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Abstract  

We present and discuss several dynamic statistical graphics tools designed to 
help the data analyst visually discover and formulate hypotheses about the 
structure of multivariate data. All tools are based on the notion of the "data 
space," a representation of multivariate data as a high-dimensional (hD) space 
which has a dimension for each variable (column of the data) and a point for each 
case (row of the data). The data space is projected orthogonally onto the "visual 
space," a three-dimensional space which is seen and manipulated by the data 
analyst. The visual space has a point-like object for each case and can have a 
vector-like object for each variable. The three dimensions of the visual space are 
orthogonal linear combinations of the variables. We discuss the notion of a 
"guided tour" of multivariate data space, and present guided-tour tools, including 
1) 6D-rotation, a tool for dynamically rotating, in six-dimensional (6D) space, 
from one 3D portion of the data space to another while displaying the 
dynamically changing projection in the visual space; 2) hd-residualization, a tool 
that determines, at the user's request, the largest invisible 3D space-i.e., the 
largest 3D space is orthogonal to the visual space - this space is used with the 
visual space so that 6D-rotation can occur between two new 3D portions of the 
data space; 3) projection-cueing, a group of three tools that use change in object 
brightness as a cue to show change in aspects of the projection of objects from 
the data space to the visual space during hd-rotation. In addition to these tools for 
touring high-dimensional multivariate space, we discuss tools for manipulating 
the 3D visual space, and a tool for examining the relationship between two data 
spaces. Finally, we present a guided-tour implementation in which the user 
manipulates joysticks and sliders to dynamically and smoothly control the 
graphics tools in real time. A video supplement demonstrates the implementation. 

Introduction 

Statistical graphics can be powerful data analysis tools for exploring scientific 
data for structure-powerful because they help the scientific explorer visualize 
structure. Dynamic statistical graphics-graphic methods in which the user 



interacts with a computer to create smoothly moving pictures of the data-can be 
especially powerful tools for exploring for structure when the data are more than 
two-dimensional. Again, the power of these methods stems from their ability to 
help a scientist visualize the structure of data, even when the structure may exist 
in more than three dimensions. Since the early stages of scientific inquiry involve 
exploration, and since exploration leads to scientific hypotheses, graphical 
methods are central to the process of gaining scientific insight. 

In this paper we discuss dynamic statistical graphics. In particular, we discuss a 
set of dynamic statistical graphics tools for exploring and visualizing structure in 
high-dimensional multivariate data. These tools are for "looking at data to see 
what it seems to say," to quote John Tukey, the founder of the branch of statistics 
[1] which focuses on, and is called, exploratory data analysis. 

In the first section of this paper we present a number of considerations in 
designing dynamic statistical graphics tools for analyzing high-dimensional data. 
This discussion reflects the light shed by Hurley and Buja [2] in their paper 
describing guided tours, methods for visualizing high-dimensional data that are 
based on real-time dynamic graphics which the user guides through high-
interaction, immediate feedback actions. 

In the second section of the paper we describe the conceptual and mathematical 
aspects of a set of guided tour tools for exploring and visualizing high-
dimensional data. These tools, some of which are presented here for the first 
time, implement rotation in up to six dimensions, provide the ability to perform a 
self-guided tour of high-dimensional data space, and provide ways to visualize 
the distance of a projection from high-dimensional to three-dimensional space. 
We also discuss tools for manipulating 3D space, and a tool for comparing two 
high-dimensional spaces. These guided tour tools are designed to enable the data 
analyst to explore and visualize structure in high-dimensional space.  

In the third section we discuss the software and hardware involved in an 
implementation of the guided tour tools presented in the previous section. We 
call our system VISUALS/Pxpl, a new implementation on the Pixel-Planes 
computer [3, 4] of the VISUALS software reported earlier [5-7]. Pixel-Planes is a 
special-purpose, one-of-a-kind, massively parallel graphics computer especially 
designed to optimize operations in 3D space. 

In the fourth and final section we present an example and discuss a video of 
VISUALS/Pxpl being used to explore data concerning the rates of seven types of 
crime in the fifty United States. The guided-tour tools are demonstrated in the 
video. These data have been explored using the original VISUALS system, as 
reported by Young, Kent, and Kuhfeld [6] and by Young [7]. 

1. Guided tours 



Hurley and Buja [2] define a guided tour as a way of exploring and visualizing 
multivariate data. The work reported here is an example of a guided tour. Indeed, 
our work is very similar to earlier work reported by Young and his co-workers 
[5-7]. However, that earlier work differs from Hurley and Buja's definition of a 
guided tour in one important way, whereas the current work does not. The 
difference is discussed below. 

Data space: To define a guided tour, we begin by defining the multivariate data 
that are to be explored and visualized. Suppose that the multivariate data consist 
of h numerical variables observed on each of n cases. Suppose further that these 
data are collected together into the matrix X, an n x h matrix of data with 
elements x,,. This matrix has n rows, one for each of the n cases, and h columns, 
one for each of the h variables. 

In order to understand the idea of a guided tour, we introduce the notion of a data 
space. A data space is an abstract view of the data. In the data space each case of 
the data is represented by an h-dimensional observation vector x,, whose ath 
element is the observation on variable a. Thus, abstractly, the entire set of data is 
represented by n points in an h-dimensional data space. The rows of the data 
matrix contain coordinates of the points in this space; the columns are the 
dimensions of the space. The canonical basis vectors of the data space R /, are 
denoted by e,, a = 1, - - -, h. They are in one-to-one correspondence with the 
observed variables. Without loss of generality, we assume that X is "column 
centered," i.e., that the mean of each column is 0. In the abstract high-
dimensional (hD) data space, this implies that the centroid of the space is at the 
origin. 

Visual space: An important aspect of a guided tour of data space is that the tour 
is visual: The purpose of the guided tour is to help the data analyst visualize the 
high-dimensional structure of the data space. Thus, a central part of the guided 
tour is the visual space: a 3D picture of the data formed by orthogonally 
projecting the data space Rh onto R3. The projection is orthogonal with respect to 
the canonical inner product in Rh. Such orthogonal projections enable us to form 
3D pictures that have mutually perpendicular x, y, and z axes. Numerically, the 
visual space is represented by the matrix VP, an n x 3 matrix of data with 
elements viap. This matrix has n rows, one for each of the n cases, and 3 columns, 
one for each of the h variables. The visual space, and its matrix representation, 
involves dynamically varying projections, thus the subscript p. 

The visual space contains points, one point for each case as it is projected from 
the high-dimensional data space into the visual space. The visual space may also 
contain vectors, one vector for each variable as it is projected from the data 
space. (A vector has zero length when its variable is orthogonal to the 3D space.) 
If the plot contains only case points, the visual space is a 3D scatterplot. If it also 



contains variable vectors, it is a 3D biplot. Note that we specifically use 
orthogonal projections that do not imply that the variables are unit length, rather 
than orthonormal projections that do carry this implication. If we wish, all 
variables can be normalized to unit length. 

Note that our definition of the visual space Y, differs from the corresponding 
notion in Hurley and Buja's guided tour in that their work deals with a sequence 
of orthonormal projections that are one- or two-dimensional. That is, their 
visualization is in R1 or R2, not in R3. Also, their work only considers projecting 
the cases as points in the visual space, and does not consider projecting the 
variables as vectors in the visual space. However, while our definition can be 
seen as a generalization of theirs, we do not view the generalization as 
fundamental. 

Dynamic graphics: As did Hurley and Buja, we restrict our consideration to 
moving plots produced by displaying a sequence of frames in which every frame 
is a different projection of the data space onto the visual space. Several frames 
are computed and shown every second. We consider only dynamic movement, 
movement which is smooth in real time and which is controlled by a data analyst 
through graphic, high-interaction, immediately effective actions. Here, the 
computer creates only one frame in the sequence before interrogating the analyst 
to see how the next frame should be produced, with the creation interrogation 
cycle occurring several times per second. Dynamic movement is in contrast to 
animated movement, in which the computer creates a series of frames and then 
presents them in sequence to the viewer who passively views the "movie." 

The dynamic plots consist of a sequence of projections displayed in rapid 
succession. We denote any one of these visualizations as V,, the visualization 
based on projection p of the data space into the visual space. The projection is 
one of the series V1, V2, ... Vp-1, Vp, Vp+1, where each V1 is in R3. 

Purpose: A guided tour capitalizes on the pattern-recognition power of human 
vision and the computational power of graphics workstations to help data 
analysts look for structure (form hypotheses) in their high-dimensional 
multivariate data. The purpose is to aid in forming hypotheses about the high-
dimensional geometric structure of the data, even though we can only see in three 
dimensions. To do this, a guided tour must 

l Respect the data's high-dimensional geometry.  
l Respect the data analyst's three-dimensional perception.  
l Respect the workstation's computational limits. 

Of course, while we can see in three dimensions, we can draw in only two 
dimensions on the computer screen. Thus, a guided tour must present high-



dimensional information in two dimensions, such that our three dimensional 
perception can understand the high dimensional geometry. In order to do this, the 
sequence of projections should meet requirements that were emphasized by 
Hurley and Buja: 

1. The movement should be smooth, so that we can observe smooth movement 
of points and vectors in the visual space. This means that projections in the 
sequence should be "close enough" so that the movement of points and 
vectors from one to the next is small.  

2. Since the purpose of a guided tour is to help the data analyst visually 
explore data space for structure, the sequence of projections and the 
corresponding sequence of visual spaces should be generated under the 
control of the data analyst. Furthermore, the data analyst should control the 
sequence via highly interactive, immediately effective actions.  

3. The computation of the sequence of projections and visual spaces should be 
in real time. In particular, the projections in the sequence should be "rapid 
enough" so that the movement appears to be continuous. 

Target Spaces: The central problem in designing a method for visually touring 
data space is how to construct the sequence of projections and their 
corresponding visual spaces. As has been discussed by Young, Kent, and 
Kuhfeld [6] and by Hurley and Buja [2], it is much simpler for the implementers 
of a visual data-space tour to construct the sequence of projections and visual 
spaces without regard to the data analyst, and to present them passively to the 
user. In fact, Asimov [8] and Buja and Asimov [9] have proposed such a 
technique. However, this technique, which Asimov named the "grand tour," does 
not actively involve the data analyst, so it would seem to be less likely that the 
data analyst would find structure of interest. 

Thus, the developer of a truly interactive "guided tour," as opposed to the non-
interactive "grand tour," is faced with the problem of how to place the 
construction of the sequence of projections under the control of the data analyst, 
and how to do this in a way which is both fast and simple to use. Solutions to 
these problems have been provided by Young and his co-workers, and by Buja 
and his co-workers. These two groups of investigators propose to provide the 
data analyst with tools for constructing a series of "target spaces," and with 
additional tools for smoothly interpolating between the target spaces. For both 
groups of researchers, the guided tour consists of the sequence of spaces 
produced by interpolating between successive target spaces. 

Thus, the problem of how to construct the sequence of projections reduces to two 
more fundamental problems: First, what tools do we provide the data analyst to 
construct target spaces? Second, what tools do we provide the analyst to 
interpolate between the targets? In the next section we discuss these guided-tour 
tools. 



2. Guided-tour tools 

In this section we present a specific set of guided-tour tools. The tools include 
one for constructing target spaces, one for interpolating between target spaces, 
and a group of tools that use object brightness to represent information about the 
projection of an object from data to visual space. In addition, we present a group 
of tools for manipulating 3D visual space, and a tool that can be used to 
understand the relationship between two data spaces. 

Data: Before presenting and defining the guided-tour tools, we need to complete 
the definition of the data to be studied with the tools. In the previous section we 
defined the basic multivariate data as X, an n X h matrix with a row for each of 
the n cases and a column for each of the h variables. These data are assumed to 
be column-centered. We indicated in that section that we take the abstract view 
that the data are n points in an h-dimensional space whose centroid is at the 
origin. 

The variables in the data correspond to the dimensions of the data space. We may 
represent the variables (dimensions) in the visual space by axes that extend 
between ±sa, a = 1 ... h. These axes necessarily run through the origin and 
centroid of the space. We define sa as the standard deviation of the coordinates 
on the dimension. The standard deviation is proportional to the length of the axes, 
since the length of an axis is the square root of the sum of the squared 
coordinates, whereas the standard deviation is the square root of the mean of the 
squared coordinates. Because of the centering, the standard deviation is the 
average of the distances of points from the origin of the data space when the 
points are orthogonally projected onto the dimension. 

We augment the data matrix X by vertically concatenating it with an h X h 
diagonal matrix L whose diagonal elements are sa. This means that X is now an 
(n + h) X h matrix containing the multivariate data in the first n rows, and the 
standard deviations sa of the h axes on the diagonals of the last h rows. If we 
wish, we can further augment X with additional rows whose values represent the 
coordinates of supplemental points or variables. If there are s such supplemental 
rows or coordinates, X becomes an (n + h + s) X h matrix of coordinates. 

Optionally, the dimensions of the data X may be "normalized": i.e., made to all 
have the same length (due to the centering, if they have the same length they will 
also have the same standard deviation and same variance). This is done by 
dividing each column of X (including augmented and supplemental values) by its 
length la by the equation X =: XL1, where all (n + h + s) rows of X are included 
in the normalization. Note that for the augmented (but not supplemental) rows, 
the normalization process changes the nonzero coordinates to one. 



Initial spaces: Now that the data matrix X is completely defined, we define the 
initial visual space Vo and the initial target space To. The definition of the initial 
visual space is, simply, that Vo is an (n + h + s) X 3 matrix whose three columns 
equal three of the columns of X. The definition of the initial target space is 
equally simple: T0= V0. The subscripts on the visual and target space matrices 
indicate that they vary, with the initial matrices indicated by 0. Note that the 
subscripts are different for the two matrices. For the visual space we use p to 
indicate that the visual space presents varying projections from the data space. 
For the target space we use t to indicate that the target changes over time. 

Visual representation: The rows of the multivariate data are represented by 
points in the data space, and are represented by "point-like" objects in the visual 
space. These objects could be spheres, cubes, 3D crosses, etc. The variables of 
the data are represented in the data space as dimensions. Thus, in the visual space 
they are shown as "axis-like" objects. Of course, we can think of planes in the 
data space (such as the plane formed by a pair of variables). Such a plane could 
be represented in the visual space by a "plane-like" object such as a grid. Since 
the h augmented rows of X represent the dimensions of the data space, their 
visual "objects" are lines drawn between ±1. Finally, the supplemental rows of X 
may represent either cases or variables; thus, supplemental cases are represented 
in the visual space by point-like objects, whereas supplemental variables are 
represented by vector-like objects (lines from the origin). 

Hd-residualization tool: This tool calculates Ti+1, and Ti+2, the next two target 
spaces in the sequence of targets. This tool enables the data explorer to create 
many alternative 3D views of the data space, these views being used as targets by 
the 6Drotation tool discussed below. This tool was developed and discussed by 
Young [7] and his co-workers [5, 6]. 

The hd-residualization tool calculates the largest 3D space that is orthogonal to 
the visible space VP, the largest invisible space. This space is "largest" in the 
sense that it contains the three longest mutually orthogonal dimensions that are 
also orthogonal to the visible space. It is also largest in the sense that it is the 
maximum-variance 3D space orthogonal to the visible space. This tool is called 
hd-residualization because it computes the largest "residual" space in the 
invisible portion of the high-dimensional data space. 

The hd-residualization equations are based only on the n coordinates of the cases, 
not on the h coordinates of the variables, nor on the s supplemental coordinates. 
The data space X (excluding the lower h + s rows) is related to the visible space 
Vp by the equation (we omit the subscript on Vp for simplicity and because these 
equations hold for all values of p) 

X = VB + R, 



where R is an (n X h) matrix of residual information between the two spaces, and 
B is a (3 X h) matrix of coefficients of three orthogonal linear combinations of 
the h variables, determined by the equation 

B = V- X,
 

where V- = (V'V)-1 V'. Then R = X - VV-X can be decomposed into R = PQS' 
using a singular value decomposition. We then define the Ti+1 space as the old 
interpolation space V and the Ti+2 space as the first three columns of PQ. Notice 
that residualization does not change the data X. 

6D-rotation tool: This tool is used by the data explorer to rotate a 3D projection 
of the high-dimensional cloud of points back and forth between the two targets 
through a 6D portion of the data space. The user watches the dynamically 
changing projection of the cloud into the visual space, in order to understand the 
cloud's 6D structure. Our tool extends a 4D version of this tool developed and 
presented by Buja et al. [IO]. 

This tool uses a trigonometric interpolation which Buja et al. have shown to be an 
orthonormal rotation in the six-dimensional space spanned by the two target 
spaces. The rotation follows the shortest geodesic path in 6space. The equation is 

V, = Ti+1(cos [Up]) + Ti+2 (sin [Up]),
 

where V,, is the (n + h + s) X 3 matrix of coordinates vi. of the objects seen in 
visual space, where the functions cos and sin are the cosine and sine functions 
applied to the diagonal of Up, and where U, is a diagonal 3 x 3 matrix with 
diagonal values 

0o < upaa < 90o
 

where the values upaa increment from O' to 90' dynamically over p, the 

increment being 5o. 



   

Hd-depth cueing tools: The three tools in this set of tools use object brightness 
to visually represent information about the projection "depth" of the object from 
data space to visual space. One of the hd-depth cueing tools uses brightness to 
represent distance information, another tool uses brightness to represent angular 
information, and the third tool uses brightness to represent fit information. These 
three tools are introduced for the first time in this paper. 

1. Projection distance cueing: The definition of this hd-depth cueing tool 
depends on the fact that an orthogonal projection of a point i in data space 
onto the 3D visual space forms a right triangle, as portrayed in Figure 1. 
The hypotenuse of the triangle is denoted hi which is the distance in data 
space between the origin and the location of point i in data space. The sides 
of the triangle are denoted pi, the distance in data space between the 
location of point i in data space and the nearest surface of visual space, and 
di, the distance in visual space between the origin and the projection of 
point i into visual space. The sides pi and di form a right angle (as indicated 
in the figure), because of the orthogonality of the projection. Therefore, 

 

and it follows by substitution that 



 

We normalize the distance pi so that it is always between 0 and 1. We do 
this by dividing it by the maximum of the distances of the n + h + s objects 
from the origin, say object m. We then represent the distance over which 
the object has been projected from data space to the visual space by the 
brightness of the object in the visual space. If the projection is very long 
(the data object is far from the visual space), the object is shown dimly. If 
the projection is very short (the data object is very close to the visual 
space), the object is shown brightly. Specifically, we define the brightness 
cueing value for projection distance to be 

 

for object i. 

  

2. Projection angle cueing: This hd-depth cueing tool uses brightness to 
visually cue the cosine of the angle between the line from the origin to the 
location of the object in data space and the line from the origin to the 
location of the object in visual space. With this definition of hd-depth 
cueing, the value for object i is defined as 

. 

It can be shown that this is equivalent to  

 

When the cosine is 1, the object is bright. In this case the angle is 0, and the 
distance hi between the object in data and visual space is 0, implying that 
the location of the object in visual space coincides with the location of the 
object in data space. If the angle is very small, the cosine is nearly 1, and 



the two lines are nearly colinear. This implies that the visual space very 
nearly contains the object before it is projected from data space. Thus, the 
location of the object in visual space adequately represents the location of 
the object in data space. If the angle is large, the cosine is nearly 0 and the 
hypotenuse hi is very long, indicating that the location of the object in 
visual space does not adequately represent the location of the object in data 
space. Here, the object is very dim. 

  

3. Projection fit cueing: This tool uses brightness to visually depth cue the 
proportion of the total variance of the case which is represented in the 
visual space. The value of this hD-depth cueing tool is defined as 

   

(Note that a subscript "dot" on vi. and xi.. indicates the mean for row i. Also 
note that h with no subscript is the dimensionality of the high-dimensional 
space, not the distance hi of point i from the origin.) If the proportion is 1, 
all of the variance of the case is represented in the visual space, and the 
object is very bright. If the proportion is 0, none of the variance of the case 
is represented in the visual space, and the object is very dim. The brightness 
varies linearly with the proportion. 

3D tools: Since our definition of a guided tour of high-dimensional space is in 
terms of projections into a visual space which is three-dimensional, the data 
explorer needs to have a collection of tools for manipulating 3D space. We 
discuss here, briefly, a standard collection of such tools. We do not, however, 
define these tools mathematically, as their definition and development have been 
presented elsewhere. In fact, the tools presented in this section are available in a 
number of commercially available data analysis systems. 

The visual data analyst must have tools to spin (rotate) and move (translate) the 
visual space. Ideally, it should be possible to combine spins and moves on each 
of the three axes of the space. The analyst should also be able to rock the spin 
and move motions to increase the depth illusion. A number of additional tools 
have been proposed to enhance the explorer's understanding of the data cloud's 
structure. These include:  



1. brushing, the ability to move a rectangular "brush" across the screen to 
select and manipulate subsets of points inside the brush;  

2. metamorphing, which is changing the size, shape, or color of the object that 
represents the observation point in the 3D space; and  

3. subsetting, the creation of subsets of objects by their location in 3D space; 
by their color, size, or shape; by the value of an attached label; or by their 
observation number. 

In addition to the (now) standard set of 3D tools, the implementation we discuss 
in the next section contains two less-common 3D tools. These tools, which are 
designed to enhance the 3D effect, project the cloud of observation points in  

1. perspective onto the 2D graphics screen, and (optionally) in  
2. stereo perspective. 

6D-interpolation tool: In addition to the tools for exploring and visualizing one 
data space, the implementation discussed below has a tool for visually comparing 
two high-dimensional data spaces. This tool enables the data explorer to 
smoothly interpolate between two 3D portions of two hD data spaces. The user 
watches the dynamically changing interpolation in order to understand the 
relationship between the two hD spaces. This tool was developed and discussed 
by Young and his co-workers [5-7]. It is very similar to the 4D-rotation tool 
developed by Buja and his co-workers, and was in fact presented by Young to 
perform the functions performed by hd-rotation. However, it has been shown by 
Buja et al. [10] that when viewed as a rotation, the 6D-interpolation tool does not 
yield an orthogonal rotation; rather, it yields a sheared, nonorthogonal rotation. 
They go on to point out, however, that the tool is useful for comparing two 3D 
spaces, or two 3D portions of two separate hD data spaces. 

The 6D-interpolation tool for dynamically moving from Ti+1 to Ti+2, is defined 
as 

   

where Vp is defined as above, and where Cp is a diagonal 3 x 3 matrix with 
diagonal values 0 < cpaa < 1, where the values cpaa increment from 0 to 1 
dynamically over p in increments of 0.05. 

3. VISUALS/Pxpl implementation 

The tools for guiding a tour of high-dimensional data space that are defined 
above are implemented in a system we call VISUALS/Pxpl. We have 
chosen this name because many of the fundamental touring tool concepts 
were defined and implemented by Young [7] and his coworkers [5, 6] in a 



system they called VISUALS. The "Pxpl" suffix reflects that the software 
has been re-implemented on a special-purpose, massively parallel, custom 
graphics computer called Pixel-Planes. Fuchs and his co-workers [3, 4] 
developed this computer. 

Pixel-Planes is a raster graphics system for high-speed rendering of 3D 
objects and scenes. It features a "frame buffer" composed of custom logic-
enhanced memory chips that can be programmed to perform most of the 
time-consuming pixel-oriented tasks in parallel at each pixel. The novel 
feature of this approach is a unified mathematical formulation for these 
tasks and an efficient tree-structured computation unit that calculate; inside 
each chip the proper values for every pixel in parallel. 

The current system, Pixel-Planes 4 (Pxpl4), contains 512 x 512 pixels x 72 
bits per pixel, implemented with 2048 custom 3-Am NMOS chips (63 000 
transistors in each, operating at 8 million microinstructions per second). 
There are a total of 262 144 separate processors, one for each pixel. These 
processors work in parallel. 

The Pixel-Planes architecture is a novel approach to raster graphics in 
which the front part of the system specifies the objects on the screen in 
pixel-independent terms, and the frame-buffer memory chips themselves 
work from this description to generate the final image. Image primitives 
such as lines, polygons, and spheres are each described by expression (and 
operations) that are "linear in screen space," that is, by coefficients A, B, C 
such that the value desired at each pixel is Ax + By + C, where x, y is the 
location of the pixel on the screen. Thus, the information that is broadcast to 
the frame buffer is a sequence of sets (ABC, instruction), rather than the 
usual (pixel-address, RGB-data) pairs. In contrast to other raster systems, 
the most time consuming pixel-level calculations are done neither by 
general-purpose processors nor by special hardware that executes only a 
particular set of graphics functions. Instead, Pixel-Planes is a fairly general-
purpose raster engine, especially powerful when most of the pixel 
operations can be described in linear (or planar) expressions. 

Pxpl4 contains a fairly conventional "front-end" graphics processor, 
implemented using the Weitek XL chip set, that traverses a segmented, 
hierarchical display list, computes viewing transformations', performs 
lighting calculations, clips polygons (or other primitives) that are not 
visible, and performs perspective division. For objects described by 
polygons, the graphics processor translates the colored-polygon-vertex 
description of each object into the form of data (A, B, C) for linear 
expressions, together with instructions for the "smart" frame buffer. An 
image generation controller converts work-parallel data and instructions 
into the bit-serial form required by the, enhanced memory chips. A video 



controller scans video data from the frame buffer and refreshes a standard 
raster display. The system is hosted by a conventional UNIX workstation 
that supports the system's user interface through various graphics input 
devices and that provides system programming tools. 

The heart of the Pxpl4 system is the "smart" frame buffer, an array of 
custom VLSI processor-enhanced memory chips. Each of these chips 
contains two identical 64-pixel modules. Each module has three main parts: 
a conventional memory array that stores all pixel data for a 64-pixel column 
on the screen, an array of 64 tiny one bit ALUs, and a linear expression 
evaluator that generates Ax + By + C simultaneously for all pixels. All 
ALUs in the system execute the same micro instruction at the same time, 
and all memories receive the same address (each pixel ALU operates on its 
corresponding bit of data) at the same time. Pxpl4 can process about 39 000 
smooth-shaded, z-buffered triangles per second. Shadows are cast at about 
13 000 triangles per second, using true shadow volumes. About 12 000 
smooth-shaded, z-buffered, interpenetrating spheres are rendered per 
second. 

Motion in VISUALS/Pxpl is controlled by two 3D joysticks and a slider. 
One joystick always controls 3D spinning. The other joystick has three 
modes: In one mode it controls 3D translation; in another mode it controls 
6D-rotation; in the third mode it controls 6Dinterpolation. The slider always 
controls viewing angle. Various keyboard commands implement other 
tools. 

4. Video example 

In this example we demonstrate using VISUALS/Pxpl to look for structure 
in seven-dimensional data. These data, which are shown in Table I of [7], 
report the crime rate for seven major types of crime in each of the fifty 
United States for 1977. The rate is per 100 000 population. (The data were 
gathered by the FBI and were published in the 1979 Statistical Abstract of 
the United States by the U.S. Department of Commerce.) We submitted 
these data to a principal component analysis and then used VISUALS/ Pxpl 
to investigate the structure of the principal component scores and 
coefficients.  



(The figures are photographs taken from a video sequence made by the 
authors that forms part II of this paper.) 

Figure 2(video scene 1) shows the initial display constructed by 
VISUALS/Pxpl. This is the initial 3D space Vo. What we see is the 3D 
space formed by the first three principal components (the principal 3D 
space). The first component is displayed horizontally and the second 
vertically; the third is represented by the size of the cubes (large cubes are 
in the front of the space, small ones are in the back). In Figure 2 there are 
fifty cubes for the principal component scores of the fifty states, and seven 
vectors for the principal component coefficients of the seven crimes. The 
cubes represent the location of each state as projected into the principal 3D 
space, while the vectors represent the seven crimes as projected into this 
space. The length -of a vector represents how close the crime is to the 
principal 3D space (i.e., the amount of variance in the crime that is 
associated with the plane). This type of plot, which shows the observations 
(states) as points (cubes) and the variables (crimes) as vectors, is called a 
biplot [ 1 1 ]. 

Figure 3(also from video scene 1) shows the same display as Figure 2 
except that the states and crimes have been labeled. We see that the crime 
vectors point to the right in the direction of the first principal component, 
indicating that it represents the overall crime rate, and that the states on the 
right have the highest overall crime rates and those on the left have the 
lowest overall crime rates. Note that the property crime vectors (auto theft, 
larceny, burglary, and robbery) point upward, and the personal crime 
vectors (rape, assault, and murder) point downward. Thus, the second 
principal component, which is vertical, separates property crime from 
personal crime. 



Previous visual exploration of these data [7] has revealed that in the 
principal 3D space there is a cluster of southern states. This cluster does not 
include Florida, which has a crime pattern like northern states. In Figure 4 
(video scene 2), the same scene is shown as in Figures 2 and 3, except that 
the southern states are now represented by red cubes and Florida by a 
yellow cube, and the crime vectors have been made invisible. Since the 
southern states are at the bottom of the space, they are states with 
disproportionately high rates of personal crime. Spinning the space shown 
in Figure 4 confirms that the cluster of southern states is at least three-
dimensional. 

We now use VISUALS/Pxpl to investigate whether the cluster of southern 
states is a cluster in all seven dimensions, or only in the three we see while 
spinning the space shown in Figure 4, or in some other dimensionality 
between three and seven. To do this, we prepare to take a guided tour of the 
high-dimensional data space. First we define the two targets T0 and T1. We 
define T0 = V0 the space we have been examining. We then define T1 to be 
the space whose dimensions are principal components 4, 5, and 6 (the 
largest space orthogonal to T0). Spinning T0 (video scene 4) indicates that 
the cluster of southern states is a cluster in this space as well. 

However, further investigation suggests that the southern states may divide 
into three clusters, one consisting of North and South Carolina, another of 
Mississippi, Alabama, and Louisiana, and the third of Georgia, Arkansas, 
and Tennessee. If we count Florida, there appear to be four clusters of these 
southern states. This conclusion is reached by taking a depth-cued guided 
tour of the six-dimensional space formed by T0 and T1. 

  



This process (video scenes 5-7) involves the following steps. First, we focus 
on the states of interest by making all cubes except the southern ones 
invisible. This is shown in Figure 5 where the space has been spun into a 
new orientation. Second, we switch to parallel from perspective projection, 
to accurately portray paths of movement. The locations of the Southern 
states (including Florida) are shown in Figure 6. Here the red cubes are the 
Carolinas, the blue cubes are Georgia, Arkansas, and Tennessee, and the 
white cubes are Mississippi, Alabama, and Louisiana. (Note that colors 
were not assigned before discovering the clusters. After all, they presuppose 
knowledge of the clusters that did not exist prior to the visual exploration. 
Rather, they were assigned after visual exploration revealed the three 
clusters.) Third, we use 6D-rotation to rock back and forth between T0 and 
T1. A time-lapse photograph of the rocking process is shown in Figure 7. 
(Figure 6 is one end of the rocking, as can be seen by comparing the two 
photographs.) 

What we look at during this high-dimensional depth-cued rocking is the 
paths of movement and the changing brightness of the cubes representing 
the nine southern states. Clusters of states that follow similar paths and 
which show similar changes in brightness are close together in six-
dimensional space. States in different clusters will follow different paths 
and have different brightness changes. 

This guided tour reveals that the Carolinas (red cubes) move along paths 
which are different from those taken by the other states but which are 
similar to each other. It also shows that Georgia, Arkansas, and Tennessee 
(blue cubes) move along another set of similar paths which are different 
from those taken by other states; and that the same is true for Mississippi, 
Alabama, and Louisiana (the white cubes). The paths are called "similar" 

 
 



because they show the same kind of movements. 

Depth cueing further reinforces this structure. Figure 7 shows projection fit 
cueing, the tool which uses brightness to show the proportion of a state's 
total variance that is represented in the visual space. Bright portions of the 
paths represent projections of states that retain much of their variance in the 
visual space, dim portions represent projections which retain little. If the 
states in a cluster are located in about the same place in multivariate space, 
then, as they are projected onto the visual space as it rotates through six 
dimensions, the cubes for the states in a cluster should display similar 
brightness changes. By studying this photograph we see that the brightness 
of cubes that are the same color change in similar fashion (although one 
white-cube path-for Mississippi-seems to differ from the other two white 
paths), further suggesting that the states are clustered in high-dimensional 
space as we suspect. 

The depth-cued guided tour allows us to draw a conclusion about the 
structure of these states in the six-dimensional space formed by the first six 
principal components. The conclusion is that these nine southern states 
appear to form four clusters in six dimensions. Apparently, there are four 
different patterns of crime in these nine southern states. 

Finally, in video scene 9 (which is not shown in photographs here) we 
return to the full biplot of all fifty states and seven crimes to see if the 
depth-cued guided tour will reveal additional structure of interest. We 
notice that the Alaska cube moves in and out from the center to the upper 
right-hand corner as we rotate from the principal space (where Alaska is in 
the center) to the residual space (where Alaska is in the corner). We further 
notice that Alaska's brightness changes opposite to the way in which most 
cubes change. Specifically, Alaska is dimmest when it is in the principal 
space, the space that accounts for the most variance, and it is brightest when 
it is in the residual space, a space which accounts for much less variance. 
Thus, we see that Alaska is an outlier, and that much of its variance is 
accounted for by components that account for little other variance. Indeed, 
when we look at the original crime rate data, we see that Alaska's crimerate 
profile is unusual: At least in 1977, when these data were obtained, it had 
the highest rate of rape per 100 000 population of any state in the country, 
but it did not have an extremely high rate for other personal crimes. 

5. Conclusion 

In the video we have seen dynamic statistical graphics that use changing 
brightness and movement. With the aid of these guided-tour tools we can 
discover and visualize structure in high-dimensional multivariate data. 
These graphics tools have helped us discover that Alaska has an unusual 



crime pattern, and that there are four six-dimensional clusters among the 
crime patterns of the southern states. 

Note that we cannot see these four clusters as spatial clusters in any portion 
of the video. Rather, we see these clusters as movement clusters. 
Furthermore, the movement clustering is reinforced by similar patterns of 
changing brightness. Indeed, it may be that we cannot see a spatial structure 
that actually exists in a high-dimensional space in any of the infinity of 
different static projections of that space. For our example there may be no 
2D (or 3D) projection that shows these four groups of states as spatially 
separated clusters. However, the movement and brightness clusters imply 
that spatial clusters do exist in 6D. Thus, VISUALS/Pxpl gives us a way of 
"visualizing" the structure of high-dimensional space by encoding the 
structure as movement and changing brightness in three-dimensional space. 
Dynamic statistical graphics has helped us discover and visualize structure 
in high-dimensional multivariate data. 
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