >0
s 100
<| k-means >0
s 100 X7« X* + XD
© 50
FCM 100
7_3; k-means 100 XZS — XZ*’E“C? — XD1
M| k-means 100 X7 — XZ*’E'I"J' — XD1

85.64 2.53 86.81 1.68 87.47 0.79 87.72 1.06
79.80 3.93 79.72 2.50 80.59 1.02 81.46 0.43

0.796 0.037 0.814 0.024 0.824 0.011 0.827 0.015
0.704 0.062 0.705 0.039 0.719 0.015 0.732 0.006

[ Hist. matching

Xf — XM XD [84.94 1.59 86.45 2.28 84.13 1.30 85.36 1.59[0.785 0.023 0.807 0.032 0.776 0.018 0.793 0.022

No adaptation
Training from XP1

XY — XD1
XZ’51 — XDP1

80.84 1.37 81.96 1.94 80.67 0.97 81.85 1.00
85.43 1.42 87.31 0.84 89.65 0.37 90.12 0.29
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Fig. 11.  Dependence of the uncertainty of the committee (median of
the normalized entropy) as a function of the committee size (number of
assignment sequences) for the Brutisellen dataset.

(so, the number of equiprobable predictions per centroid),
as illustrated by the curve in Fig. 11. As computational
complexity grows linearly with the number of sequences
considered, the evaluation of a limited number of sequences
remains reasonable in terms of processing time.

Results obtained when predicting a spatially disjoint images
are reported in Table III. When considering a different scene
such as the Rieterpark image (X”2) shown in last row of
Fig. 1, we observe that the direct application of the SVM
trained on X° does not provide reliable classification of the
scene (accuracy of 75%, while training with labeled data from
X P2 results in 85%). This can be explained by two factors,
also visible in the left confusion matrix of Table IV: first,
since the source training data consider five classes, while the
destination domain only presents three, there are errors due
to the classification of pixels in one of the missing classes;
second, the manifold structure is different, thus implying the
domain adaptation problem that we study in this paper.

The application of the proposed approach results into an
improvement of the general classification performance be-
tween 5 and 6% in overall accuracy and about 9% in kappa
with respect to the ‘No adaptation’ scenario. In this case,
the performance of the model considering only three classes
(last row of Table III) is not reached, as there is still some
misclassifications in the missing class ‘harvested vegetation’

(see the central confusion matrix in Table IV), but the number
of misclassifications is strongly reduced by the adaptation pro-
cedure. In this case, the adaptation procedure does not resolve
the conflict between residential and commercial buildings,
since in X* commercial buildings have mainly bright roofs,
while in XDz they have dark roofs, but increases the user’s
accuracy by strongly reducing the classification of pixels into
a missing class. In order to resolve the confusions between
buildings, one should consider applying contextual filters, as
in [55], [56]. As in the previous case study, comparison with
Euclidean graph matching and Histogram Matching give rise
to poorer results, but with a stronger deterioration of the
solution when using the Euclidean injective setting.

A final observation can be done regarding the stability of
the predictions reported in Table III: without adaptation, the
standard deviation of the result is higher (between 3 and 5 %),
while when adapting the manifold prior to classification, the
standard deviation of the accuracy is between 0.3 and 1.4 %.
This is a consequence of the use of committees of graph
matching procedures, that helps the method to converge to
a stable solution.

Also, in these experiments, no significant differences can be
appreciated between the two analyzed clustering algorithms.
However, k-means algorithm provides slightly better results
than its fuzzy version. This can be explained since we are
evaluating the algorithms by the performance of a sparse
classifier trained on a matched graph. This means that a rough
displacement of the centroids (and of the corresponding train-
ing pixels) can be acceptable, since the centroids represents all
the pixels in the image and the training pixels will be within
these clusters. Moreover, the clusters are supposed to belong
to single classes (the cluster assumption states that classes are
separated by low-density regions). So, when using k-means,
the training samples of different classes are ‘pushed apart’,
thus giving a consistent advantage for classification. On the
contrary, for FCM, points at the interface between clusters tend
to move jointly with the closest centroids, which usually ‘pull’
them in two opposite directions. As a result, some training
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TABLE III
AVERAGE CLASSIFICATION RESULTS WHEN PREDICTING THE RIETERPARK ZURICH DATASET X P2 USING TWO QUANTIZATION ALGORITHMS AND
DIFFERENT PARAMETERS SETTINGS. ALL EXPERIMENTS AVERAGE COMMITTEES OF 100 MATCHING PROCEDURES. IN BOLD, THE BEST RESULT FOR
EACH ADAPTATION SETTING. (EUCL = EUCLIDEAN MATCHING; E-INJ. = EUCLIDEAN INJECTIVE MATCHING; HM = HISTOGRAM MATCHING)

Overall Accuracy (OA) Kappa statistics (k)

Clustering & # training from X 1430 2860 1430 2860

nw o % o w o % o
means 30 80.72 1.16 8135 0.570.685 0.02 0.695 0.01
2 100 X = X; —XP2 7849 1.38 78.99 0.88(0.647 0.02 0.655 0.01
% Eem 50 78.36 0.79 78.03 0.49 |0.657 0.01 0.653 0.01
s 100 78.51 1.00 78.06 0.32|0.652 0.01 0.647 0.01
= pomeans 0 7839 1.68 79.82 0.85]0.654 0.02 0.674 0.01
g 100 X7 X* « XP2 [77.83 094 77.96 0.56|0.642 0.01 0.644 0.01
S rem 50 77.18 0.86 77.54 0.36|0.640 0.01 0.645 0.01
100 77.36 1.18 77.69 0.50|0.633 0.02 0.638 0.01
5 kemeans 100 X7 — X5 XP1[79.06 1.04 7867 0750660 0.01 0.657 0.01
D kmeans 100 X7 — XM o XP1[70.84 111 7133 0.87]0.545 0.02 0.550 0.01
Histogr. matching X7 — X" — XP1 [75.70 3.63 7542 4.05[0.600 0.05 0.590 0.06
No adaptation X} — XD> 7429 520 7548 2.45[0.602 0.06 0.608 0.04
Training from X P2 X2 — XP2 85.06 0.88 86.21 0.43]0.761 0.01 0.779 0.01

TABLE IV

RIETERPARK DATASET. CONFUSION MATRICES FOR A SINGLE RUN USING k-MEANS CLUSTERING, 1430 TRAINING PIXELS AND 50 CENTROIDS. (B =
BUILDINGS; C = COMMERCIAL BUILDINGS; V = VEGETATION; H = HARVESTED VEGETATION; W = WATER).

True True True
B | C | V |%PA B | C | V |%PA B | C | V |%PA
B [8247 2274 258 [7651 B [10377] 2382 | 346 |79.18 B [11587]2632| 51 |81.20
g C [204T]1000 8 |32.80 g C | 1981 | 1622 4 (4497 = C | 892 |1594[ 19 |63.63
STV [ 84 | 72 |10460|98.53 SV | 61 | 163 |10399|97.89 SV | 86 | 28 |10694]98.95
B H [2193]908 | 38 | - B H [ 146 | 87 | 15 | - B H | 0 0 0 -
AW [0 [0 0 - AW ][00 0 - ATW 0 0] 0 -
%UA |65.63 23.51 97.18 |71.44 %UA | 82.59 38.13 96.61 |81.20 %UA [ 9222 3747 99.35 |86.56

(a) No adaptation

samples remain at the same relative position in the boundary
between classes, and this can decrease the efficiency of a
classifier based on support vectors and large margin.

In the next experiment, the effect of the clustering algorithm
is illustrated in a continuous adaptation problem.

C. Hot spot correction

Figure 12 illustrates spectra in the Barrax image averaged
for different types of crops: sugar beet (sparse vegetation),
barley (senescent vegetation), alfalfa (dense vegetation), and
bare soil. Panel (a) reports pixels out of the hot spot area, while
panel (b) considers pixels within it. From these curves, the
spatial component of the data shift effect can be appreciated,
since the spectra vary much more in the hot spot area (dif-
ferences between dashed and solid lines in the bottom panel).
This created the necessity for a different quantization approach
based on spatially constrained clustering: a compensation
based solely on clustering in the spectral space would have
been suboptimal, because certain angular effects between the
two acquisitions are not related to the hot spot and must not
be compensated in the same way as for the hot spot area.
For instance, consider the bottom left corner of the images,
where the bare soil fields are much more reflective in the
orthogonal acquisition than in the hot-spot acquisition (which
is a normal behavior of soil BRDF) showing a reversed effect
with respect to the one we are trying to correct. For this reason,
we applied a spectral/spatial approach, where the quantization

(b) Proposed

(c) Training from XP2

was constrained to increase similarity in case of geographical
proximity. To do that, geographical distance has been added
to the spectral similarity matrix of the k-means (or FCM).

Results of the compensation are reported in Fig. 13: the
first column shows a mosaic of the desired image X” and
of the image corrected with the proposed algorithm X*: on
these mosaics!, we can observe that most of the hot spot has
been corrected by the graph matching procedure, especially
when using the FCM algorithm. The k-means results show
more pronounced differences in the corrected image, since all
the pixels attributed to a same centroid are displaced with the
same transform; on the contrary, the use of FCM allows a more
gradual displacement, thus returning a smoother transform,
where the pixels of the artifact are strongly corrected, while
the correction strength decreases smoothly as long as we move
further away. This can be observed in the central column of
Fig. 13, where the difference between the hot spot image X*
and X* is reported. Finally, in the rightmost column of Fig. 13
the per-pixel difference between X and X* is illustrated: by
comparing the resulting difference maps with the difference
between the original acquisitions (in the right panel of top
row), we can see that the graph matching procedure strongly
reduces the angular effects, reducing the RMSE between the
target domain X? and the corrected image X* form 5.98 (no
adaptation) to 4.55 (k-means) and 4.19 (FCM).

The mosaics were produced by creating a chessboard pattern showing X
patches on black squares and X* on white squares.
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Fig. 12.  Average spectra for different types of crops out of the hot spot area (a) and within (b). Solid lines represent averages for spectra in the image with

hot spot X and dashed lines for the image without hot spot X 2. In panel (b), differences between the two curves correspond to the shift to be corrected.

V. CONCLUSIONS

In this paper, we have presented a method based on
graph matching for manifold adaptation and compensation
of changes in acquisition conditions. The method matches
similarity graphs, where the nodes are codebook vectors of
the data distribution obtained by vector quantization. A cost
function accounting for centroids displacements and graph
deformation is proposed to ensure smooth and structure-
preserving transforms. Experiments in a synthetic, controlled
scenario, and in three challenging remote sensing scenarios,
proved the interest of the method. In different settings for
classification (multitemporal and spatially disconnected areas),
the method proved its value as an efficient correction method
for changes in shadowing, seasonal, and acquisition angle. It
was also applied for the correction of angular effects with
an example characterized by a strong hot spot during an
acquisition orthogonal to the principal plane, where the method
compensated efficiently the directional reflectance changes and
spectral deformations occurred.

Despite the good performances observed, the method in its
current version must be handled with care: the definition of
the cross-domains graph is crucial, since it must contain the
correct matching sequence among the possible matches. When
those movements are not present, the algorithm cannot find a
good adaptation mapping. A solution would be to use a fully
connected cross-domains graph, but this would be done at the
price of a high computational cost.

The presented examples illustrate the application of the
proposed method and the use of graph matching in an elegant
way to allow local compensation of manifold deformations.
Future research will consider semisupervised extensions and
displacements taking into account local properties of the
destination manifold as curvature of principal directions.
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