
Gossip:
On The Architecture

of SpreadPlots
Forrest W. Young, Pedro Valero-Mora,
Richard A. Faldowski & Carla Bann1

1. Author Footnote: Forrest W. Young is Professor Emeritus at the L.L. Thurstone Psychometric Lab-
orattory. University of North Carolina at Chapel Hill. CB 3270 DA, Chapel Hill NC., USA 27599-3270.(e-
mail: forrest@unc.edu). Pedro Valero-Mora is assistant professor of Data Processing at the University
of Valencia. Departamento de Metodología de las Ciencias del Comportamiento. Facultad de Psi-
cología. Av. Blasco Ibáñez, 21. Valencia. CP: 46010. Spain. (e-mail: valerop@uv.es). Richard A. Fal-
dowski is assistant professor in the Department of Psychiatry and Behavioral Sciences at Medical
University of South Carolina; 135 Rutledge Avenue, Room 1201; P.O. Box 250550; Charleston, SC.
29425 USA; (e-mail: faldowra@musc.edu). Carla M. Bann is a quantitative psychologist at Research
Triangle Institute, P.O. Box 12194, Research Triangle Park, NC, USA 27709-2194. (e-mail:
cmb@rti.org).
September 6, 2001

Gossip: On The Architecture of SpreadPlots
TGossip: On The
Architecture of SpreadPlots

Forrest W. Young, Pedro Valero-Mora,
Richard A. Faldowski & Carla Bann

Abstract
A spreadplot is a visualization which simultaneously shows several different views of a dataset or
model. The individual views can be dynamic, can support high-interaction direct manipulation, and can
be algebraically linked with each other, possibly via an underlying statistical model. Thus, when a data
analyst changes the information shown in one view of a statistical model, the changes can be pro-
cessed by a the model and instantly represented in the other views. Spreadplots simplify the analyst’s
task when many different plots are relevant to the analysis at hand, as is the case in regression analy-
sis, where there are many plots that can be used for model building and diagnosis. On the other hand,
the development of a visualization involving many dynamic, highly-interactive, directly manipulable
graphics is not a trivial task. In this paper we discuss a software architecture which simplifies the
spreadplot developer’s task. The architecture addresses the two main problems in constructing a
spreadplot, simplifying the layout of the plots and structuring the communication between them.

Keywords: Dynamic graphics, statistical programming, layout, coordination
Page 0 of 18

Gossip: On The Architecture of SpreadPlots
1 Introduction

Computational power has increased to such an extent that it is now possible, even on the typical com-
puter purchased for use at home, to quickly estimate complex statistical models and provide graphical
representations of them. All this power, however, has not been problem-free. Perhaps the main prob-
lem is the burden placed on the user by complex user interfaces with little or no structure. Such inter-
faces can provide the user with a myriad of windows, scroll bars, menus, buttons, dialog boxes, etc. If
these are not structured in some way the user quickly becomes overwhelmed. At the best, with such
systems the user spends much time and effort managing the interface, at the worst these actions pre-
vent the user from focusing on the task at hand. The user can become mentally exhausted just track-
ing the consequences of making changes in the interface, with no cognitive power left for tracking the
consequences of making changes in the statistical analysis.

Take, as an example, the plots that are usually recommended when using a simple linear model. Just
the plots for raw data can be overwhelming, since these include histograms, frequency polygons, dot
plots, box plots, quantile plots, normal-probability plots, quantile-quantile plots, scatterplots, parallel-
coordinate plots, mosaic plots, spin plots, scatterplot matrices, and even tour plots (each of which has
several variants). Then there are the plots for the analysis of the data. Considering just linear regres-
sion, the recommended plots include regression plots, fit plots, added variable plots, leverage plots,
influence plots, transformation plots, weight plots, and more. Statistical packages that do not offer a
well-devised way of interacting with all of them discourages the use of plots. Textual output is simply
much more convenient in comparison. On the other hand, properly presented, these plots can be very
informative and can lead to great insight into the nature of the data.

Insight/Effort: Consider the concept we refer to as I/E, the user’s Insight/Effort ratio, an index that
summarizes the situation previously described. A computer program implementing statistical plots
should try to maximize this index: It should keep the insight high while keeping the effort low. In the
example about the linear model, if there were a way to present many of these plots simultaneously,
without the user having to spend a lot of time rearranging plots, we could increase the user’s insight,
while minimizing the effort required to gain the insight. Optimizing this insight/effort ratio becomes still
more crucial when you realize that the data analyst generally considers several models before coming
to a conclusion, and that the process of data analysis is a cyclic process that takes place over long
periods of time and many sessions with the statistical system.

We propose a solution to this problem, and investigate the consequences of our solution. Our solution
is based on the observation that in many, indeed perhaps in most data analysis situations, the plots for
a given problem are all very inter-related with each other. Our solution is a way to create, interact and
remove many related plots as though they were a single unit.

Specifically, we propose an architecture for dealing with sets of plots, or, more generally, multiple, alge-
braically linked, highly dynamic, interactive views of a dataset or of a model of a dataset. We refer to
the architecture as a spreadplot. The spreadplot architecture provides a method for implementing such
multi-view systems in a coherent and relatively simple way. In particular, spreadplots help to deal with
two of the most essential problems with multi-view systems for data visualization: Communication
between views, so they can act as coordinated sets, and Layout, so that they can be arranged on the
screen without much effort by the user.

The Gossip: An informal way of looking at the workings of our spreadplot architecture is to regard it as
a village with a gossip. Like all villages everywhere, the village has its’ physical layout, and it has its’
communication structure. And, like everywhere, the villagers don’t communicate with each other
directly, rather, they “gossip”.

Gossip involves a centralized “gossiper”. The gossiper listens. It listens, not only to those it already
Page 1 of 18

Gossip: On The Architecture of SpreadPlots
knows, but to anyone who is willing to talk. When it hears something, it doesn’t stop to think, it just tells
everyone else about it. It does pay attention, however, when someone says “I don’t want to hear about
that anymore”, and never talks about that topic with that villager again. Other than that, it doesn’t do
anything except pass the gossip on to all those that don’t say they don’t want to listen. It never wastes
any time repeating itself, nor in talking to those that don’t want to hear. Of course it goes without saying
that the villagers never talk directly with each other, only to the gossiper.

Thus, we call our SpreadPlots architecture the “gossip architecture”. Messaging is managed by a cen-
tralized manager. The individual objects don't communicate directly with each other, only with the man-
ager.The manager receives messages from any object, taking new objects into its group, no questions
asked. It then repeated the message so that everyone can hear. But, while the manager is indiscrimi-
nate about adding new members to its gossip-group, it is very concerned about not sending unwanted
gossip to the members. Thus, the manager doesn’t send messages to those that say they can’t use
them. Finally, the manager is also responsible for layout, although the most important role for the man-
ager is that of message manager.

In this paper we describe how the problems of communication and layout have been managed in the
context of currently existent tools for data visualization. We then introduce the fundamentals of spread-
plot architecture, and describe how these fundamentals deal with communication and layout. We then
present an example which illustrates both layout and communication. We close the paper with a dis-
cussion of the consequences of spreadplot architecture.

2 Overview of Previous Multiple Plot Systems

In this section we review previous developments concerning multiple plot systems, with emphasis on
how the two main issues of communication and layout have been treated.

2.1 Communication

The canonical example of communication between plots is what Wills (1999) calls the linking data par-
adigm. In this situation, different data views are linked by its cases. It works in the following manner:
simple data views are created and linked such that interacting with a view updates other views to
reflect their mutual relationships at the case level. For example, moving the cursor over points in a
scatterplot may highlight corresponding points in another scatterplot, a technique termed the brushing
technique by Becker, Cleveland and Wills (1987). Brushing is implemented in many statistical sys-
tems. See, for example, XGobi (Swayne, Cook and Buja, 1998).

Even in this basic data linking paradigm two approaches can be distinguished (Tierney, 1990). In the
common data model, linked plots are different views of the same data. Thus, all changes to the data
set should be shown in all views, as in the Plot windows system (Stuetzle, 1987). In the separate data
model, on the other hand, plots are separate entities containing objects that are indexed in some
coherent way. Plots that are linked will propagate the interactions on their entities to the entities on
other plots that have the same index value. XlispStat (Tierney, 1990), DataDesk (Velleman, 1992) and
S (Becker and Chambers, 1984; Becker, Chambers and Wills, 1988) are tools that incorporate a sepa-
rate data model as default. Tierney (1990) provides code for extending XLispStat in order to implement
the common data model. Each model has its advantages and disadvantages. For example, with the
common data model, as each observation has its own identifier, it is quite easy to link a plot of a sec-
tion of the data to a plot of all the cases of the dataset in it. On the other hand, this model would force
the linkage of all features in plots, while with the separate data model an observation might have a dif-
Page 2 of 18

Gossip: On The Architecture of SpreadPlots
ferent feature in different plots.

The concept of this basic data linking paradigm has been extended in several directions. For example,
Wills (1999) signals that it would be very useful to link cases with ones in other data matrix (for exam-
ple when a data matrix is the result of an aggregation of other data matrices and each case in one
stands for several cases in the other) or to link a plot of data with a model of the data. A program that
incorporates this last type of link between data and model is Datadesk (Velleman, 1992). Wilhelm
(1999) attempts to classify all the possible extensions to linking into the following three categories: link-
ing sample populations, model linking and graphical linking. Linking sample populations includes the
following cases: identity linking (cases or observations at the same level are linked), hierarchical link-
ing (selecting an object at a higher level selects all the related objects at a lower level) and distance
and neighborhood linking (selecting an object selects objects that are related or close to it). Model link-
ing includes the case where the same objects are represented in different plots (like for example when
a variable is present in two different plots that reveal different properties) and when scale objects are
linked (like when a slider represents a set of possible parameters for a model that can be controlled
interactively to find appropriate transformations). Finally, graphical linking refers to when the axes or
the frames of the plots are linked to allow for making valid comparisons.

Coordination of multiple views for information visualization is a topic that has recently received much
attention from researchers on Human Computer Interaction (HCI). The reason of this interest stems
from the observation that developers of software often need to include different sources of data in the
interface in order to help the user to take the right decisions. Wang Baldonado et al. (2000) describe
an example of a multimedia system to support the task of identifying seizures in infants. These sei-
zures are very subtle events and doctors must simultaneously review of physiological data and visual
observations of the infants’s movements. These authors affirm that designers of multiple view systems
make many unnecessary design mistakes, introducing unnecessary complexities and inconsistencies
when trying to coordinate different views in a interface. They provide guidelines to help designers to
avoid these mistakes.

North & Shneiderman (2000) present a system for coordinating multiple views. This system allows for
taking advantage of simple relationships between data such that coordination between views is possi-
ble without programming. This objective would differ from our objective in this paper because we are
interested in the exploration of innovative coordinations between the different views, and, even though
we try to make this as easier as possible, a certain amount of programming is expected.

In summary, the continued development by the variety of researchers mentioned above, suggests that
complex linking between multiple views would appear to be potentially useful in the statistical program-
ming situation. Furthermore, flexible linkage of multiple views appears to be crucial for the develop-
ment of successful tools for visualizing complex data. Indeed, it would be best if such tools were so
simple, flexible, and powerful that the statistical system user could apply them to his or her own data.

Among the various systems, S and Lisp-Stat seem to be best suited for research and development of
methods for complex linking. We have, in fact, been using Lisp-Stat for such research for a number of
years, and it is indeed a very powerful and flexible tool for this purpose. However, our several attempts
to develop multiple view visualizations have taught us that it is very difficult to attain sound implemen-
tations without the proper software architecture. Moreover, since the views are often interconnected in
a very subtle net of links, it is very difficult to add, modify or remove new elements without breaking the
entire structure. The architecture we will describe has the advantage of being able of managing the
communications smoothly and of permitting modifications. Consequently, the developer will feel more
confident of experimenting with features for interconnecting plots.
Page 3 of 18

Gossip: On The Architecture of SpreadPlots
2.2 Layout

How to arrange plots in the display is a very important issue for visualization programs (Murrell,
1999).Indeed, there are some plots, like scatterplot matrixes (Chambers et al., 1983) or trellis displays
(Becker, Cleveland and Shyu, 1996), that are formed just by arranging simpler plots according to cer-
tain rules. Scatterplot matrices, for example, arrange scatterplots side by side so each variable in a
dataset is graphed against the others variables, with the graphs being displayed as a row or a column
of the matrix. This allows for rapid inspecting of all the bivariate relationships among variables, permit-
ting the detection of outliers, nonlinearities, and other features of the data.

There are some computer tools for visualization of statistical data that already incorporate features for
managing and creating multiple views. However, many other programs create plots as separate enti-
ties than can not be arranged relative to each other afterwards. Some programs include the capability
of empirical linking but programming additional behavior is not possible. Arc (Cook & Weisberg, 1999)
for example provides a great selection of plots related with regression analysis, but, even though the
plots referred to a dataset are linked, there is no further interaction among them.

A tool that includes a feature for setting customized layouts is Datadesk (Velleman, 1992). This feature
is based on a special type of window called a corkboard. Corkboards allow other windows (which could
provides views of data or models) to be pasted into them. These views can be related with a statistical
problem that the analyst may find interesting. These models and plots are empty of data, but methods
are provided so that users can carry out their own analyses. This allows the user to develop custom-
ized statistical procedures or specialized applications.

Datadesk goes one more step: It provides buttons that can be programmed using a menu-oriented
scripting language. Afterwards, the buttons can be pasted into the corkboard, so that actions can be
taken from them. This lets the user develop innovative analysis or visualization capabilities that step
beyond the already considerable capabilities of Datadesk. Other features of Datadesk are derived vari-
ables and formulae that are recomputed when the terms involved in them change, so that linking
between models and plots of the results are very natural. Of course, empirical linking of the cases in
plots and models is also available.

Datadesk is certainly a very flexible and useful program for interactive graphics, providing a very good
choice of options that are probably sufficient for the majority of users. However, it has some limitations.
For example, plots in corkboards are set manually in a specific layout and in a pre-specified number.
Therefore, if the input consists of a variable number of plots or windows, like it happens with scatterplot
matrixes or trellis displays, the corkboard will not be able to accommodate them automatically. Also,
new connections between views can not be explored because the programming language of Datadesk
can be executed only from the buttons.

3 Introduction to Spreadplots

This section will introduce spreadplots, a group of algebraically linked dynamic and highly interactive
plots. We provide a brief overview of the history of spreadplots, indicating the contribution of this paper
relative to previous papers on the subject. We also present an example from the point of view of the
data analyst who is using a spreadplot as part of a statistical data analysis task.

3.1 Background

Young (Young, Faldowsky and McFarlane, 1992; Young, Faldowsky and McFarlane, 1993; Young and
Bann, 1997) has developed ViSta, a statistical system based on Lisp-Stat. Lisp-Stat is a statistical pro-
Page 4 of 18

Gossip: On The Architecture of SpreadPlots
gramming environment developed by Luke Tierney (Tierney, 1990) that features a object-oriented
approach for statistical computing and that allows for interactive and dynamic graphs. In particular,
Tierney extended the Lisp language to support vectorized arithmetic, basic statistical computations, a
window system and tools for building graphics, with special emphasis on dynamic graphics. ViSta
incorporates the object-oriented approach as part of its internal and external functioning. In particular,
it extends Lisp-Stat with additional graphical, statistical and data objects; it provides objects for map-
ping the process of data analyses and it has objects that guide novices through their early attempts to
carry out analyses. All these characteristics shape a system that has been shown to be appropriate for
students and teachers of statistics, for researchers who wish to explore and analyze their data, and for
developers of computational and graphical statistics.

An innovative aspect of ViSta is the spreadplot, a group of several plots that simultaneously provide
alternative views of data or model objects (Young, Faldowsky and McFarlane, 1993). The plots in a
spreadplot are linked so that changes in one plot are reflected in other plots. The plots can be
dynamic, using animation to convey meanings that are not easily visualized by static plots. They also
allow the user to interact with the plot to create and control its dynamic aspect. These characteristics
mean that users can use spreadplots to explore the data or models in a more detailed manner. We will
introduce in the following section a description of spreadplots with an example to motivate and clarify
the discussion of the specific issues of communication and layout which follows.

A spreadplot is the graphical equivalent of a spreadsheet. In spreadsheets the data are contained in
cells which are arranged in tables, just like values in a matrix of data. The cells are linked by formulae,
so that when the spreadsheet user makes a change in one cell, the algebraic links cause the linked
cells to change correspondingly, enabling the user to easily explore the ramifications of the change. In
spreadplots, the cells contain graphs or tables, rather than numbers: The datasheet cells become plot-
cells. User interaction with any of the plot-cells causes linked plot-cells to change accordingly. Each
plot-cell can represent a part of the statistical problem in hand. This setting allows the user to explore
the relationships between the several plot-cells in a spreadplot much like you would do with cells in a
spreadsheet.

3.2 Example

Spreadsheets are a natural environment in accountancy. Algebraic computations produce summaries
of special relevance for the analyst. Special arrangements of computed cells create a representation of
an algebraic problem that can then be submitted to "what if" analysis. For example, various tax deduc-
tion rules can be represented by formulas linking relevant cells of a spreadsheet. The accountant,
using his knowledge of tax regulations, can then play with the raw values in order to get a more pro-
found understanding of the consequences of different actions with regard to tax payment.

Spreadplots are designed to be a provide a similar environment for statistics. Sets of algebraically
linked plots are used to represent a statistical problem. For example, the normal distribution is com-
monly assumed to underlie much of what is done in statistics. Thus, a common task facing the data
analyst is to check on this assumption. Since one implication of this assumption is that a group of nor-
mally distributed variables will have linear bivariate relationships, researchers are commonly told they
should plot the bivariate relationships to see if they appear to be linear, and to transform the variables
when the raw variables are not linearly related.

Figure 1 shows a spreadplot which displays the bivariate relationships between five variables. This
spreadplot also provides a mechanism for transforming the variables to make the bivariate plots look
more linear. These bivariate relationships are shown in the scatterplot matrix occupying the left portion
of the display. At any given time, one of the bivariate relationships is the “focal relationship” of the
spreadplot, and one of the variables in this relationship is the “focal variable”. The task of the data ana-
lyst is to transform the focal variable so that the focal relationship appears to be linear.
Page 5 of 18

Gossip: On The Architecture of SpreadPlots
The analyst determines which bivariate relationship is the focus by clicking on one of the small scatter-
plots in the scatterplot matrix. As a consequence of the click, the focal relationship shifts to the clicked
scatterplot, which is shown in the bivariate scatterplot in the lower-right portion of the spreadplot. The
user’s click also makes the horizontal variable in the bivariate scatterplot becomes the “focal variable”
of the spreadplot. The normal-probability plot of the focal variable is shown in the upper-right portion of
the spreadplot.

Note that when the user clicks a diagonal cell of the scatterplot matrix, the focus of the graphical anal-
ysis switches to the variable shown in the clicked cell, with the individual scatterplot displaying the
transformation of the variable in effect at the moment (i.e., the scatterplot shows the untransformed
values of the focal variable versus the transformed values of the variable).

At any given moment, the goal of the analyst is to make both the bivariate scatterplot and the normal-
probability plot as linear as possible (since the normal-probability plot is linear when the variable is nor-
mally distributed). The overall goal is to make these two plots as linear as possible for every variable.

The mechanism for transforming variables to remove nonlinearities is based on the family of scaled
power transformations (Box & Cox, 1964; Emerson 1991; Tierney 1990; Cook and Weisberg, 1999).
These transformations are defined as

. (EQ 1)

Manipulating the slider shown in Figure 1 modifies the value of p in the equation, and then applies the
transformation formula to the current variable using the p-value shown on the slider. Transformations
with p>1 make left-skewed distributions more symmetric and transformations with p<1 have the same

Figure 1: Spreadplot for the Box-Cox Transformation

f y()
yp 1–() p⁄ for p 0≠

y()log for p 0=



=

Page 6 of 18

Gossip: On The Architecture of SpreadPlots
effect with right-skewed distributions. The normal probability plot allows for assessing this effect. Addi-
tionally, the matrix of scatterplots and the focal scatterplot also change when the transformation is
applied, so that linearity between pairs of variables can be evaluated. The focal scatterplot also can
has several tools for helping with this evaluation, including least squares lines, loess smoothers, kernel
smoothers, etc. Just for illustration purposes a lowess smoother with a parameter of 0.7 is shown in
the scatterplot in figure 1.

Notice the coordination between plots. Both the slider and the scatterplot matrix react to the user’s
interactions. Specifically, when a cell of the scatterplot matrix is clicked, a message is sent telling the
normal-probability plot and the scatterplot to change themselves to show the new focus. Also, when
the slider if moved, a message is sent telling all of the plots to change themselves in light of the new
value of p in the equation above.

These messages cause changes to take place according to clearly defined rules. The scatterplot, for
example, evaluates whether the cell in the scatterplot matrix that has been clicked is in the diagonal. If
the result of the evaluation is true, a transformation plot is shown. If not true, a scatterplot is shown.
When the slider is moved, the plots are modified according to the rule instantiated in the equation
above. Additionally, the points in the plots are linked, so the modification of their properties (color, sym-
bol, selection, etc.) propagates to other plots.

This rich interaction introduces several complexities that makes the programming of spreadplots
somewhat complicated. In our early implementations of spreadplots it became very clear that control-
ling the flow of messaging between plots can be complicated and delicate, and that a clearly designed
and well thought-out software architecture was needed to avoid horrendously complex and inefficient
messaging. Indeed, in our early work, the seemingly simplest approach was taken: Each plot sent
messages directly to other plots. However, after some experimentation with a prototype of a spread-
plot, we often would want to modify it by adding or removing a view from it or by changing the interac-
tions with the user. Nevertheless, such changes all too frequently would break the messaging system.
As a consequence, this experience has lead us to our current (the sixth, and we believe, final) archi-
tecture. This architecture is described in the next section.

4 The Architecture of Spreadplots

This section of the paper focuses on the architecture that we have developed which underlies the two
most important aspects of spreadplots: layout and messaging. Of these two, message passing is pre-
eminent because it is through message passing that the cells of a spreadplot are connected, and con-
nection is the most innovative and beneficial aspect of spreadplots -- their "raison d'etre". Our
approach to layout, while perhaps of less importance, is quite flexible in comparison to other systems,
permitting the spreadplot designer wide latitude in the appearance of the spreadplot. We describe
these two systems in this section.

4.1 Gossip Messaging Architecture

Messages can be created by a user by typing commands (as above) or indirectly as a consequence of
interactions with the user interface (i.e. pointing and clicking, where the clicks causes messages to be
sent). Therefore, when a plot in a spreadplot experiences some change (for example, when the user
selects a variable in a window which is displaying a list of variables), it sends a message to its spread-
plot message manager about the details of the change. The spreadplot message manager then for-
wards the message to the appropriate objects (or to all objects, if it is the first time the message has
been sent). Each object, having been programmed by the spreadplot developer, knows how to
respond to any message it might receive, responds appropriately.
Page 7 of 18

Gossip: On The Architecture of SpreadPlots
Now, it may be that the message sent by a plot needs to be processed by a statistical object before it is
received by the group of objects. That is, the message needs to be processed so that the processed mes-
sage can be distributed to the group of objects. From the developer’s view point, this case is no different
than the case where the message itself is distributed to the plots. If processing by a statistical object is
needed, the developer must write a method for the statistical object, just as for graphical objects. Then,
once the message is processed by the statistical object the results of the processing will be sent by the
statistical object to the manager for distribution to the group of objects.

4.1.1 Overview of Gossip Architecture

An informal way of looking at the workings of the spreadplot message manager is to regard it as a gossip-
per. The manager listens to each of its objects. When it hears something, it doesn’t stop to think, it just tells
everyone else about it. It does pay attention, however, when one of its constituents says it doesn’t want to
hear about that anymore. Other than that, it doesn’t do anything except pass the message on to all those
that don’t say they don’t want to listen. Thus, the overall architecture is called the “gossip” architecture

The communication network has the structure of a wheel consisting of a hub and several spokes. The cen-
tral hub is the spreadplot message manager. The plots and statistical objects are nodes at the end of the
spokes attached to the hub. All objects (i.e., the plot objects and the statistical objects) send and receive
messages only to and from the spreadplot manager. The objects do not communicate with each other
directly, only indirectly through the manager.

In Figure 2 we show a schematic of our gossip architecture as it applies to the example discussed in Figure
1. This schematic shows that when the user clicks on the scatterplot matrix, message “A” (represented by
red lines) is sent to the manager, which sends it out to the scatterplot, quantile plot and slider. This is the
message to switch focal variables. Correspondingly, message “B” (blue lines) is sent by the slider to the
manager (this is the message containing the parameter of the Box-Cox transformation). The manager in
turn relays it to the transformation object. The transformation object processes this message and sends
out reply message “B*”, represented by the green arrows, to the manager which relays it to the appropriate
plots. In addition, the list of observation labels (the automobile names) are linked via the standard data-
linking paradigm (not via gossip-linking). Clicking on a name modifies other plots as shown.

B*

B

A

C

Figure 2: Schematic of Communication Architecture
for Spreadplot shown in Figure 1
Page 8 of 18

Gossip: On The Architecture of SpreadPlots
4.1.2 The messages
Our gossip messaging system works in the following way: Assume we have created a spreadplot
object named “splot”. In Lisp-Stat you send a message to this object by using the function send. The
message can either tell the object something, or ask it something. For example, the following message
tells the spreadplot that it should be 800 pixels wide by 600 high:

���������	
����
����������

On the other hand, the message

���������	
����
��

asks the spreadplot how big it is. The spreadplot above would return a value of (800 600).

Our gossip architecture requires just one message. A second message is used to improve efficiency.
The required message is:

������	����
���	���������	
���
�	������
�	�������
	�������

This message can be sent or received by any of the objects involved in the spreadplot (i.e., the spread-
plot manager, the plots and the statistical objects. The plots and statistical objects should only be able
to send the message to the manager. The manager can send it to any other object.

There are two ways in which the :�	���������	
���
�	� message is used:

1. An object sends the ��	���������	
���
�	� message to the manager
When the user interacts with a plot, :�	���������	
���
�	� messages are generated and sent to
the spreadplot manager. Also, the :�	���������	
���
�	� message may be sent by any object,
graphical or non-graphical, as a consequence of receiving messages from the manager.

2. The manager sends the :�	���������	
���
�	� message to the objects.
When the :�	���������	
���
�	� method-selector and its arguments are sent to the spreadplot
manager it forwards the method-selector and arguments to all objects, graphical and non-graphical.

To increase flexibility, the first time an object sends a message to its manager, an additional piece of
information is included in the message, information that identifies the sender to the manager, and
which the manager can use when it needs to send information to the object. For example, if the mes-
sage:

����������������	���������	
���
�	������
�	�������
	������������	������

is sent the first time that “self” communicates with its manager, then the manager does not need to
know ahead of time which objects it is managing, but learns this as time goes along.

To improve efficiency, when an object receives a message that attempts to select a method that the
object does not have, the object sends a message back to the manager indicating that the message
was irrelevant to the object. The manager updates its list of method-selectors accordingly, so that it will
not send out the irrelevant message to the object again.

The notions above require every object to have the following ��	���������	
���
�	� method:

������
��	����
���	���������	
���
�	�����
�	�������
	����
�	���������
��
���
����������������������������
�	����
�	�������
	���

� ����	
���������������������	
���
�����������

���������������
�	�������
	����
�	���������
��
���������� ����������	
���	���
�	�����
�	�������
	����������
Page 9 of 18

Gossip: On The Architecture of SpreadPlots
All objects can be given this method by defining it for an ancestor near the root of the object inherit-
ance hierarchy. This method determines whether the object has the requested method. If it does, the
do-action method invokes the requested method, using the arguments that have been received. In not,
when asked, the object replies to the manager that it does not have the requested method. Thus, the
secondary message is:

����������������	���
�	�����
�	�������
	�������

Upon receiving this message, the manager updates its information so that it only sends ��	��������
��	
���
�	� messages with this selector to those objects which have the method needed to process
the arguments. Note that this message needs to be send only once by an object, and only by objects
which lack the method.

In terms of gossiping, the manager doesn’t care who it gossips with, it will take new members into the
group, no questions asked, and go right ahead and repeat the gossip regardless. But, while the man-
ager is indiscriminate about adding new members to its gossip-group, it is very concerned about not
sending unwanted gossip to the members. And, the manager never wastes any time repeating itself,
nor in talking to those that don’t want to hear.

4.1.3 An example

Lets return to the Power Transformation spreadplot shown in Figure 1 and schematized in Figure 2.
This spreadplot has seven objects. The graphical objects include the scatterplot-matrix, quantile plot,
and scatterplot, whereas the nongraphical objects include the namelist and slider, which are visible,
and the transformation statistical object and the manager, which are not. Three of these objects send
messages to the manager (the scatterplot matrix, the slider and the transformation object), while five of
them react to messages they receive (the scatterplot matrix, the quantile plot, the scatterplot, the slider
and the transformation object).

There are three different messages involved: The scatterplot-matrix sends a message which changes
which variable is the focus of the spreadplot, to which the quantile plot and scatterplot react by show-
ing the appropriate plot for the new variable, and to which the slider must adjust itself to show the
transformation parameter for the selected plot. On the other hand, the slider sends a message which
specifies a new value for the transformation’s parameter. This message is processed by the transfor-
mation object with the results being shown as changes in the scatterplot-matrix, quantile plot and scat-
terplot. In addition, though we have not mentioned it, the namelist sends messages that do not involve
the spreadplot mechanism, but which use the XLispStat data-linking protocol.

Now we consider the gossip in detail. When the user clicks on, say, the lower left-hand cell of the scat-
terplot-matrix, the click causes the following message to be sent by the scatterplot matrix to the
spreadplot-manager:

����������������	���������	
���
�	������������	�������������!"#$%�

The spreadplot manager in turn relays the message

������	����
����	���������	
���
�	������������	�������������!"#$%�

to each of the objects in the spreadplot. When an object receives the ��	���������	
���
�	� mes-
sage referring to a method it does not have, the object tells the manager not to send such messages in
the future. This is done by the message:

����������������	���
�	������������	������������������

where ���������	������������ is the method-selector in question, and ���� identifies which object
is responding. The spreadplot manager maintains a set of lists which keep track of these responses so
that it can prune the messaging appropriately.
Page 10 of 18

Gossip: On The Architecture of SpreadPlots
Now we turn to the message originated by the slider. This message is used to change the shape of the
transformation. When the user manipulates the slider, it sends a message such as:

����������������	���������	
���
�	�����������
�����	���
�	��&'(�

where the value .35 is the new value of the transformation parameter. The manager then relays:

������	����
����	���������	
���
�	�����������
�����	���
�	��&'(�

At this point, if this is the first time this method-selector has been sent, all of the objects except the
transformation tell the manager they don’t have the requisite method:

����������������	���
�	�����������
�����	���
�	�������

The transformation does its computations, sending the results back to the manager via the message:

����������������	���������	
���
�	��������
�����	���
�	�������
��

The manager in turn relays the message:

������	����
����	���������	
���
�	��������
�����	���
�	�������
��

to all the objects. Finally, if this is the first time this method-selector has been sent, those objects whch
do not have the required method send the manager the message

����������������	���
�	��������
�����	���
�	�������

The scatterplot-matrix, normal probability plot and scatterplot must each have a �����
�����	����

�	� method that applies the transformation in the appropriate way. In addition, the slider, normal-
probability plot and scatterplot must have a ������	������������ method to respond to this specific
action request when it is received. Also, the transformation statistical object must be able to respond to
one of the messages. Thus, some of the objects must react to just one incoming message, while oth-
ers must react to two different messages. Furthermore, the namelist object does not have to respond
to either message. Despite these differences, the action method given above will work as desired. Of
course, the spreadplot developer must write the methods for the relevant method selectors to select.

4.2 Spreadplot Architecture: Layout

Whereas the communication structure of a spreadplot
is a wheel, the layout structure of a is a rectangular
grid. At the simplest, plotcells are squares arranged
in rows and columns. Such an example is shown in
Figure 3 where we see a spreadplot designed to
demonstrate the central limit theorem. This spread-
plot consists of a plot in the upper left corner showing
the population distribution; a plot showing a particular
sample in the lower left; and in the two plots on the
right, empirical approximations, based on several
samples from the population, of the sampling distribu-
tions for the mean and standard deviation.

This spreadplot could be produced by the following
pseudo-code command:

�� 	�
��)*)����	��������������
���+

This command produces a spreadplot which has four
plotcells arranged in a 2x2 grid of two rows and two
columns. By default, all of the plotcells are square
and the same size, there is one plot per plotcell, and
every plotcell has a plot in it. All of these restrictions

Figure 3 Spreadplot for the
central limit theorem.
Page 11 of 18

Gossip: On The Architecture of SpreadPlots
can be relaxed by using the scheme shown in table 1. With this scheme we can create the complex
layout of the spreadplot shown in Figure 1 as well as the simple layout shown in Figure 2.

Consider the layout of the spreadplot in Figure 1. Looking at the figure, we see a large scatterplot
matrix on the left. This large scatterplot matrix is bordered on the right by a vertically arranged pair of
plots, which are themselves bordered on their right by a tall but narrow list of labels. While it may not
be obvious, this spreadplot is based on a 2x4 grid whose basic plotcell size corresponds with the sizes
of each plot in the vertical pair of same-sized plots. The scatterplot matrix occupies four plotcells on the
left, and the labels take up two plotcells which are 1/2 the width of other columns. This layout could be

created2 by the following pseudo-code:

�� 	�
�)*,+�
	����
� ����
��
�-�����	
�����������

���*

�-*�-*����

��*�-�+
���������
�)*��*�.*�.+
�������
�� .*�.*�.*�./)+
���������
�� .*.+
���������
��� ������+

The layout statement specifies a grid of 2 rows and 4 columns. The objects section of the pseudocode
specifies that the first row contains the scatterplot matrix, an empty plotcell (denoted *), the normal
probability plot and the labels. We also see that the second row consists of two empty cells, the scat-
terplot, and another empty cell. The empty cells to the right and below the scatterplot matrix provide
space for it to expand, while the empty cell below the labels provides space for the long labels list.

The expansion is accomplished using the information following the ����������
� and� �������	��
keywords. To understand this, you must know that the information following the �	����
�, ������
����
�and��������	�� keywords corresponds positionally. That is, the first ����������
 and ������
�	�� values (which are both 2) concern the first object (scatmat). These values specify how many plot-
cells are covered by each plot. Therefore, the scatterplot matrix occupies two rows and two columns.
We can also see that the labels window spans down over the plotcell below it; that the normal-probabil-
ity and scatterplot have span values of 1, meaning they occupy only their own plotcell; and that the
empty plotcells occupy no space (span values of zero). Note that there can be several objects per cell.
When there is, the objects in the same cell are laid out on top of each other, the first one being shown
initially. The others will be brought to view via user interactions.

Relative widths and heights of plots is determined by the information following the keywords :����
���
�� and ����������
�. Cells are all the same size unless these keywords are used. When they
are used, the keywords are followed by a value for each row or column. Column widths are propor-
tional to the :�������
�� values, row-heights to the ����������
� values. Thus, the labels window is
1/2 the width of the other columns. Finally, the :���������
�� keyword permits adding supplemental
objects to the spreadplot. Usually, these objects are sliders which enable the user to interactively input
continuously variable parameter values, or modeless dialogs that are used as control panels.

2. The spreadplot shown in Figure 1 is created by the following Lisp code:

�VSUHDGSORW� �PDWUL[�¶�������OLVW�VFDWPDW QLO� QSSORW� ODEHOV

QLO QLO VFDWWHU QLO��

�UHO�ZLGWKV� ¶����������

�VSDQ�ULJKW� ¶��������� ��������

�VSDQ�GRZQ� ¶��������� ��������

�VXSSOHPHQWDO VOLGHU�
Page 12 of 18

Gossip: On The Architecture of SpreadPlots
5 Discussion

A spreadplot is a visualization which simultaneously shows several different views of a dataset or
model. The individual views can be dynamic, can support high-interaction direct manipulation, and can
be algebraically linked with each other, possibly via an underlying statistical model.

In this paper we have presented our “gossip” architecture for spreadplots, a software architecture
which simplifies the spreadplot developer’s task. The basic architectural concept is that a spreadplot
consists of a group of objects, one of which is the managing object. The other objects include the
graphs that the user sees, and additional objects that facilitate the interactions that the user can have
with the graphs. These objects may be visible, such as a slider or a control panel, or the may not be
visible, such as a statistical model or a dataset.

The gossip architecture addresses the two main problems faceing the spreadplot developer: The cre-
ation of the layout of the plots and the creation of the communication links between them. We believe
our architecture provides simple mechanisms for dealing with these problems.

Of these two problems, the layout problem is the simpler, and is the one which has been worked on by
previous developers (Murrel, 1999). While our approach was developed prior to the work discussed by
Murrel, it is basically very similar, addressing the same problems and, for the most part, providing the
same solutions.

The very essence of a spreadplot, however, lies in their between-plot communication links, not just in
their arrangement on the screen. Afterall, a spreadplot is a multi-view visualization in which the views
are linked together, thus there must be a communication mechanism to provide the links. In addition, a
spreadplot is dynamic and supports high-interaction direct manipulation. Furthermore, the implications
of the changes made by the user in one view must be instantaneously portrayed in every other view,
keeping in mind that these “implications” may result from computations performed by other objects.

The fundamental characteristics of our gossip architecture are that messaging is centrally managed
and pruned. Messages are always sent by an individual object to the manager. The first time that a
specific type of message is received, the manager broadcasts it to all of its objects, asking each to
reply about whether it has a method to process the message. In this way the manager prune objects
that do not need to see the message, so that the “broadcast” becomes a “pointcast” in the future.

When compared to an non-centralized and unprunned message passing scheme, our message flow
control mechanism results in fewer messages being sent. This in turn provides for improved message
traffic flow and for greater control over the timing of messages. The number of messages is kept to a
minimum thereby maximizing the efficiency of the communication process. The mechanism also
results in simplified program structure, since no object needs to know anything about the nature of the
other objects in the group, including, in particular, which ones can process the message.

In addition to being centralized and pruned, the gossip architecture is indirect, symbolic, and untyped:
“Indirect” because objects never communicate directly with other objects, only indirectly through the
manager; “symbolic” because communication involves a unique symbolic representation (the “method
selector”) which identifies the message and selects an object’s method for the desired action; and
“untyped” because the objects in the group may be any type of object. In particular objects may or may
not be graphical. Those that are graphical are the plots themselves. The manager is a non-graphical
object. Other non-graphical objects may include statistical objects (i.e., variable, data, transformation
or model objects), other spreadplot manager objects, menu items, dialog items, etc. In short, the group
of objects involved in a spreadplot can include any kind of object which is relevant to the functioning of
the spreadplot. Our system is also hierarchical: Every object has a manager. Each object can only
send messages “up” to its manager. The manager is itself managed, so that it can send messages “up”
Page 13 of 18

Gossip: On The Architecture of SpreadPlots
to its’ manager, etc. Of course, managers in their turn send messages “down” to the objects they man-
age. Finally, our architecture is “anonymous”: The only thing that an object in the system needs to
know is the identity of its manager.

Thus, in our approach, any given object, whether it be a graphical object, a statistical object or another
kind of object altogether, never needs to know anything about the other objects. Indeed, it doesn’t even
have to know that there are other objects. It simply needs to know who its manager is, so that it knows
where to send messages, and it needs to know how to respond to messages it receives (including not
to respond). That is, from the senders viewpoint, the receiving objects are totally anonymous. Of
course this is true for all objects, other than the manager: No object knows anything about the objects
that the message is being sent to. The converse of this is also true: No object knows anything about
the objects that it receives messages from. On the other hand, all objects know everything about what
is being communicated. All objects received all messages, at least until they tell the manager they
don’t need to have the message sent to them any more.

Interestingly enough, the exact opposite is true for the manager: The manager knows all there is to
know about all the objects in the spreadplot, but knows nothing about the content of any of the mes-
sages. It simply relays the message from the sender to the receivers, having no reason to evaluate the
message itself. Note also, that the manager does not need to know what objects are involved in the
spreadplot. It can simply wait until an object sends it a message, and, if an object must identify itself
the first time it communicates with its manager, then the manager can learn what objects it manages.

Our spreadplot architecture has at several very important advantages: It is efficient, tractable, flexible
expandable and maintainable. We discuss these next

Efficient: The gossip’s centralized communication architecture is efficient, although it may not seem
so at first: After all, doesn’t every message get sent twice? Yes, but after pruning has taken place each
message is sent 1+nr times, where 1 is for sending the message to the manager and nr is for the num-
ber of receivers of the message. This is only 1 more message than would otherwise be sent out. More
importantly, note that the number of messages sent grows only linearly as the size of the problem
increases.

Tractable: Our gossip architecture is tractable since it is always possible to identify where every mes-
sage is going to, and, with 1 additional piece of information, where it is coming from. An inspector
could reveal the manager’s communication matrix, a binary indicator matrix that indicates which mes-
sages are needed by which receivers. Thus, the manager can always be inspected to see what is the
communication pattern at any given time. Furthermore, if the sender adds identifying information to a
message, it will always be possible to inspect a receiving object to understand where it is getting mes-
sages from and what the message are. When these characteristics are combined with the linear
growth rate of the architecture discussed in the previous paragraph, one understands the tractability of
the architecture relative to other possibilities.

Flexible, expandable and maintainable: Our gossip architecture is flexible and it is expandable.
Since no object other than the manager needs to know anything about the other objects, and since the
content of messages can be anything at all, it is possible at any given point to add or remove objects
and to change the messages without undue difficulty. Thus, as a system inevitably grows over time, it
is straightforward to grow the spreadplot subsystems. It follows that our architecture is easily maintain-
able. Again, since systems inevitably grow over time, they need to be maintained in the face of the
changing requirements faced by the system and in the face of the changing environments in which the
system is developed. Due to the flexibility and expendability of the system, it is also highly maintain-
able.

It may be useful to discuss alternative architectures which could be used for managing spreadplots so
Page 14 of 18

Gossip: On The Architecture of SpreadPlots
the advantages of the gossip can be better understood. We can think of two alternatives for the archi-
tectures: the direct (simple) approach and a architecture based on the statistical object represented by
an spreadplot.

The direct architecture would consist of plots sending messages directly to other plots. This architec-
ture has the apparent advantage that it is not necessary to have a manager, and was used in our earli-
est implementations. However there is the obvious disadvantage that removing a plot breaks the
messaging system. This happens because the rest of the plots now will send messages to a plot that is
no longer there. Therefore, the code for every plot in the set has to be modified. This does not happen
with the architecture presented in this paper because in our current architecture each plot does not
know anything about the other plots in the spreadplot. Consequently, removing a plot does not have
consequences on other plots.

Another possibility is to use an architecture in which a statistical object manages the spreadplot. The
statistical object could know which plots depend on them, and could manage the messaging itself. This
architecture has the advantage that the plots can speak directly to the statistical object without needing
an intermediate object, but, on the other hand, defies the object-oriented programming philosophy of
restricting objects to the management of specific domains. That is, object oriented programming
teaches us that a statistical object must focus on statistical matters, avoiding as much as possible
dealing with issues that fall outside of this focus. On the contrary, the architecture we suggest guaran-
tees this separation because non-statistical issues are dealt with by the spreadplot manager, while the
statistical issues are simply re-directed to the object which specializes in statistical issues.

6 Conclusion

About a decade ago, Young, Faldowsky and McFarlane (1993) introduced the concept of a spreadplot,
and provided working examples of spreadplots for multivariate data, high-dimensional tourplots, multi-
dimensional scaling and principal components analysis. Since then, there has been a significant
growth in applications of spreadplots in ViSta, covering a notable number of statistical needs.

At the time this is being written, the currently released version of ViSta3 integrates about 30 different
kind of spreadplots. These include at least 11 spreadplots for exploring raw data, there being a spread-
plot specifically constructed for each of several kinds of data, including: Univariate, Bivariate, Multivari-
ate (numeric and Guided Tour), Category, Classification, Frequency Classification (one-way and n-
way), Frequency Table, Crosstabulation and Data Simulation. We can also count four more in devel-
opement. ViSta also has spreadplots for data transformations such as the Box-Cox (Figure 1), Folded
Power (Young & Valero 2000) and Missing Data Imputation (Valero & Young 2000). Finally, there are
spreadplots for visualizing statistical models, including Analysis of Variance, Correspondence Analysis
(Bee-Leng Lee 1996) Multidimensional Scaling, Multivariate Regression, Principal Components
(Young & Valero 1999), Regression Analysis (Bann 1996b), Univariate Analysis, Cluster Analysis, Fre-
quency Analysis and Loglinear Analysis. Some of these spreadplots have been developed by those
who have had no contact with others having any experience in this particularly tricky type of software
development, and who have had no access, alas, to documentation. The growth in spreadplots,
despite the obstacles, suggests the concept is viable.

I addition, a spreadplot editor is under development. This editor already provides access to the rela-
tively uninitiated to all of the layout features discussed above, and it is expected that the communica-
tion features will be working long before this paper appears in print. This editor is a partially point-and-

3. ViSta can be downloaded for free from www.visualstats.org
Page 15 of 18

Gossip: On The Architecture of SpreadPlots
click, partially code-based editor. It allows the specification of layout and communication by point-and-
click actions, and only requires coding of the details of the action methods.

All this experience has shown both the rewards and the difficulties of developing multiple view systems
where the highly dynamic views support instantaneous interaction with the user and instant communi-
cation between the several views. The problems in the research and development of our system over
the last 10 years have lead us to try various software structures. In fact, communication architecture
described herein is the fifth or sixth attempt at finding a fully viable solution to the problem. The solu-
tions to the problems of layout and communication described in this paper are now quite stable and
mature, suggesting that they are reasonably appropriate solutions. This architecture makes it simple to
include/exclude new views from the set, to re-arrange the views easily, and to define and modify the
interactions between the views quickly. In addition, the visualizations developed using our designs are
smooth and efficient, and are ready for primetime as is, obviating the need for a prototype develop-
ment stage. If, as is expected, the spreadplot editor is available when this paper is published, we fore-
see the rapid increase in the development and deployment of spreadplots for statistical data
visualization.
Page 16 of 18

Gossip: On The Architecture of SpreadPlots
7 References

Bann, C. M. (1996 a), “Statistical Visualization Techniques for Monotonic Robust Multiple Regression”. MA
Thesis, Psychometrics Laboratory, University of North Carolina, Chapel Hill, NV.

Bann, C. M. (1996 b), “ViSta Regress: Univariate Regression with ViSta, the visual Statistics System”. L.L.
Thurstone Psychometric Laboratory Research Memorandum.

Becker, R. A., and Chambers, J. M. (1984), S: An Interactive Environment for Data Analysis and Graphics,
Belmont, Ca: Wadsworth.

Becker, R. A., Cleveland, W. S. and Wills, A. R., (1988). The New S Language: A Programming Environment
for Data Analysis and Graphics, Pacific Grove, Ca: Wadsworth.

Becker, R. A., Cleveland, W. S. and Wills, A. R. (1987), “Dynamic Graphics for Data Analysis”, Statistical
Science, 2, 355-395.

Becker, R. A., Cleveland, W. S. and Shyu, J. (1996), “The Visual Design and Control of Trellis Display”, Jour-
nal of Computational and Statistical Graphics, 5, 123-155.

Bee-Leng Lee (1996), “Correspondence Analysis”. L.L. Thurstone Psychometric Laboratory Research Memo-
randum.

Chambers, J. M., Cleveland, W. S., Kleiner, B., and Tukey, P. A. (1983), Graphical methods for data analysis,
Pacific Grove: Wadsworth & Brooks.

Cook, D. R. & Weisberg, S. (1999), Applied Regression Including Computing and Graphics, New York: Wiley
and Sons.

Emerson, J. D. (1991), “Introduction to transformations”, in Fundamentals of Exploratory Analysis of Vari-
ance, eds. D.C. Hoaglin, F. Mosteller, and J. W. Tukey, New York: Wiley & Sons, pp. 365-400.

Friendly, M. (1999), “Extending Mosaic Displays: Marginal, Conditional and Partial Views of Categorical
Data”, Journal of Computational and Graphical Statistics, 8, 373-395.

McFarlane, M., & Young, F. W. (1994), “Graphical Sensitivity Analysis for Multidimensional Scaling”, Jour-
nal of Computational and Graphical Statistics, 3, 23-34.

Murrel, P. R. (1999), “Layouts: A Mechanism for Arranging Plots on a Page”, Journal of Computational and
Graphical Statistics, 2, 121-134.

North, C. & Shneiderman, B. (2000), “Snap-Together Visualization: A User Interface for Coordinating Visual-
izations via Relational Schemata”. In Proceedings of AVI 2000, Palermo.

Stine, R. and Fox, J. (1997) (eds.), Statistical Computing Environments for Social Research, Thousand Oaks:
Sage.

Stuetzle, W., (1987), “Plot windows”, Journal of the American Statistical Association, 82, 466 - 475.

Swayne, D. F., Cook, D. and Buja, A. (1998), “XGobi: Interactive Dynamic Data Visualization in the X-Win-
dows System”, Journal of Computational and Graphical Statistics, 7, 113-130.
Page 17 of 18

Gossip: On The Architecture of SpreadPlots
Tierney, L. (1990). Lisp-Stat: An Object-oriented Environment for Statistical Computing and Dynamic Graph-
ics. New York: Wiley.

Velleman, P. F. (1992), DataDesk Handbook, Ithaca, NY: Data Description Inc.

Wang Baldonado, M. Q., Woodruff, A. & Kuchinsky, A. (2000), “Guidelines for using Multiple Views in
Information Visualization”, Proceedings of AVI 2000, Palermo, pp. 110-119.

Wills, G. (1999), “Linked Data Views”, Statistical Computing & Statistical Graphics Newsletter, 10, 20-24.

Wilhelm, A. F. X. (1999), “A data model for interactive statistical graphics”, Proceedings of the Section on
Statistical Graphics. Baltimore. pp 61-70. AQUI FALTA AÑADIR LO DEL CONGRESO

Valero, P. M. & Young, F. W. (2000), “Missing Data Imputation”. L.L. Thurstone Psychometric Laboratory
Research Memorandum.

Young, F. W. (1992). "ViSta: The Visual Statistics System". UNC Psychometric Laboratory, Chapel Hill NC.

Young, F. W., and Bann, C. (1997), “ViSta: A Visual Statistics System”, in R. Stine and J. Fox (Eds.), Statisti-
cal Computing Environments for Social Research, Thousand Oaks: Sage, pp. 207-235.

Young, F. W., Faldowsky, R. A., and McFarlane, M. M. (1993), “Multivariate Statistical Visualization”, in C.
R. Rao (Ed.), Computational Statistics. Handbook of Statistics, Amsterdam: Elsevier Science, pp. 959-998.

Young, F. W. & Valero, P. M. (1999), “Principal Component Analysis”. L.L. Thurstone Psychometric Labora-
tory Research Memorandum.

Young, F. W. & Valero, P. M. (2000), “Transformations”. L.L. Thurstone Psychometric Laboratory Research
Memorandum.
Page 18 of 18

	Gossip: On The Architecture of SpreadPlots
	TGossip: On The Architecture of SpreadPlots
	1 Introduction
	2 Overview of Previous Multiple Plot Systems
	2.1 Communication
	2.2 Layout
	3 Introduction to Spreadplots
	3.1 Background
	3.2 Example
	4 The Architecture of Spreadplots
	4.1 Gossip Messaging Architecture
	4.1.1 Overview of Gossip Architecture
	4.1.2 The messages
	4.1.3 An example
	4.2 Spreadplot Architecture: Layout
	5 Discussion
	6 Conclusion
	7 References

