Metric geometry and energy integrals for convex bodies

Daniel Galicer1
Joint work with Daniel Carando1 and Damián Pinasco2

1Universidad de Buenos Aires - CONICET; 2Universidad Torcuato Di Tella - CONICET

Valencia - June 2013
Metric spaces arising from Euclidean spaces by a change of metric: some history

Metric spaces arising from Euclidean spaces by a change of metric: some history

Wilson investigated those metric spaces which arise from a metric space by taking as its new metric a suitable (one variable) function of the old one.
Classic results

Metric spaces arising from Euclidean spaces by a change of metric: some history

Wilson investigated those metric spaces which arise from a metric space by taking as its new metric a suitable (one variable) function of the old one.

\[(X, d) \xrightarrow{f} (X, f(d)), \text{ where } f(d)(x, y) := f(d(x, y)).\]
Metric spaces arising from Euclidean spaces by a change of metric: some history

For the metric space \((\mathbb{R}, | \cdot |)\), Wilson considered the function \(f(t) = t^{1/2}\).

Denote \(d_{1/2} := f(| \cdot |) \Rightarrow d_{1/2}(x,y) = |x - y|^{1/2}\).

He showed that \((\mathbb{R}, d_{1/2})\) may be imbedded in a separable Hilbert space. In other words, he proved that there exist a distance preserving mapping (isometry) \(j: (\mathbb{R}, d_{1/2}) \rightarrow (\ell_2, \| \cdot \|_{\ell_2})\). That is, \(\|j(x) - j(y)\|_{\ell_2} = d_{1/2}(x,y) = |x - y|^{1/2}, \forall x, y \in \mathbb{R}\).
Metric spaces arising from Euclidean spaces by a change of metric: some history

For the metric space \((\mathbb{R}, | \cdot |)\), Wilson considered the function \(f(t) = t^{1/2}\).
For the metric space $(\mathbb{R}, | \cdot |)$, Wilson considered the function $f(t) = t^{1/2}$.

Denote $d_{1/2} := f(| \cdot |) \leadsto d_{1/2}(x, y) = |x - y|^{1/2}$.
For the metric space $(\mathbb{R}, | \cdot |)$, Wilson considered the function $f(t) = t^{1/2}$.

Denote $d_{1/2} := f(| \cdot |) \sim d_{1/2}(x, y) = |x - y|^{1/2}$.

- He showed that $(\mathbb{R}, d_{1/2})$ may be imbedded in a separable Hilbert space.
Metric spaces arising from Euclidean spaces by a change of metric: some history

For the metric space \((\mathbb{R}, | · |)\), Wilson considered the function \(f(t) = t^{1/2}\).

Denote \(d_{1/2} := f(| · |) \leadsto d_{1/2}(x, y) = |x - y|^{1/2}\).

- He showed that \((\mathbb{R}, d_{1/2})\) may be imbedded in a separable Hilbert space.

In other words, he proved that there exist a distance preserving mapping (isometry)

\[j : (\mathbb{R}, d_{1/2}) \rightarrow (\ell_2, \| · \|_{\ell_2}) \]
Metric spaces arising from Euclidean spaces by a change of metric: some history

For the metric space \((\mathbb{R}, | \cdot |)\), Wilson considered the function \(f(t) = t^{1/2}\).

Denote \(d_{1/2} := f(| \cdot |) \sim d_{1/2}(x, y) = |x - y|^{1/2}\).

- He showed that \((\mathbb{R}, d_{1/2})\) may be *imbedded in a separable Hilbert space*.

In other words, he proved that there exist a distance preserving mapping (isometry)

\[j : (\mathbb{R}, d_{1/2}) \rightarrow (\ell_2, \| \cdot \|_{\ell_2}) \]

That is,

\[\|j(x) - j(y)\|_{\ell_2} = d_{1/2}(x, y) = |x - y|^{1/2}, \forall x, y \in \mathbb{R}. \]
Metric spaces arising from Euclidean spaces by a change of metric: some history

Metric spaces arising from Euclidean spaces by a change of metric: some history

J. von Neumann and I. Schoenberg characterized those function f for which the metric space $(\mathbb{R}, f(|\cdot|))$ is isometrically imbeddable in a Hilbert space.
Metric spaces arising from Euclidean spaces by a change of metric: some history

J. von Neumann and I. Schoenberg characterized those function f for which the metric space $(\mathbb{R}, f(| \cdot |))$ is isometrically imbeddable in a Hilbert space.

Just for the record...

$$f^2(t) = \int_0^\infty \frac{\sin^2(st)}{s^2} dG(s),$$

where $G(s)$ is a non-decreasing function and $\int_1^\infty \frac{1}{s^2} dG(s)$ exists.
Metric spaces arising from Euclidean spaces by a change of metric: some history

They proved that, for $0 < \alpha < 1$, $f(t) = t^\alpha$ becomes a suitable metric transformation (fulfills the previous criterium!!). Denote $d_\alpha := f(| \cdot |) \leadsto d_\alpha(x, y) = |x - y|^\alpha$.

- The metric space (\mathbb{R}, d_α) is also isometrically imbeddable in a separable Hilbert space.
Metric spaces arising from Euclidean spaces by a change of metric: some history

They proved that, for $0 < \alpha < 1$, $f(t) = t^\alpha$ becomes a suitable metric transformation (fulfills the previous criterium!!).

Denote $d_\alpha := f(| \cdot |) \sim d_\alpha(x, y) = |x - y|^\alpha$.

- The metric space (\mathbb{R}, d_α) is also isometrically imbeddable in a separable Hilbert space.

Note that Wilson result is just the case $\alpha = 1/2$.
They proved that, for $0 < \alpha < 1$, $f(t) = t^\alpha$ becomes a suitable metric transformation (fulfills the previous criterion!!).

Denote $d_\alpha := f(| \cdot |) \rightsquigarrow d_\alpha(x, y) = |x - y|^\alpha$.

- The metric space (\mathbb{R}, d_α) is also isometrically imbeddable in a separable Hilbert space.

Note that Wilson result is just the case $\alpha = 1/2$.

Question

Can we generalize this result to higher dimensions?
Metric spaces arising from Euclidean spaces by a change of metric: some history

They proved that, for $0 < \alpha < 1$, $f(t) = t^\alpha$ becomes a suitable metric transformation (fulfills the previous criterium!!).
Denote $d_\alpha := f(| \cdot |) \leadsto d_\alpha(x, y) = |x - y|^{\alpha}$.

- The metric space (\mathbb{R}, d_α) is also isometrically imbeddable in a separable Hilbert space.

Note that Wilson result is just the case $\alpha = 1/2$.

Question

Can we generalize this result to higher dimensions?

In other words, is the metric space (\mathbb{R}^n, d_α) isometrically imbeddable in ℓ_2, where $d_\alpha(x, y) = \|x - y\|^\alpha$?
Metric spaces arising from Euclidean spaces by a change of metric: some history

Classic results

Metric spaces arising from Euclidean spaces by a change of metric: some history

Theorem (Schoenberg)

For $0 < \alpha < 1$, the metric space $\left(\mathbb{R}^n, d_\alpha \right)$ is imbeddable in ℓ_2.
Moreover, by combining Schoenberg’s proof and a classic result of Menger, we have that for every compact set $K \subset \mathbb{R}^n$ the metric space (K, d_α) may be *imbeddable in the surface of a Hilbert sphere.*
Moreover, by combining Schoenberg’s proof and a classic result of Menger, we have that for every compact set \(K \subset \mathbb{R}^n \) the metric space \((K, d_\alpha)\) may be imbeddable in the surface of a Hilbert sphere.

Theorem

For every compact set \(K \subset \mathbb{R}^n \), there exist a positive number \(r \) and a distance preserving mapping

\[j : (K, d_\alpha) \rightarrow (rS_{\ell_2}, \| \cdot \|_{\ell_2}) \]
Moreover, by combining Schoenberg’s proof and a classic result of Menger, we have that for every compact set $K \subset \mathbb{R}^n$ the metric space (K, d_α) may be imbeddable in the surface of a Hilbert sphere.

Theorem

For every compact set $K \subset \mathbb{R}^n$, there exist a positive number r and a distance preserving mapping $j : (K, d_\alpha) \rightarrow (rS_{\ell^2}, \| \cdot \|_{\ell^2})$

Note that $\|j(x)\|_{\ell^2} = r$, $\forall x \in K$.
Moreover, by combining Schoenberg’s proof and a classic result of Menger, we have that for every compact set $K \subset \mathbb{R}^n$ the metric space (K, d_α) may be *imbeddable in the surface of a Hilbert sphere*.

Theorem

For every compact set $K \subset \mathbb{R}^n$, there exist a positive number r and a distance preserving mapping

$$j : (K, d_\alpha) \to (rS_{\ell^2}, \| \cdot \|_{\ell^2})$$

Note that $\|j(x)\|_{\ell^2} = r$, $\forall x \in K$.

It is natural to define,

$$\rho_\alpha(K) := \inf r$$
Moreover, by combining Schoenberg’s proof and a classic result of Menger, we have that for every compact set $K \subset \mathbb{R}^n$ the metric space (K, d_α) may be *imbeddable in the surface of a Hilbert sphere*.

Theorem

For every compact set $K \subset \mathbb{R}^n$, there exist a positive number r and a distance preserving mapping

$$j : (K, d_\alpha) \rightarrow (rS_{\ell_2}, \| \cdot \|_{\ell_2})$$

Note that $\|j(x)\|_{\ell_2} = r$, $\forall x \in K$.

It is natural to define,

$$\rho_\alpha(K) := \inf r \leadsto \text{least possible radius.}$$
A connection with another area

All these results can be framed within a vast area called "metric geometry".
A connection with another area

All these results can be framed within a vast area called "metric geometry".

Link

Metric Geometry ↔ Potential Theory
Let $K \subset \mathbb{R}^n$ be a compact set and μ a signed Borel measure supported on K of total mass one (i.e., $\mu(K) = 1$.)
Energy Integrals: some definitions

Let $K \subset \mathbb{R}^n$ be a compact set and μ a signed Borel measure supported on K of total mass one (i.e., $\mu(K) = 1$).

For a real number p (for us, $0 < p < 2$), we define

$$I_p(\mu; K) := \int_K \int_K \|x-y\|^p d\mu(x)d\mu(y)$$
Energy Integrals: some definitions

Let $K \subset \mathbb{R}^n$ be a compact set and μ a signed Borel measure supported on K of total mass one (i.e., $\mu(K) = 1$.)

For a real number p (for us, $0 < p < 2$), we define

$$I_p(\mu; K) := \int_K \int_K \|x-y\|^p d\mu(x) d\mu(y) \leadsto \text{p-energy integral given by } \mu.$$
Energy Integrals: some definitions

Let $K \subset \mathbb{R}^n$ be a compact set and μ a signed Borel measure supported on K of total mass one (i.e., $\mu(K) = 1$).

For a real number p (for us, $0 < p < 2$), we define

$$I_p(\mu; K) := \int_K \int_K \|x - y\|^p \, d\mu(x) d\mu(y) \rightsquigarrow p\text{-energy integral given by } \mu.$$

And define,

$$M_p(K) := \sup_{\mu} I_p(\mu; K)$$
Energy Integrals: some definitions

Let $K \subset \mathbb{R}^n$ be a compact set and μ a signed Borel measure supported on K of total mass one (i.e., $\mu(K) = 1$.)

For a real number p (for us, $0 < p < 2$), we define

$$I_p(\mu; K) := \int_K \int_K \|x-y\|^p d\mu(x)d\mu(y) \rightsquigarrow \text{p-energy integral given by } \mu.$$

And define,

$$M_p(K) := \sup_{\mu} I_p(\mu; K) \rightsquigarrow \text{p-maximal energy of } K.$$
The connection!

Theorem (Alexander-Stolarsky)

Let $K \subset \mathbb{R}^n$ be a compact set. Then,

$$\rho_\alpha(K) = \sqrt{\frac{M_{2\alpha}(K)}{2}}$$

Theorem (Alexander-Stolarsky)

Let $K \subset \mathbb{R}^n$ be a compact set. Then,

$$\rho_\alpha(K) = \sqrt{\frac{M_{2\alpha}(K)}{2}}$$

We will be focused on computing the value of $M_{2\alpha}(K)$.
Denote by B_n the unit ball in \mathbb{R}^n.

- $M_1(B_1) = M_1([−1, 1]) = 1$ (Alexander-Stolarsky, Trans. AMS. ’74)

$M_1(B_3) = 2$ (Alexander, Proc. AMS. '77)

$M_1(B_n)$ remained unknown for a very long time.
Denote by B_n the unit ball in \mathbb{R}^n.

- $M_1(B_1) = M_1([-1, 1]) = 1$ (Alexander-Stolarsky, Trans. AMS. ’74)
- $M_1(B_3) = 2$ (Alexander, Proc. AMS. ’77)
Some results...

Denote by B_n the unit ball in \mathbb{R}^n.

- $M_1(B_1) = M_1([−1, 1]) = 1$ (Alexander-Stolarsky, Trans. AMS. ’74)
- $M_1(B_3) = 2$ (Alexander, Proc. AMS. ’77)
- $M_1(B_n) = ???$
Denote by B_n the unit ball in \mathbb{R}^n.

- $M_1(B_1) = M_1([-1, 1]) = 1$ (Alexander-Stolarsky, Trans. AMS. ’74)

- $M_1(B_3) = 2$ (Alexander, Proc. AMS. ’77)

- $M_1(B_n) = ???? \rightsquigarrow$ remained unknown for a very long time.

Theorem (Hinrichs, Nickolas and Wolf)

\[M_1(B_n) = \frac{\pi^{1/2} \Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{n}{2}\right)}. \]

Theorem (Hinrichs, Nickolas and Wolf)

\[M_1(B_n) = \frac{\pi^{1/2}\Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{n}{2}\right)}. \]

Question

- What is the value of \(M_p(B_n) \), for \(0 < p < 2 \)?

Theorem (Hinrichs, Nickolas and Wolf)

\[
M_1(B_n) = \frac{\pi^{1/2} \Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{n}{2}\right)}.
\]

Question

- *What is the value of* \(M_p(B_n) \), *for* \(0 < p < 2 \)?
- *Does the number* \(\frac{\pi^{1/2} \Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{n}{2}\right)} \) *look familiar to you?*

Theorem (Hinrichs, Nickolas and Wolf)

\[M_1(B_n) = \frac{\pi^{1/2} \Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{n}{2}\right)}. \]

Question

- *What is the value of* $M_p(B_n)$, *for* $0 < p < 2$?
- *Does the number* $\frac{\pi^{1/2} \Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{n}{2}\right)}$ *look familiar to you?*

The number $\frac{\pi^{1/2} \Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{n}{2}\right)}$ is exactly $\pi_1(id : \ell^n_2 \to \ell^n_2)$.
Theorem (Carando, G., Pinasco)

\[M_p(B_n) = M_p([-1,1]) \frac{\pi^{1/2} \Gamma\left(\frac{n+p}{2}\right)}{\Gamma\left(\frac{p+1}{2}\right) \Gamma\left(\frac{n}{2}\right)} \]
Theorem (Carando, G., Pinasco)

\[M_p(B_n) = M_p([-1, 1]) \frac{\pi^{1/2} \Gamma\left(\frac{n+p}{2}\right)}{\Gamma\left(\frac{p+1}{2}\right) \Gamma\left(\frac{n}{2}\right)} \]

\[= M_p([-1, 1]) \pi_p \left(id: \ell_2^n \rightarrow \ell_2^n \right)^p \]
Theorem (Carando, G., Pinasco)

\[
M_p(B_n) = M_p([-1, 1]) \frac{\pi^{1/2}}{\Gamma(p+1/2)} \frac{\Gamma(n+p)}{\Gamma(n/2)} = M_p([-1, 1]) \pi_p(id : \ell_2^n \to \ell_2^n)^p
\]

Using \(\lim_{m \to \infty} \frac{\Gamma(m+c)}{\Gamma(m)m^c} = 1\), and the previous result we get:

Corollary

\[
\rho_\alpha(B_n) \asymp n^{\frac{\alpha}{2}}.
\]
How to compute the value $M_p(B_n)$?

Using the rotation-invariance of the Gaussian measure + spherical coordinates, we have:

Lemma

For every $x \in \mathbb{R}^n$, we have

$$\|x\|_p^p = b_p(n) \int_{S^{n-1}} |\langle x, t \rangle| \, d\lambda(t),$$

where S^{n-1} is the unit sphere, λ its normalized Haar measure and

$$b_p(n) = \pi^{\frac{p}{2}} \frac{\Gamma\left(\frac{n+p}{2}\right)}{\Gamma\left(\frac{p+1}{2}\right) \Gamma\left(\frac{n}{2}\right)} = \pi^p \left(\text{id}: \ell^2_n \to \ell^p_n\right).$$
How to compute the value $M_p(B_n)$?

Using the rotation-invariance of the Gaussian measure + spherical coordinates, we have:
How to compute the value $M_p(B_n)$?

Using the rotation-invariance of the Gaussian measure + spherical coordinates, we have:

Lemma

For every $x \in \mathbb{R}^n$, we have

$$
\|x\|^p = b_p(n) \int_{S^{n-1}} |\langle x, t \rangle|^p d\lambda(t),
$$

where S^{n-1} is the unit sphere, λ its normalized Haar measure and $b_p(n)$ is defined as

$$
b_p(n) = \frac{\pi^{1/2} \Gamma\left(\frac{n+p}{2}\right)}{\Gamma\left(\frac{p+1}{2}\right) \Gamma\left(\frac{n}{2}\right)} = \pi_p(id : \ell_2^n \to \ell_2^n)^p.
$$
How to compute the value $M_p(B_n)$?

Let μ be a signed borel measure on B_n of total mass one.

\[I_p(\mu; B_n) := \int_{B_n} \int_{B_n} \|x - y\|^p d\mu(x) d\mu(y) \]
How to compute the value $M_p(B_n)$?

Let μ be a signed borel measure on B_n of total mass one.

$$I_p(\mu; B_n) := \int_{B_n} \int_{B_n} \|x - y\|^p d\mu(x) d\mu(y)$$

$$= \int_{B_n} \int_{B_n} b_p(n) \int_{S^{n-1}} |\langle x - y, t \rangle|^p d\lambda(t) d\mu(x) d\mu(y)$$
How to compute the value $M_p(B_n)$?

Let μ be a signed borel measure on B_n of total mass one.

$$I_p(\mu; B_n) := \int_{B_n} \int_{B_n} \|x - y\|^p \, d\mu(x) \, d\mu(y)$$

$$= \int_{B_n} \int_{B_n} b_p(n) \int_{S^{n-1}} |\langle x - y, t \rangle|^p \, d\lambda(t) \, d\mu(x) \, d\mu(y)$$

$$= b_p(n) \int_{S^{n-1}} \left[\int_{B_n} \int_{B_n} |\langle x - y, t \rangle|^p \, d\mu(x) \, d\mu(y) \right] \, d\lambda(t)$$
How to compute the value $M_p(B_n)$?

Let μ be a signed borel measure on B_n of total mass one.

\[I_p(\mu; B_n) := \int_{B_n} \int_{B_n} \|x - y\|^p \, d\mu(x) \, d\mu(y) \]

\[= \int_{B_n} \int_{B_n} b_p(n) \int_{S^{n-1}} |\langle x - y, t \rangle|^p \, d\lambda(t) \, d\mu(x) \, d\mu(y) \]

\[= b_p(n) \int_{S^{n-1}} \left[\int_{B_n} \int_{B_n} |\langle x - y, t \rangle|^p \, d\mu(x) \, d\mu(y) \right] \, d\lambda(t) \]

For $t \in S^{n-1}$, let $\pi_t : B_n \to D_t$ the orthogonal projection of B_n in its diameter D_t (in the direction of t), then

$|\langle x - y, t \rangle|^p = \|\pi_t(x) - \pi_t(y)\|^p$.
Then,

\[I_p(\mu; B_n) = b_p(n) \int_{S^{n-1}} \left[\int_{B_n} \int_{B_n} \| \pi_t(x) - \pi_t(y) \|^p d\mu(x) d\mu(y) \right] d\lambda(t) \]
Then,

\[I_p(\mu; B_n) = b_p(n) \int_{S^{n-1}} \left[\int_{B_n} \int_{B_n} \|\pi_t(x) - \pi_t(y)\|^p d\mu(x) d\mu(y) \right] d\lambda(t) \]

\[= b_p(n) \int_{S^{n-1}} \left[\int_{D_t} \int_{D_t} |u - v|^p d\mu \pi_t^{-1}(u) d\mu \pi_t^{-1}(v) \right] d\lambda(t). \]
Then,

\[I_p(\mu; B_n) = b_p(n) \int_{S^{n-1}} \left[\int_{B_n} \int_{B_n} \| \pi_t(x) - \pi_t(y) \|^p d\mu(x) d\mu(y) \right] d\lambda(t) \]

\[= b_p(n) \int_{S^{n-1}} \left[\int_{D_t} \int_{D_t} |u - v|^p d\mu\pi_t^{-1}(u) d\mu\pi_t^{-1}(v) \right] d\lambda(t). \]

Now \(\mu\pi_t^{-1} \) is also a measure on \(D_t \) of total mass one. Since \(D_t \equiv [-1, 1] \) we have

\[\int_{D_t} \int_{D_t} |u - v|^p d\mu\pi_t^{-1}(u) d\mu\pi_t^{-1}(v) = I_p(\mu\pi_t^{-1}, D_t) \leq M_p([-1, 1]). \]
Then,

\[I_p(\mu; B_n) = b_p(n) \int_{S^{n-1}} \left[\int_{B_n} \int_{B_n} \|\pi_t(x) - \pi_t(y)\|^p d\mu(x) d\mu(y) \right] d\lambda(t) \]

\[= b_p(n) \int_{S^{n-1}} \left[\int_{D_t} \int_{D_t} |u - v|^p d\mu\pi_t^{-1}(u) d\mu\pi_t^{-1}(v) \right] d\lambda(t). \]

Now \(\mu\pi_t^{-1} \) is also a measure on \(D_t \) of total mass one. Since \(D_t \equiv [-1, 1] \) we have

\[\int_{D_t} \int_{D_t} |u - v|^p d\mu\pi_t^{-1}(u) d\mu\pi_t^{-1}(v) = I_p(\mu\pi_t^{-1}, D_t) \leq M_p([-1, 1]). \]

Therefore,

\[I_p(\mu; B_n) \leq b_p(n) \int_{S^{n-1}} \left[M_p([-1, 1]) \right] d\lambda(t) = b_p(n)M_p([-1, 1]). \]
Then,

\[I_p(\mu; B_n) = b_p(n) \int_{S^{n-1}} \left[\int_{B_n} \int_{B_n} \|\pi_t(x) - \pi_t(y)\|^p \, d\mu(x) \, d\mu(y) \right] \, d\lambda(t) \]

\[= b_p(n) \int_{S^{n-1}} \left[\int_{D_t} \int_{D_t} |u - v|^p \, d\mu \pi_t^{-1}(u) \, d\mu \pi_t^{-1}(v) \right] \, d\lambda(t). \]

Now \(\mu \pi_t^{-1} \) is also a measure on \(D_t \) of total mass one. Since \(D_t \equiv [-1, 1] \) we have

\[\int_{D_t} \int_{D_t} |u - v|^p \, d\mu \pi_t^{-1}(u) \, d\mu \pi_t^{-1}(v) = I_p(\mu \pi_t^{-1}, D_t) \leq M_p([-1, 1]). \]

Therefore,

\[I_p(\mu; B_n) \leq b_p(n) \int_{S^{n-1}} \left[M_p([-1, 1]) \right] \, d\lambda(t) = b_p(n)M_p([-1, 1]). \]

\[M_p(B_n) \leq b_p(n)M_p([-1, 1]) \]
How to get equality? In other words, how can we prove that

$$M_p(B_n) = b_p(n)M_p([-1, 1])?$$
How to get equality? In other words, how can we prove that

\[M_p(B_n) = b_p(n)M_p([−1, 1])? \]

Recall that

\[
I_p(\mu; B_n) = b_p(n) \int_{S^{n-1}} \left[\int_{D_t} \int_{D_t} |u − v|^p d\mu \pi_t^{-1}(u)d\mu \pi_t^{-1}(v) \right] d\lambda(t)
\]
How to get equality? In other words, how can we prove that

\[M_p(B_n) \overset{?}{=} b_p(n)M_p([-1, 1]). \]

Recall that

\[I_p(\mu; B_n) = b_p(n) \int_{S^{n-1}} \left[\int_{D_t} \int_{D_t} |u - v|^p d\mu \pi_t^{-1}(u) d\mu \pi_t^{-1}(v) \right] d\lambda(t) \]

We found a sequence \((\mu_k)_{k \in \mathbb{N}}\) of signed measures of total mass one \(B_n\) such that, for every direction \(t\),

\[\lim_{k \to \infty} \int_{D_t} \int_{D_t} |u - v|^p d\mu_k \pi_t^{-1}(u) d\mu_k \pi_t^{-1}(v) = M_p([-1, 1]). \]
How to get equality? In other words, how can we prove that

\[M_p(B_n) = b_p(n)M_p([-1, 1])? \]

Recall that

\[I_p(\mu; B_n) = b_p(n) \int_{S^{n-1}} \left[\int_{D_t} \int_{D_t} |u - v|^p d\mu_t^{-1}(u)d\mu_t^{-1}(v) \right] d\lambda(t) \]

We found a sequence \((\mu_k)_{k \in \mathbb{N}}\) of signed measures of total mass one \(B_n\) such that, for every direction \(t\),

\[\lim_{k \to \infty} \int_{D_t} \int_{D_t} |u - v|^p d\mu_k^{-1}(u)d\mu_k^{-1}(v) = M_p([-1, 1]). \]

Therefore, \(I_p(\mu_k; B_n) \to b_p(n)M_p([-1, 1]).\)
Bounds for other convex bodies

Let $K \subset \mathbb{R}^n$ be a centrally symmetric convex body, then K is just the unit ball of an n-dimensional Banach space $(E, \| \cdot \|_E)$.
Let $K \subset \mathbb{R}^n$ be a centrally symmetric convex body, then K is just the unit ball of an n-dimensional Banach space $(E, \| \cdot \|_E) \sim$ i.e., $K = B_E$.
Let $K \subset \mathbb{R}^n$ be a centrally symmetric convex body, then K is just the unit ball of an n-dimensional Banach space $(E, \| \cdot \|_E) \sim$ i.e., $K = B_E$.

Question

How can we estimate the value of $\rho_\alpha(B_E)$, $0 < \alpha < 1$?
Let $K \subset \mathbb{R}^n$ be a centrally symmetric convex body, then K is just the unit ball of an n-dimensional Banach space $(E, \| \cdot \|_E) \Rightarrow$ i.e., $K = B_E$.

Question

How can we estimate the value of $\rho_\alpha(B_E)$, $0 < \alpha < 1$? Or, equivalently, how can we compute $M_p(B_E)$, $0 < p < 2$?
Theorem

\[M_p(B_E) \leq M_p([-1, 1]) \frac{\pi^{1/2} \Gamma\left(\frac{n+p}{2}\right)}{\Gamma\left(\frac{p+1}{2}\right) \Gamma\left(\frac{n}{2}\right)} \int_{S^{n-1}} \|t\|_E^p d\lambda(t). \]
Theorem

\[M_p(B_E) \leq M_p([-1, 1]) \frac{\pi^{1/2} \Gamma\left(\frac{n+p}{2}\right)}{\Gamma\left(\frac{p+1}{2}\right) \Gamma\left(\frac{n}{2}\right)} \int_{S^{n-1}} \|t\|_E^p d\lambda(t). \]

This bound is expressed in terms of the mean width of \(B_E \), and is good enough in many cases!
Theorem

\[M_p(B_E) \leq M_p([-1, 1]) \frac{\pi^{1/2} \Gamma\left(\frac{n+p}{2}\right)}{\Gamma\left(\frac{p+1}{2}\right) \Gamma\left(\frac{n}{2}\right)} \int_{S^{n-1}} \|t\|_E^p d\lambda(t). \]

This bound is expressed in terms of the mean width of \(B_E \), and is good enough in many cases!

Theorem (Carando, G., Pinasco)

Let \(1 < q \leq 2 \) then,

\[\rho_\alpha(B_{\ell_q^n}) \asymp n^{\frac{\alpha}{q'}}. \]
Theorem

\[M_p(B_E) \leq M_p([-1, 1]) \frac{\pi^{1/2} \Gamma\left(\frac{n+p}{2}\right)}{\Gamma\left(\frac{p+1}{2}\right) \Gamma\left(\frac{n}{2}\right)} \int_{S^{n-1}} \|t\|_{E'}^p d\lambda(t). \]

This bound is expressed in terms of the mean width of \(B_E \), and is good enough in many cases!

Theorem (Carando, G., Pinasco)

Let \(1 < q \leq 2 \) then,

\[\rho_\alpha(B_{\ell_q^n}) \asymp n^{\frac{\alpha}{q'}}. \]

Remark:

- To estimate the upper bound we have used the previous theorem + the concentration of measure phenomenon.
This bound is expressed in terms of the mean width of B_E, and is good enough in many cases!

Remark:

- To estimate the upper bound we have used the previous theorem + the concentration of measure phenomenon.
- For the lower bound we have used the growth of $\rho_\alpha(B_n)$.

\[
M_p(B_E) \leq M_p([-1, 1]) \frac{\pi^{1/2} \Gamma\left(\frac{n+p}{2}\right)}{\Gamma\left(\frac{p+1}{2}\right) \Gamma\left(\frac{n}{2}\right)} \int_{S^{n-1}} \|t\|_{E'}^p d\lambda(t).
\]
Theorem

\[M_p(B_E) \leq M_p([-1, 1]) \frac{\pi^{1/2} \Gamma\left(\frac{n+p}{2}\right)}{\Gamma\left(\frac{p+1}{2}\right)\Gamma\left(\frac{n}{2}\right)} \int_{S^{n-1}} \|t\|_E^p d\lambda(t). \]

This bound is expressed in terms of the mean width of \(B_E \), and is good enough in many cases!

Theorem (Carando, G., Pinasco)

Let \(1 < q \leq 2 \) then,

\[\rho_\alpha(B_{\ell_q^n}) \asymp n^{\frac{\alpha}{q'}}. \]

Remark:

- To to estimate the upper bound we have used the previous theorem + the concentration of measure phenomenon.
- For the lower bound we have used the growth of \(\rho_\alpha(B_n) \).
Absolutely summing operators

An operator $T \in \mathcal{L}(X; Y)$ is absolutely p-summing if there is a constant C and a probability Borel-Radon measure ν on $B_{X'}$ such that

$$\|Tx\|_Y^p \leq C^p \int_{B_{X'}} |\langle x, x' \rangle|^p d\nu(x') \quad \forall x \in X.$$
Absolutely summing operators

An operator $T \in \mathcal{L}(X; Y)$ is absolutely p-summing if there is a constant C and a probability Borel-Radon measure ν on $B_{X'}$ such that

$$\|Tx\|_Y^p \leq C^p \int_{B_{X'}} |\langle x, x' \rangle|^p d\nu(x') \ \forall x \in X.$$

And the p-summing norm of T is given by

$$\pi_p(T) := \min C.$$
Absolutely summing operators

An operator $T \in \mathcal{L}(X; Y)$ is absolutely p-summing if there is a constant C and a probability Borel-Radon measure ν on $B_{X'}$ such that

$$\|Tx\|_Y^p \leq C^p \int_{B_{X'}} |\langle x, x' \rangle|^p d\nu(x') \ \forall x \in X.$$

And the p-summing norm of T is given by

$$\pi_p(T) := \min C.$$

Note that if $T = id : E \to \ell_2^n$ we have, for every $x \in \mathbb{R}^n$

$$\|x\|^p \leq \pi_p(id : E \to \ell_2^n)^p \int_{B_{E'}} |\langle x, x' \rangle|^p d\nu(x').$$
Theorem

\[M_p(B_E) \leq M_p([-1, 1]) \pi_p(id : E \to \ell_2^n)^p. \]
Theorem

$$M_p(B_E) \leq M_p([-1, 1])\pi_p(id : E \to \ell_2^n)^p.$$

This bound in many cases is good enough... We do not know if its sharp!
Theorem

\[M_p(B_E) \leq M_p([-1, 1])\pi_p(id : E \to \ell_2^n)^p. \]

This bound in many cases is good enough... We do not know if its sharp!

In particular, if \(E = \ell_1^n \), then

\[\pi_p(id : E \to \ell_2^n) \leq C_p \forall n \quad \sim \quad \text{follows from Kintchine inequality} \]
Theorem

\[M_p(B_E) \leq M_p([-1, 1]) \pi_p(id : E \to \ell_2^n)^p. \]

This bound in many cases is good enough... We do not know if its sharp!

In particular, if \(E = \ell_1^n \), then

\[\pi_p(id : E \to \ell_2^n) \leq C_p \ \forall n \ \Rightarrow \text{follows from Kintchine inequality} \]

Therefore, \(M_p(B_{\ell_1^n}) \leq \tilde{C}_p \), for every \(n \).
This bound in many cases is good enough... We do not know if its sharp!

In particular, if $E = \ell_1^n$, then

$$\pi_p(id : E \rightarrow \ell_2^n) \leq C_p \forall n \rightsquigarrow \text{follows from Kintchine inequality}$$

Therefore, $M_p(B_{\ell_1^n}) \leq \widetilde{C}_p$, for every n.

Theorem (Carando, G., Pinasco)

For $0 < \alpha < 1$ there exist a constant R_α such that for every n, there exist an isometric imbedding

$$j : (B_{\ell_1^n}, d_\alpha) \rightarrow (R_\alpha S_{\ell_2}, \| \cdot \|_{\ell_2}).$$
Several open questions

- What is the asymptotic behavior of $\rho_\alpha(B_{\ell_q})$, for $2 \leq q \leq \infty$?
What is the asymptotic behavior of $\rho_\alpha(B_{\ell_q})$, for $2 \leq q \leq \infty$?

Conjecture: $\rho_\alpha(B_{\ell_q}) \asymp n^{q^\frac{\alpha}{q}}$.
Several open questions

- What is the asymptotic behavior of $\rho_\alpha(B_{\ell_q^n})$, for $2 \leq q \leq \infty$?
 Conjecture: $\rho_\alpha(B_{\ell_q^n}) \asymp n^{\frac{\alpha}{q'}}$.
- What is the exact value of $M_p([-1, 1])$?
Thank you!!!!