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ABSTRACT 

In this entry we summarize the major types of multidimensional scaling (MDS), the 
distance models used by MDS, the similarity data analyzed by MDS, and the 
computer programs that implement MDS. We also present three brief examples. 
We do not discuss experimental design, interpretation, or the mathematics of the 
algorithms. The entry should be helpful to those who are curious about what MDS 
is and to those who wish to know more about the types of data and models relevant 
to MDS. It should help the researcher. the statistical consultant, or the data analyst 
who needs to decide if MDS is appropriate for a particular set of data and what 
computer program should be used. 

For a more complete, but still brief. introduction to MDS, the, reader should turn to 
Kruskal and Wish [6]. A complete discussion of the topics covered here as well as 
of experimental design. data analysis, and interpretive procedures can be found in 
Schiffman et al. [141. An intermediate-level mathematical treatment of some MDS 
algorithms is given in Davison (1983). An advanced treatment of the theory of 
MDS, illustrated with innovative applications, is presented by Young and Hamer 
[211]. Reviews of the current state of the art are presented by Young (1984a; 
1984b). Multidimensional scaling is related to principal component analysis, factor 
analysis, cluster analysis, and numerical taxonomy: the reader is referred to the 
appropriate entries in this encyclopedia, along with the SCALING and PROXIMITY 
DATA entries. 

  

1. OVERVIEW OF MULTIDIMENSIONAL SCALING 

Multidimensional scaling (MDS) is a set of data analysis techniques that display the 
structure of distance-like data as a geometrical picture. It is an extension of the 
procedure discussed in SCALING. 

MDS has its origins in psychometrics. where it was proposed to help understand people's 
judgments of the similarity of members of a set of objects. Torgerson [18] proposed the 
first MDS method and coined the term. his work evolving from that of Richardson [11]. 
MDS has now become a general data analysis technique used in a wide variety of fields 



[14]. For example, the book on theory and applications of MDS by Young and Hamer, 
[21] presents applications of MDS in such diverse fields as marketing'. sociology, 
physics, political science', and biology. However, we limit our examples here to the field 
with which the author is most familiar, psychology. 

MDS pictures the structure of a set of objects from data that approximate the distances 
between pairs of the objects. The data, which are called similarities. dissimilarities, 
distances, or proximities, must reflect the amount of (dissimilarity between pairs of the. In 
this article we use the term similarity generically to refer to both similarities (where large 
numbers refer to great similarity) and to dissimilarities (where large numbers refer to 
great dissimilarity). 

In addition to the traditional human similarity judgment, the data can be an "objective" 
similarity measure (the driving time between pairs of cities) or an index calculated from 
multivariate data (the proportion of agreement in the votes cast by pairs of senators). 
However, the data must always I represent the degree of similarity of pairs of objects (or 
events). 

Each object or event is represented by a point in a multidimensional space. The points 
are arranged in this space so that the distances between pairs of points have the 
strongest possible relation to the similarities among the pairs of objects. That is, two 
similar objects are represented by two points that are close together, and two dissimilar 
objects are represented by two points that are far apart. The space is usually a two- or 
three-dimensional Euclidean space, but may be non-Euclidean and may have more 
dimensions. 

MDS is a generic term that includes many different specific types. These types can be 
classified according to whether the similarities data are qualitative (called nonmetric 
MDS) or quantitative (metric MDS). The number of similarity matrices and the nature of 
the MDS model can also classify MDS types. This classification yields classical MDS 
(one matrix, unweighted model), replicated MDS (several matrices, unweighted model), 
and weighted MDS (several matrices, weighted model). We discuss the nonmetric-metric 
and the classical-replicated-weighted classifications in the following sub-sections. 

CLASSICAL MDS 

The identifying aspect of classical MDS (CMDS) is that there is only one similarity matrix. 
Table I is a matrix of similarity data suitable for CMDS. It contains the flying mileages 
between 10 American cities. The cities are the "objects." and the mileages are the 
"similarities." An MDS of these data gives the picture in Fig. 1, a map of the relative 
locations of these 10 cities in the United States. This map has 10 points, one for each of 
the 10 cities. Cities that are similar (have short flying mileages) are represented by points 
that are close together, and cities that are dissimilar (have large mileages) by points far 
apart. 

  

 



  

 

Generally, CMDS employs Euclidean distance to model dissimilarity. That is, the 
distance dij between points i and j is defined as 

  

Where xi. Specifies the position (coordinate) of point i on dimension a. The distance can 
also be defined according to the Minkowski model: 

  

Where the value of p (<1) is set by the investigator. 

For either definition of distance there are n points, one for each of the n objects. There 
are also r dimensions, where the value of r is determined by the investigator. The 
coordinates xia are contained in the nXr matrix X. Using matrix algebra, the Euclidean 
model can be defined as 

 

where xi is the ith row of X and contains the r coordinates of the ith point on all r
dimensions. A simple matrix expression for the Minkowski model is not possible. For both 
models, the distances dij are contained in the n X n symmetric matrix D. Finally. The 

similarity sij are contained in the matrix S, also n X n. 

METRIC CMDS. The first major CMDS proposal [18] was metric (i.e.. the similarities had 
to be quantitative). Torgerson's development required the data to be at the ratio level of 
measurement, although this was soon generalized to the interval level [8]. While the data 
could contain random error, this early type of MDS required that the data be 
dissimilarities (not similarities), complete (no missing values), and symmetric (the 
dissimilarity of objects I and J had to equal that of objects J and 1). These CMDS 
proposals also required the distance model to be Euclidean. The flying mileage example 
is metric CMDS because flying mileages are at the ratio level of measurement. 

For metric CMDS the distances D are determined so that they are as much like the 
dissimilarities S as possible. There are a variety of ways in which "like" is strictly defined, 
but a common one is a least-squares definition. In this case we define 

1 {S} = D + E. 

Where I {S} is read "a linear transformation of the similarities." If the measurement level 



is ratio, and then the linear transformation has a zero intercept, but can be nonzero when 
the level is interval. If the data are similarities. The slope of the transformation is 
negative: if dissimilarities, it is positive. 

In the preceding equation, E is a matrix of errors (residuals) that in the least-squares 
optimization situation, we wish to minimize. Since the distances D are a function of the 
coordinates X, the goal of CMDS is to calculate the coordinates X so that the sum of 
squares of E is minimized, subject to suitable normalization of X. We also need to 
calculate the best linear transformation l{S}. Torgerson's method does not actually 
minimize the sum of squares of E, nor do ALSCAL or MULTISCALE. The KYST, 
MINTSSA, and SMACOF programs do. These programs are all discussed in the 
Computer Programs section. 

NONMETRIC CMDS. The second major CMDS proposal [5, 15] was nonmetric. That is. 
The data could be at the ordinal level of measurement (see ORDINAL DATA). In 
addition. The data S could be either complete or incomplete. Symmetric or asymmetric, 
and similarities or dissimilarities. 

These nonmetric CMDS proposals extended the distance model to the Minkowski case 
and generalized the relation between similarities and distances. They enable defining 

m {S} = D + E, 

Where m {S} is read "a monotonic transformation of the similarities." If S is actually 
dissimilarities then m {S} preserves order, whereas if S is similarities, it reverses order. 
Thus, for nonmetric CMDS, we need to solve for the monotonic (order-preserving) 
transformation m{S} and the coordinates X. which together minimize the sum of squares 
of the errors E (after normalization of X). This exact problem is solved by the MINISSA, 
KYST, and SMACOF programs (discussed in the final section) while ALSCAL and 
MULTISCALE solve closely related problems. 

The nonmetric optimization represents a much more difficult problem to solve than the 
metric problem and is an important breakthrough in multidimensional scaling. In fact, 
nonmetric CMDS is the first example of using quantitative models to describe qualitative 
data that belongs to the approach discussed by Young [19] (see QUALITATIVE DATA. 
STATISTICAL ANALYSIS). 

It is reassuring to know that when we degrade the flying mileages (Table 1) into ranks of 
flying mileages, and then submit the ranks to nonmetric CMDS, the map that results is 
indistinguishable from that shown in Fig. 1. 

REPLICATED MDS 

The next major development, replicated MDS (RMDS), permitted the analysis of several 
matrices of similarity data simultaneously [7]. There are m matrices S, one for each 
subject k, k = 1, . . . , m. 

RMDS uses the same distance models as CMDS, but uses them to describe several 
similarity matrices rather than one. With RMDS, the matrix of distances D is determined 
so that it is simultaneously like all the similarity matrices Sk. 



For metric RMDS, the least-squares definition of "like" is 

1k {S k} = D + E k,
 

Where 1k {Sk} is the linear transformation of the kth similarity matrix Sk which best fits the 
distances D. The data may be similarities or dissimilarities and may be at the ratio or 
interval levels, just as in metric CMDS. The analysis minimizes the sum of the squared 
elements in ail error matrices Ek. subject to normalization of X. 

For nonmetric RMDS we minimize the several Ek in
 

mk {Sk} = D + Ek ,
 

Where mk {Sk} is the monotonic transformation of the similarity matrix Sk that is a least-
squares fit to the distances in matrix D. The data may be similarities of dissimilarities. 
Just as in CMDS. 

Note that for RMDS each linear or monotonic transformation /k. or mk is subscripted, 
letting each data matrix Sk have a unique linear or monotonic relation to the distances D. 
Since k ranges up to m. there are m separate linear or monotonic transformations, one 
for each of the m dissimilarity matrices Sk. This implies that RMDS treats all the matrices 
of data as being related to each other (through D) by a systematic linear or monotonic 
transformation (except for a random error component). The KYST and SMACOF 
programs minimize the sum of squares of Ek, while ALSCAL and MULTISCALE solve 
other closely related problems. In psychological terms, RMDS accounts for differences in 
the ways subjects use the response scale (i.e., differences in response bias). 

Jacobowitz [4] used RMDS to study the way language develops as children grow to 
adulthood. In his experiment he asked children and adults to judge the similarity of all 
pairs of 15 parts of the human body. The judges were five-, seven-. And nine-year-olds, 
and adults. There were 15 judges at each age. Four separate RMDS analyses were 
done. One for each age group. 

 

The RMDS results for the five-year-olds are shown in Fig. 2a, and for the adults in Fig. 
2b. The analysis located the points in the space, but did not draw the lines. The lines 
were drawn by Jacobowitz to interpret the psycholinguistic structure that people have for 
body-part words. Jacobowitz theorized that the structure would be hierarchical. We can 
see that it is. He further theorized that the structure would become more complex as the 
children become adults. This theory is also supported, since the adults' hierarchy also 
involves a classification of corresponding arm and leg terms. (In Fig. 2b the 
corresponding terms are linked by dashed lines. the implied classification terms are 
shown in parentheses, and the word sole, which was not a stimulus, is shown in the 
position that we would predict it to be in if the study were repeated.) 



WEIGHTED MDS 

The next major MDS development, weighted MDS (WMDS), generalized the distance 
model so that several similarity matrices Sk could be assumed to differ from each other in 
systematically nonlinear or nonmonotonic ways. Whereas RMDS only accounts for 
individual differences in response bias, WMDS incorporates a model to account for 
individual differences in the fundamental perceptual or cognitive processes that generate 
the responses. For this reason, WMDS is often called individual differences scaling 
(INDSCAL) and is often regarded as the second major breakthrough in multidimensional 
scaling. 

WMDS invokes the following definition of weighted Euclidean distance: 

 

Which, in matrix algebra is 

 

Where Wk is a r x r diagonal matrix. The diagonal values, which must not be negative, 
are weights for subject k on each of the r dimensions. 

WMDS is appropriate for the same type of data as RMDS. However, RMDS generates a 
single distance matrix D, while WMDS generates m unique distance matrices Dk, one for 
each data matrix Sk. The distances Dk are calculated so that they are all as much like 
their corresponding data matrices Sk as possible. For metric WMDS, the least-squares 
problem is 

I, {Sk} = Dk + Dk ,
 

And for nonmetric WMDS, the problem is 

mk {Sk} = Dk + Ek..
 

Thus, for WMDS, we need to solve for the matrix of coordinates X, the m diagonal 
matrices of weights Wk, and the m transformations Mk or 1. We wish to do this so that 
the sum of squared elements in all error matrices, E, is minimal subject to normalization 
constraints on X and Wk. 

Neither of the two most commonly used computer programs solves either of the 
problems defined. (These programs and others are discussed in the last section.) The 
INDSCAL program, by Carroll and Chang [1], provided the first metric WMDS solution. 
However, it optimizes the fit of scalar products to a transformation of the data. The 
ALSCAL program, by Takane et al. [17] (see also Young and Lewyckyj [22] and Young et 
al. [24], provided the first and still the only algorithm to incorporate both nonmetric and 
metric solution to WMDS and optimize the fit of squared distances to the data. In fact, 



ALSCAL is still the only algorithm to provide the user with nonmetric and metric solutions 
to the CMDS, RMDS, and WMDS situations discussed, and it is regarded as the third 
major breakthrough in multidimensional scaling. 

The MULTISCALE algorithm by Ramsay (101 provided the first metric WMDS solution to 
optimize the preceding index (it fits distances to the data). Finally, the SMACOF 
algorithm [2, 3] and its associated program [16], which is still under development, will 
more than likely be the first program to be able to fit distances to the data so that the sum 
of squares of E is strictly minimized, where the distances may be CMDS, RMDS, or 
WMDS distances, and where the transformation may be metric or nonmetric. 

While WMDS incorporates the RMDS notion of individual differences in response bias 
(via mk and lk), the important aspect of WMDS is that it provides specific parameters for 
individual variation in cognitive or perceptual processes. These parameters are the 
weights. The weights are interpreted as the importance, relevance. or salience of each 
dimension to each individual. A large weight means that the dimension is important to the 
individual, a small weight means the dimension is unimportant. If the similarity matrices 
correspond to experimental conditions, say, rather than to people, the interpretation is 
that the weights reflect the importance of each dimension in the various experimental 
conditions. 

The Jacobowitz data already discussed provide a nice example of WMDS. An analysis of 
the 15 five-year-olds together with the 15 adults provided the results displayed in Fig. 3. 
In Fig. 3a, we see that the stimulus structure is the anticipated hierarchy. In Fig. 3b, 
which is the weight space. we see that the children and adults occupy different parts of 
the space, showing that the children and adults have different cognitive structures for 
parts of the body. 

 

 

2. COMPUTER PROGRAMS 

Several computer programs have become a significant part of the MDS discipline. These 
programs and several of their characteristics are listed in Table 2. A complete reference 
for each program is given in the bibliography. 

 

The first four rows of Table 2 refer to the type of data each program can analyze. The 
information includes whether each program can analyze similarity data in addition to 
dissimilarity data; asymmetric data in addition to symmetric data; data with missing 
elements in addition to data without; and two-way in addition to three-way data. 

The next two rows of Table 2 refer to the types of analyses each program can provide. 
The Measurement row refers to whether the program can provide only nonmetric 
analysis (N), only metric analyses (M), or both (MN). The Model row refers to whether the 



program can provide analyses that are classical (C), replicated (R), weighted (W), or 
other types (0). 

The next three rows of Table 2 refer to several aspects of the iterative algorithm 
employed by each program. The Fit row refers to the aspect of the model that is fit to (a 
transformation of) the data (D indicates distances. P scalar products, S squared 
distances, and L log distances). The Algorithm row indicates whether the program is a 
leastsquares program (L) or a maximum likelihood program (M). The Converge row 
shows whether the algorithm is convergent (each iteration must improve the fit index 
being optimized) or not. 

The final four rows specify the maximum size problem that can be analyzed by each 
program. Some programs place specific limits on the number of stimuli. matrices, 
dimensions, or total number of data elements. These limits are indicated by a number. 
Other programs are dynamic and place no limit. These are indicated as "dyn." 

The ALSCAL-84, MULTISCALE-2, and SMACOF-IB programs are the current state-of-
the-art programs. Of the programs listed in Table 2, ALSCAL-84 [23] is the most flexible, 
fitting the widest range of models to the widest range of data. The ALSCAL algorithm is 
convergent (which is desirable) and is faster than MULTISCALE but slower than 
SMACOF. ALSCAL is the only MDS program currently available in major statistical 
systems (SAS and SPSS) and is the easiest program to use. However, the algorithm 
optimizes the fit of squared distances to the dissimilarities. which is not the most 
desirable optimization criterion. ALSCAL is descriptive, having no inferential aspects. 

MULTISCALE-2 [10] has the unique feature that it is based on the maximum likelihood 
principle. Of the programs listed in Table 2. it is the only one that enables statistically 
based significance tests and that can be used for inferential purposes. MULTISCALE 
provides the user with a selection of models that is smaller than that provided by 
ALSCAL, but larger than that provided by SMACOF. However, of the three programs, 
MULTISCALE is the least flexible in the types of data that can be analyzed, and the 
slowest. Also it has a nonconvergent algorithm. 

SMACOF-IB [16], clearly the fastest of these three programs. optimizes the fit of 
distances to dissimilarities by a convergent algorithm. The algorithm [2, 3] is the simplest 
and most elegant of any program listed in Table 2. It fits the CMDS. RMDS, and WMDS 
models and is as flexible as ALSCAL in the types of data it can analyze. However, 
SMACOF is currently under active development: it is difficult to use and is not available in 
any statistical package. When fully mature, SMACOF will be the program of choice. 
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