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Abstract. Linear independent component analysis (ICA) learns sim-
ple cell receptive fields from natural images. Here, we show that lin-
ear complex-valued ICA learns complex cell properties from Fourier-
transformed natural images, i.e. two Gabor-like filters with quadrature-
phase relationship. Conventional methods for complex-valued ICA as-
sume that the phases of the output signals have uniform distribution. We
relax this assumption by modeling of the phase information of the out-
put sources in the complex-valued ICA estimation. The resulting model
of phases shows that the distributions are often far from uniform, and
the shapes of the Gabor filters are also changed.
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1 Introduction

Natural image statistics has become a very useful tool in order to understand
how the visual part of the brain works (see for instance [1] for review). One of
the most relevant revelations has been that a set of linear sensors optimized to
obtain independent sources from natural image data resembles the Gabor-like
receptive fields in the primary visual cortex (V1) [2, 3].

In recent years, the advances in natural image statistics have been mainly in
describing the statistics of the signals after this linear “simple cell” stage [4–9].
A common point of these models is that they focus on the total magnitude of
the sensor (simple cell) outputs. Often, a combination of the squared outputs of
simple cells is learned, leading to something like complex cells. However, there
is evidence that relative magnitude, or phase, of simple cells plays an important
role. A simple example about the relative importance of the magnitude and phase
can be found in [10]. In this example the magnitude and the phase in the Fourier
domain of two images were exchanged, and the images which were perceptually
more similar to the originals were the ones that carried the phase information.
Moreover there is experimental evidence of phase coupled Gabor-like filters in
V1 [12, 11]. For this reason, Daugman [13] suggested that the receptive field in
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the first stage could be seen as Gabor sensors defined in the complex domain:
the real and the imaginary part are essentially the same Gabor filter but with
phases in quadrature.

Despite the evidences of the importance of the phase, not too much progress
has been made in statistically modeling the phase of the signals after the simple
cell step. The contributions in this field are restricted to models with a fixed
linear stage, the wavelet transform [14, 15]. Although this led to interesting re-
sults about the distribution of natural images, the statistics used in this kind of
modeling could depend on the particular choice of using the wavelet transform
as first linear stage.

Here, we aim at both modeling the phase distribution and learning the first
linear stage from the data. For that purpose, we are proposing a extension of
complex independent component analysis (cICA) [16]. The proposed extension
deals with explicit modeling the phase of non-circularly symmetric sources as an
alternative to [17], which does consider non-symmetric sources but it does not
model the lack of symmetry.

The paper falls naturally in two parts. In Section 2, we review cICA and point
out its limitations in modeling the phase distribution. Section 3 shows how cICA
can be extended to better capture the distribution of the phase variable. The
extension includes the version of [16] as special case. Although we focus here on
natural images, the extension can be applied to all kinds of data. Conclusions
are drawn in Section 4.

2 Complex Independent Component Analysis and its
limitations

2.1 Complex Independent Component Analysis

As in Independent Component Analysis (ICA) for real variables, the goal in
complex ICA (cICA) [16] is to find a linear transformation W such that, when
applied to some vector of signals x, the elements of the output vector s = WHx
are statistically as independent as possible. The difference to real ICA is that W ,
x, and hence also s are complex valued. Furthermore, instead of the transpose
WT , the transposed, complex conjugate WH is used.

In ICA, one approach to find such a W is to first whiten the data and then
to maximize the kurtosis, or a statistically more robust contrast function. In
cICA, the same approach can be taken by appropriately defining whitening and
choosing an appropriate contrast function.

For complex variables, the random vector x is white if both the real and
imaginary part can be defined to be white and if the real and imaginary parts
are uncorrelated. An equivalent condition is that E{xxH} = I and E{xxT } = 0.
Denoting a column of W by wi, in [16], cICA can be performed by optimization
of JG,

JG(W ) =
n

∑

i=1

E{G(|wH
i x|2)}, (1)
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under the constraint WHW = I. Depending on the nature of the sources, JG

needs to be maximized or minimized. The contrast function G must be a smooth
even function and x is assumed to be white. Possible candidates include G(y) =

−
√

a + y2 for a small constant a. In the simulations in the next section, we will
use this contrast function with a = 0.1. Note that the objective function depends
only on the moduli ri = |wH

i x| of the complex variable si = wH
i x, no matter

the choice of G. For sparse sources, maximization of this G leads to consistent
estimators [16].

An alternative viewpoint of cICA is based on maximum likelihood estimation
of the statistical model x = Ws where x and s are white and WHW = I.
Assuming independence of the sources in s = (s1, . . . , sn), the log-likelihood is

ℓ(W ) =
∑

t

n
∑

i=1

log psi
(wT

i xt), (2)

where xt is the t-th observation of x and psi
is the density of the sources si.

Since the variables are complex valued, psi
(si) is a bidimensional distribution

that can be written as prφ(ri, φi)/ri, where ri is the modulus and φi is the phase
of si. Assuming further that the modulus and the phase are independent and
that, importantly for the next sections, the distribution of the phase is a uniform
distribution, maximization of ℓ becomes maximization of

J2(W ) =
∑

t

n
∑

i=1

(log pr(rit) − log rit) . (3)

The term pr denotes the distribution for the moduli ri, where we assume that all
of them follow the same distribution. Replacing sample average by expectation,
we obtain the objective function in Eq.1 with G(r2) = log pr(r)− log r. Note fur-
ther that the distribution pq of the squared modulus q = r2 is pq(q) = pr(r)/(2r).
This means that G(q) = log pq(q)+ log 2. Hence, the contrast function G used in
cICA can be directly related to the distribution of the squared moduli of the com-
plex sources. In particular, we can relate the contrast function G(q) = −

√

a + q2,
where a is a small constant, to the choice of pq being a Gamma distribution,

pq(q) = qk−1 exp −q
θ

Γ (k)θk
, (4)

with k = 1. Then, log pq(q) = −q +const, which is, up to additive constants, the
same as the above contrast function when a is small.

2.2 Simulations with natural Images

We apply cICA on natural images in the Fourier domain. The natural images
are 16×16 patches extracted from the data base in [18]. The data x on which we
apply cICA are the complex Fourier coefficients. For the visualization, we show
the learned W combined with the whitening matrix and the Fourier transform.
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Fig. 1. Filters and features (defined by the pseudoinverse of the filter matrix) obtained
with cICA using the algorithm in [16], ordered according to contrast function value
(first 36 of 126). Filters and features are shown in pairs, with the real part at the left
and the imaginary part at the right. Top: complex filters. Bottom: complex features.

Figure 1 shows the results. The real and the imaginary part of the complex
filters obtained are shown in pairs from left to the right. Real and imaginary
parts in Figure 1 display a quadrature-phase relationship. This statistical result
is consistent with measurements in V1 [12, 11] and related empirical models
[13]. Complex ICA results essentially replicate those obtained by independent
subspace analysis [4], but the complex-valued formalism automatically creates
two-dimensional subspaces in ordinary linear ICA.

2.3 Checking model assumptions

Here we check whether, for natural images, the obtained complex sources si

follow the assumption in cICA that the (squared) moduli follow a Gamma dis-
tribution and the phases are uniformly distributed.

Fitting gamma distributions to the empirical distributions of the modulus of
the sources leads to good fits, see Figure 2. In contrast, the empirical distributions
of the phases do not follow the model assumptions, as shown in Figure 3. The
clearly visible oscillations in the phases violate the assumption of uniformity in
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cICA. These roughly bimodal histograms may be modeled by a modified Von
Mises distribution to account for the two peaks,

pφ(φ|k, µ) =
1

2πI0(k)
ek cos(2(φ−µ)), (5)

where I0(k) is the Bessel function of order 0. In contrast to the ordinary von
Mises distribution, we have here introduced the factor 2 inside the cosine to
model the two-peaked distributions seen in fig. 3. Note that this distribution
correspond to a uniform distribution when the parameter k = 0. In figure 3 we
can see how fitting this distribution to the empirical distribution of the phase is
much more precise than fitting a uniform distribution.

3 Extension of complex ICA

In this section we propose an extension of cICA. The extension builds on the
maximum likelihood approach to cICA in Eq. 2. It will take into account that
the distribution of the phase variables can be non-uniform, as found in natural
images (Eq. 5 and Fig. 3).

As in the previous section, we write in Eq. 2 psi
as prφ(ri, φi)/ri, where ri

is the modulus and φi is the phase of si. Also as previously, we assume that
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Fig. 2. Selection of distributions of the modulus of the cICA sources (blue) and a fitted
gamma distribution (black). The curves are strongly overlapping and thus not clearly
visible. Numbers refer to the corresponding sensor in the figure 1 (left to right, top to
bottom).
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Fig. 3. Selection of distributions of the phases of the cICA sources (blue) and a fitted
modified Von Mises distribution (black). Numbers refer to the corresponding sensor in
the figure 1 (left to right, top to bottom).
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the modulus and the phase are independent. However, instead of assuming a
uniform distribution for the phases, we assume the distribution in Eq. 5. Since
this distribution includes the uniform distribution, our extension includes the
conventional cICA as a special case. With these assumptions, the maximum
likelihood principle leads us to maximize the following objective function

JGQ(W ) =
∑

i

E{G(ri) + Q(φi, ki)}. (6)

Here, ri is the modulus of the complex number wH
i x, and φi is its phase.

As before, wi denotes a column of the matrix W and we have the constraint
WHW = I. The function G is, as before, related to the distribution of the
squared modulus. A possible choice is G(y) = −

√

a + y2. The function Q is
related to the distribution of the phase and is given by Q(φi) = ki cos(2φi), and
depends on the wi and the shape parameters ki. Here, we can set µ = 0 because
this phase localization parameter is redundant: the phase of the oscillations will
be determined by the estimated features anyway.

This modification of cICA can also be considered from an information the-
oretical point of view. The main goal of all ICA-based algorithms is to ob-
tain independent sources, which is equivalent to reduce the mutual informa-
tion (MI) between them. Therefore, as MI(s1, s2, ..., sn) =

∑

i{h(ri) + h(φi)}−
h(s1, s2, ..., sn), where h(·) is the entropy. This result can be derived by using the
same assumptions as in section 2.1. Accordingly, we have to reduce the entropy
of ri and φi, (the joint entropy is invariant under unitary transforms). Note that
the uniform distribution is the one with maximum entropy when the domain
is bounded. Therefore, anything different to a uniform phase distribution will
have less entropy, which means less MI between the variables, and hence more
independent sources.

Figure 4 shows the results when the above extended cICA is applied to nat-
ural images (same setup as before). Note how the shape of the filters is more
elongated (especially the highest-ranked ones) and spatially more extended than
for the classical cICA. In figure 5 we can see the distribution of phases of the
sources obtained with the proposed algorithm. The distributions are similar to
the proposed modified Von Mises distribution.

4 Conclusions

In this paper, we have started with modeling natural images with complex In-
dependent Component Analysis (cICA). This led to the emergence of complex
filter where the real and the imaginary part have the same Gabor-like shape
(same orientation and same frequency) but a difference in the phases of π

2 .
Checking the model assumptions in cICA, we have noticed that the assump-

tion of uniformity of the phases is often violated for natural image data. This led
us to formulate an extension of cICA which models also the phase distributions.
Simulations with natural images showed that the empirical distribution of the
phases provide a good match to the assumptions of the extended model.
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Fig. 4. Filters and features obtained with the extended cICA, ordered according to
contrast function value (first 36 of 126). Filters and features are shown in pairs with
the real part at the left and the imaginary part at the right. Top: complex filters.
Bottom: complex features.

Our research has the potential for more extensions. For instance, the assump-
tion of the independence between modulus and phase should be investigated
more carefully.
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