Dynamics of differentiation and integration operators on weighted spaces of entire functions

María José Beltrán Meneu

José Bonet and Carmen Fernández

WFAV2013
Aim of the talk

To study the dynamics of the operators:

Differentiation: \(Df := f' \)

Integration: \(Jf(z) := \int_0^z f(\xi) d\xi, \; z \in \mathbb{C} \)

Hardy operator: \(Hf(z) := \frac{1}{z} \int_0^z f(\xi) d\xi, \; z \in \mathbb{C} \)

on weighted Banach spaces of entire functions.

- \(D, J \) and \(H \) are continuous on \((H(\mathbb{C}), co)\), where \(co \) denotes the compact-open topology.
- \(DJf = f \) and \(JDf(z) = f(z) - f(0) \; \forall f \in H(\mathbb{C}), \; z \in \mathbb{C} \).
Dynamics on operators

Given a Banach space X,

$$\mathcal{L}(X) := \{ T : X \to X \text{ linear and continuous } \}.$$

Given $T \in \mathcal{L}(X)$, the pair (X, T) is a linear dynamical system.

Definitions

- Let $x \in X$. The **orbit of** x **under** T **is** the set

 $$\text{Orb}(x, T) := \{ x, Tx, T^2x, \ldots \} = \{ T^nx : n \geq 0 \}.$$

- $x \in X$ is a **periodic point** if $\exists n \in \mathbb{N}$ such that $T^nx = x$.

Given a Banach space X and $T \in \mathcal{L}(X)$, it is said that:

Definitions

- T topologically mixing $\iff \forall U, V \neq \emptyset$ open, $\exists n_0 : T^n U \cap V \neq \emptyset$ $\forall n \geq n_0$.
- T hypercyclic $\iff \exists x \in X$, $\text{Orb}(T, x) := \{x, Tx, T^2x, \ldots\}$ is dense in $X \Rightarrow X$ SEPARABLE!!

Definition (Godefroy, Shapiro, 1991)

T is chaotic if

- T has a dense set of periodic points,
- T is hypercyclic.
Dynamics on operators

Given a Banach space X and $T \in \mathcal{L}(X)$, it is said that:

Definitions

- T power bounded $\iff \sup_n \|T^n\| < \infty$
- T Cesàro power bounded $\iff \sup_n \|\frac{1}{n} \sum_{k=1}^{n} T^k\| < \infty$
- T mean ergodic \iff

$$\forall x \in X, \exists P x := \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} T^k x \in X$$

- T uniformly mean ergodic \iff

$$\left\{ \frac{1}{n} \sum_{k=1}^{n} T^k \right\}_n$$

converges in the operator norm.
Classical results

Mac Lane (1952)

\[D : H(\mathbb{C}) \to H(\mathbb{C}) \text{ is hypercyclic, i.e.,} \]

\[\exists f_0 \in H(\mathbb{C}) : \forall f \in H(\mathbb{C}), \ \exists (n_k)_k \subseteq \mathbb{N} \text{ such that} \]

\[f_0^{(n_k)} \to f \text{ uniformly on compact sets.} \]

Proposition

The integration operator \(J : H(\mathbb{C}) \to H(\mathbb{C}) \) is not hypercyclic. In fact, for each \(f \in H(\mathbb{C}) \), the sequence \((J^nf)_n \) converges to 0 in \(H(\mathbb{C}) \).
Weights

A weight ν on \mathbb{C} is a strictly positive continuous function on \mathbb{C} which is radial, i.e. $\nu(z) = \nu(|z|)$, $z \in \mathbb{C}$, $\nu(r)$ is non-increasing on $[0, \infty]$ and rapidly decreasing, that is, it satisfies $\lim_{r \to \infty} r^n \nu(r) = 0$ for each $n \in \mathbb{N}$.

For $r \geq 0$ and $f \in H(\mathbb{C})$, consider

$$M_p(f, r) := \left(\frac{1}{2\pi} \int_0^{2\pi} |f(re^{it})|^p dt \right)^{1/p}$$

for $1 \leq p < \infty$

and

$$M_\infty(f, r) := \sup_{|z|=r} |f(z)|, \ r \geq 0.$$

Note that for each $1 \leq p < \infty$ and each $n \in \mathbb{N}$, we have

$$M_p(z^n, r) = M_\infty(z^n, r) \text{ for each } r > 0.$$
Weighted spaces of entire functions

Given a weight ν, $1 \leq p \leq \infty$, and $1 \leq q < \infty$,

$$B_{p,q}(\nu) := \left\{ f \in H(\mathbb{C}) : \|f\|_{p,q,\nu} := \left(2\pi \int_0^\infty r\nu(r)^q M_p(f,r)^q dr\right)^{1/q} < \infty \right\}$$

$$B_{p,\infty}(\nu) := \left\{ f \in H(\mathbb{C}) : \|f\|_{p,\infty,\nu} := \sup_{r>0} \nu(r) M_p(f,r) < \infty \right\}$$

$$B_{p,0}(\nu) := \left\{ f \in H(\mathbb{C}) : \lim_{r \to \infty} \nu(r) M_p(f,r) = 0 \right\}.$$

For $1 \leq p, p_1, p_2 \leq \infty$, $1 \leq q, q_1, q_2 \leq \infty$, $p_1 \leq p_2$, $q_1 \leq q_2 \neq \infty$,

$$B_{p,q_1}(\nu) \subseteq B_{p,q_2}(\nu) \subseteq B_{p,0}(\nu) \subseteq H(\mathbb{C})$$

$$B_{p_2,q}(\nu) \subseteq B_{p_1,q}(\nu)$$

with continuous inclusions.
Definition

In the case $p = \infty$ and $q \in \{0, \infty\}$, we get the weighted Banach spaces of entire functions:

\[H^\infty_\nu := \{ f \in H(\mathbb{C}) : \|f\|_\nu := \sup_{z \in \mathbb{C}} \nu(z)|f(z)| < \infty \} \]
\[H^0_\nu := \{ f \in H(\mathbb{C}) : \lim_{|z| \to \infty} \nu(z)|f(z)| = 0 \}. \]

Given $a \in \mathbb{R}$, $\alpha > 0$, consider $\nu_{a,\alpha}(z) := |z|^a e^{-\alpha |z|}$, for $|z| \geq r_0$, and the spaces $B_{p,q}(a,\alpha)$, $H^\infty_{a,\alpha}$ and $H^0_{a,\alpha}$. For $a = 0$, we omit the a.

- $f \in H^\infty_{\alpha} \iff \exists C > 0 : |f(z)| \leq Ce^{\alpha |z|} \ \forall z \in \mathbb{C}$.
- $H^\infty_{\alpha} \cong \ell_\infty$ and $H^0_{\alpha} \cong c_0$ (Lusky).
- P are dense in $B_{p,q}(a,\alpha)$, $1 \leq q < \infty$, $q = 0$, but the monomials are not a Schauder basis in general if $p \in \{1, \infty\}$ (Lusky).
Continuity, norms and spectrum

For every $1 \leq p \leq \infty$ the bidual of $B_{p,0}(\nu)$ is isometrically isomorphic to $B_{p,\infty}(\nu)$ (Lusky).

Lemma

Assume $T : (H(\mathbb{C}), co) \rightarrow (H(\mathbb{C}), co)$ continuous and $T(\mathcal{P}) \subseteq \mathcal{P}$, let ν be a weight and $1 \leq p \leq \infty$. The following conditions are equivalent:

(i) $T(B_{p,\infty}(\nu)) \subset B_{p,\infty}(\nu)$,

(ii) $T : B_{p,\infty}(\nu) \rightarrow B_{p,\infty}(\nu)$ is continuous,

(iii) $T(B_{p,0}(\nu)) \subset B_{p,0}(\nu)$,

(iv) $T : B_{p,0}(\nu) \rightarrow B_{p,0}(\nu)$ is continuous.

If (i)-(iv) hold, then $\|T\|_{\mathcal{L}(B_{p,\infty}(\nu))} = \|T\|_{\mathcal{L}(B_{p,0}(\nu))}$ and $\sigma_{B_{p,\infty}(\nu)}(T) = \sigma_{B_{p,0}(\nu)}(T)$.
The continuity of D and J on $H^\infty_\nu(\mathbb{C})$ is determined by the growth or decline of $\nu(r)e^{\alpha r}$ for some $\alpha > 0$ in an interval $[r_0, \infty[$.

Proposition.

Let ν be a weight function such that $\sup_{r>0} \frac{\nu(r)}{\nu(r+1)} < \infty$ and let $1 \leq p \leq \infty$, $1 \leq q \leq \infty$, $q = 0$. Then the differentiation operator $D : B_{p,q}(\nu) \to B_{p,q}(\nu)$ is continuous.
Continuity, norms and spectrum of D

If $\nu(r) = r^a e^{-\alpha r}$ ($\alpha > 0$, $a \in \mathbb{R}$) for $r \geq r_0$, $1 \leq q < \infty$:

$$\|z^n\|_{p,q,a,\alpha} \approx \left(\frac{(n+a)q+1}{e\alpha q} \right)^{a+n+\frac{3}{2q}}$$

with equality for $a = 0$.

Proposition

For $n > |a|$,

$$\|D^n\|_{p,q,a,\alpha} = O\left(n! \left(\frac{e\alpha}{n-|a|} \right)^{n-|a|} \right).$$

If $1 \leq q < \infty$,

$$n! \left(\frac{e\alpha q}{(a+n)q+1} \right)^{n+a+\frac{3}{2q}} = O(\|D^n\|_{p,q,a,\alpha})$$

if $q = \infty$,

$$n! \left(\frac{e\alpha}{a+n} \right)^{n+a} = O(\|D^n\|_{p,\infty,a,\alpha}).$$
Continuity, norms and spectrum of D

Proposition

For every $\alpha > 0$ and $a \in \mathbb{R}$, the spectrum $\sigma_{a,\alpha}(D) = \alpha \mathbb{D}$.

Proposition

Let ν be a weight such that D is continuous on $B_{p,q}(\nu)$, $1 \leq p \leq \infty$, $q \in \{0, p, \infty\}$, and that $\nu(r)e^{\alpha r}$ is non increasing for some $\alpha > 0$. If $|\lambda| < \alpha$, the operator $D - \lambda I$ is surjective and it even has a continuous linear right inverse

$$K_{\lambda}f(z) := e^{\lambda z} \int_{0}^{z} e^{-\lambda \xi} f(\xi)d\xi, \ z \in \mathbb{C}$$

In particular, this is satisfied by the weight $\nu_{a,\alpha}(r) = r^{a}e^{-\alpha r}$ for r big enough (proved by Atzmon, Brive (2006), in the case $a = 0$).
Proposition

For the weight $\nu(r) = r^a e^{-\alpha r}$ ($\alpha > 0$, $a \in \mathbb{R}$) for r big enough, we have:

- $\|J^n\|_{p,q,a,\alpha} \cong 1/\alpha^n$, with equality for $a = 0$ if $q \in \{0, \infty\}$, and $1/\alpha^n \lesssim \|J^n\|_{p,p,a,\alpha} \lesssim \left(\frac{p}{\alpha p - 1}\right)^n$ if $1 \leq p < \infty$, $p > \frac{1}{\alpha}$, $n \in \mathbb{N}$.

- $\sigma_{a,\alpha}(J) = (1/\alpha)\overline{D}$, if $q \in \{0, \infty\}$, and $(1/\alpha)\overline{D} \subseteq \sigma(J) \subseteq \frac{p}{\alpha p - 1} \overline{D}$ for $1 \leq p < \infty$, $p > \frac{1}{\alpha}$, $p = q$.
Continuity, norms and spectrum of H

Theorem

Given a weight ν, the Hardy operator $H : B_{p,q}(\nu) \to B_{p,q}(\nu)$, $Hf(z) = \frac{1}{z} \int_0^z f(\zeta) d\zeta$, $z \in \mathbb{C}$, is well defined and continuous with norm $\|H\| = 1$. Moreover, H^2 is compact and $H^2(B_{p,\infty}(\nu)) \subseteq B_{p,0}(\nu)$. In particular, its spectrum is $\sigma(H) = \{\frac{1}{n}\}_{n \in \mathbb{N}} \cup \{0\}$. If the integration operator $J : B_{p,q}(\nu) \to B_{p,q}(\nu)$ is continuous, then H is compact and $H(B_{p,\infty}(\nu)) \subseteq B_{p,0}(\nu)$.

Remark

For the weight $\nu(r) = \exp(-(\log r)^2)$:

- J is not continuous on $H^\infty_{\nu}(\mathbb{C})$ (Harutyunyan, Lusky)
- $H : H^\infty_{\nu}(\mathbb{C}) \to H^0_{\nu}(\mathbb{C})$, $H : H^0_{\nu}(\mathbb{C}) \to H^0_{\nu}(\mathbb{C})$, are compact (Lusky).
Hypercyclicity and chaos

Theorem

Assume $D : B_{p,q}(\nu) \to B_{p,q}(\nu)$ continuous, $q \neq \infty$. TFAE:

(i) D is topologically mixing.

(ii) $\lim_{n \to \infty} \frac{\|z^n\|_{p,q,\nu}}{n!} = 0$.

Theorem

Assume $D : B_{p,q}(\nu) \to B_{p,q}(\nu)$ continuous, $q \neq \infty$. TFAE:

(i) D is chaotic.

(ii) D has a periodic point different from 0.

(iii) $\lim_{r \to \infty} \nu(r) \frac{e^r}{r^{\frac{1}{q}-\frac{1}{2p}}} = 0$ if $q = 0$ and $r^{\frac{1}{q}-\frac{1}{2p}} e^r \in L_{\nu}^q([r_0, \infty[)$ for some $r_0 > 0$, if $1 \leq q < \infty$.

Corollary

Consider the weight $\nu_{a,\alpha}$.

(a) $0 < \alpha < 1 \implies D$ is neither hypercyclic nor chaotic on $B_{p,q}(\nu)$.

(b) $\alpha > 1 \implies$ then D is topologically mixing and chaotic on $B_{p,q}(\nu)$.

(c) $\alpha = 1 \implies D$ is hypercyclic (even topologically mixing) if and only if $a < \frac{1}{2} - \frac{3}{2q}$ and D is chaotic if and only if $a < \frac{1}{2p} - \frac{2}{q}$. For $p = \infty$ we set $1/p := 0$ and for $q = 0$ we set $1/q := 0$.

Remark

J and H are never hypercyclic on $B_{p,q}(\nu)$.
Mean ergodicity

Remark

\[T \in \mathcal{L}(X) \text{ Cesàro bounded and } P(d) = 0 \text{ for every } d \in D, \ D \subseteq X \text{ dense } \implies T \text{ mean ergodic.} \]

Proposition

Let \(T = D \) or \(T = J \) and assume that \(T \) is continuous on \(B_{p,\infty}(\nu) \), and equivalently, on \(B_{p,0}(\nu) \). TFAE:

(i) \(T : B_{p,\infty}(\nu) \to B_{p,\infty}(\nu) \) is uniformly mean ergodic,
(ii) \(T : B_{p,0}(\nu) \to B_{p,0}(\nu) \) is uniformly mean ergodic,
(iii) \(\lim_{m \to \infty} \frac{||T + \cdots + T^m||_{p,\nu}}{m} = 0. \)

Moreover, if \(1 \in \sigma_{\nu}(T) \), then \(T \) is not uniformly mean ergodic.
Mean ergodicity. Two useful results

Theorem (Lin)

Let $T \in \mathcal{L}(X)$ such that $\|T^n/n\| \to 0$. Then,

$$T \text{ uniformly mean ergodic } \iff (I - T)X \text{ is closed}.$$

Theorem (Lotz)

Let $T \in \mathcal{L}(H_\alpha^\infty)$ such that $\|T^n/n\| \to 0$. Then,

$$T \text{ mean ergodic } \iff T \text{ uniformly mean ergodic}.$$

H_α^∞ is a Grothendieck Banach space with the Dunford-Pettis property, since it is isomorphic to ℓ_∞ by a result due to Galbis.
Mean ergodicity of the differentiation operator.

Theorem.

Let $\nu(r) = e^{-\alpha r}$, $r \geq 0$.

- D is power bounded on $H^\infty_\alpha(\mathbb{C})$ or $H^0_\alpha(\mathbb{C})$ if and only if $\alpha < 1$.
- D is uniformly mean ergodic on $H^\infty_\alpha(\mathbb{C})$ and $H^0_\alpha(\mathbb{C})$ if $\alpha < 1$.
- D not mean ergodic if $\alpha > 1$, and
- D is not mean ergodic on $H^\infty_1(\mathbb{C})$ and not uniformly mean ergodic on $H^0_1(\mathbb{C})$.
Let \(\nu(r) = e^{-\alpha r}, \ r \geq 0. \)

- \(J \) is never hypercyclic.
- \(J \) is power bounded on \(H^\infty_\alpha(\mathbb{C}) \) or \(H^0_\alpha(\mathbb{C}) \) if and only if \(\alpha \geq 1. \)
- If \(\alpha > 1 \), \(J \) is uniformly mean ergodic on \(H^\infty_\alpha(\mathbb{C}) \) and \(H^0_\alpha(\mathbb{C}) \).
- \(J \) is not mean ergodic on these spaces if \(\alpha < 1. \)
- If \(\alpha = 1 \), then \(J \) is not mean ergodic on \(H^\infty_1(\mathbb{C}) \), and mean ergodic but not uniformly mean ergodic on \(H^0_1(\mathbb{C}) \).

For every weight \(\nu \), \(H \) is power bounded, not hypercyclic and uniformly mean ergodic on \(B_{p,q}(\nu) \).
Summary

<table>
<thead>
<tr>
<th></th>
<th>$0 < \alpha < 1$</th>
<th>$\alpha = 1$</th>
<th>$\alpha > 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>J</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power bounded</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Hypercyclic on H^0_α</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Mean ergodic on H^0_α</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Mean ergodic on H^∞_α</td>
<td>no</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>Uniformly mean ergodic</td>
<td>no</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power bounded</td>
<td>yes</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Hypercyclic on H^0_α</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Top. mixing on H^0_α</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Chaotic on H^0_α</td>
<td>no</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>Mean ergodic on H^0_α</td>
<td>yes</td>
<td>?</td>
<td>no</td>
</tr>
<tr>
<td>Mean ergodic on H^∞_α</td>
<td>yes</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Uniformly mean ergodic</td>
<td>yes</td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>
Open problems

(1) Is the operator of differentiation D mean ergodic on $H^0_1(\mathbb{C})$?

In other words:
Assume that $f \in H(\mathbb{C})$ satisfies $\lim_{|z| \to \infty} |f(z)| \exp(-|z|) = 0$. Does it follow that

$$\lim_{n \to \infty} \frac{1}{n} \sup_{z \in \mathbb{C}} |f'(z) + \cdots + f^{(n)}(z)| \exp(-|z|) = 0?$$
(2) Are there mean ergodic operators on a separable Banach space that are hypercyclic?

It is clear that no power bounded operator can be hypercyclic. However, there are examples of mean ergodic operators T on a Banach space such that the sequence $(||T^n||)_n$ tends to infinity. Classical examples are due to Hille in 1945. A general construction was presented by Tomilov and Zemanek in 2004.
References

References

