Convolution operators on spaces of real analytic functions

Michael Langenbruch

Workshop on Functional Analysis, Valencia June 2013
Contents

- Convolution operators
- Known results
- The characterization
- Hyperfunctions and elementary solutions
Convolution operators

\[E(\Omega) = \text{a lcs. of (generalized) functions on } \Omega \subset \mathbb{R}^d. \]

For \(\mu \in E(\Omega)' \)

\[T_\mu : E(\Omega - \text{supp}(\mu)) \rightarrow E(\Omega) \]

is defined by

\[T_\mu(g)(x) := \mu \ast g(x) := \langle y \mu, g(x - y) \rangle, x \in \Omega. \]
Convolution operators

\(E(\Omega) = \) a lcs. of (generalized) functions on \(\Omega \subset \mathbb{R}^d \).

For \(\mu \in E(\Omega)' \)

\[
T_\mu : E(\Omega - \text{supp}(\mu)) \rightarrow E(\Omega)
\]

is defined by

\[
T_\mu(g)(x) := \mu * g(x) := \langle y\mu, g(x - y) \rangle, x \in \Omega.
\]

Examples. a) pdo (of finite or infinite order)
b) shift operators
c) mollifiers
Problems:

a) When is T_μ surjective?

b) When does T_μ admit a (continuous linear) right inverse i.e. when exists a continuous linear operator

$$R : E(\Omega) \to E(\Omega - \text{supp}(\mu))$$

such that $T_\mu \circ R = id$?
Known results

- **holomorphic functions**: \(E(\Omega) := \mathcal{H}(\Omega), \Omega \subset \mathbb{C}^d \text{ open} \)

 '55 Malgrange: \(T_\mu : \mathcal{H}(\mathbb{C}) \to \mathcal{H}(\mathbb{C}) \) is always surjective.

 Further results (also for holomorphic germs): Korobeinik, Krivosheev, Gramtsev, Napalkov, Okada, Momm, Melikhov, . . .
Known results

• **holomorphic functions:** $E(\Omega) := \mathcal{H}(\Omega), \Omega \subset \mathbb{C}^d$ open

 ’55 Malgrange: $T_\mu : \mathcal{H}(\mathbb{C}) \to \mathcal{H}(\mathbb{C})$ is always surjective.

 further results (also for holomorphic germs): Korobeinik, Krivosheev, Gramtsev, Napalkov, Okada, Momm, Melikhov, . . .

• **real analytic functions:** $E(\Omega) := \mathcal{A}(\Omega), \Omega \subset \mathbb{R}^d$ open

 ’60 Ehrenpreis: $T_\mu(f) = g \in \mathcal{A}(\mathbb{R}^d)$ solvable with $f \in C^\infty(\mathbb{R}^d)$

 ’68 Hörmander: Ω convex
 pdo in $A(\Omega)$, Ω convex:

'73 Piccinini: first example in the negative

'73 Hörmander: Characterization via PL - condition

wide range of applications to several problems in analysis:

'89 ff Braun, Meise, Taylor, Vogt, Domanski, . . .
• **pdo in** $A(\Omega)$, Ω convex:

 '73 Piccinini: first example in the negative

 '73 Hörmander: Characterization via PL - condition

 wide range of applications to several problems in analysis:

 '89 ff Braun, Meise, Taylor, Vogt, Domanski,

• **pdo in** $A(\Omega)$, general Ω

 '70 Kawai: sufficient condition for certain non convex Ω

 '04 L.: characterization for general Ω
Open problems.

a) Surjectivity of pdo $P(D)$ on $\mathcal{A}(\Omega)$ versus surjectivity of principal part $P_m(D)$ on $\mathcal{A}(\Omega)$

b) Surjectivity of convolution operators on $\mathcal{A}(\Omega)$, $\Omega \subset \mathbb{R}^d$ open
• **convolution operators on** $\mathcal{A}(I)$

notation: $I \subset \mathbb{R}$ always is an open interval and $\mu \in \mathcal{A}(\mathbb{R})'$.
• convolution operators on $\mathcal{A}(I)$

notation: $I \subset \mathbb{R}$ always is an open interval and $\mu \in \mathcal{A}(\mathbb{R})'$.

Theorem. (Napalkov/Rudakov '91, Meyer '92)

Let $\text{supp}(\mu) = \{0\}$ (i.e. μ is a differential operator). Then $T_\mu : \mathcal{A}(I) \to \mathcal{A}(I)$ is surjective iff there are $\delta > 0$, $r(t) = o(|t|)$:

$$\mu(z) \neq 0 \text{ if } r(|\text{Re}(z)|) \leq |\text{Im}(z)| \leq \delta|\text{Re}(z)|.$$ \hspace{1cm} (1)
convolution operators on $A(I)$

notation: $I \subset \mathbb{R}$ always is an open interval and $\mu \in A(\mathbb{R})'$.

Theorem. (Napalkov/Rudakov ’91, Meyer ’92)
Let $\text{supp}(\mu) = \{0\}$ (i.e. μ is a differential operator). Then $T_\mu : \mathcal{A}(I) \rightarrow \mathcal{A}(I)$ is surjective iff there are $\delta > 0$, $r(t) = o(|t|)$:

$$
\mu(z) \neq 0 \text{ if } r(|\text{Re}(z)|) \leq |\text{Im}(z)| \leq \delta |\text{Re}(z)|.
$$

(1)

Theorem. (L. ’95)
T_μ is surjective on $A(\mathbb{R})$ iff $\hat{\mu}$ satisfies (1) and

$$
\forall x \in \mathbb{R}, |x| \geq C \exists t \in \mathbb{C} : |t - x| \leq r(x) \text{ and } |\hat{\mu}(t)| \geq e^{-r(t)}.
$$

(E)
The characterization

For $G := \text{conv}(\text{supp}(\mu))$ let $H_G(z) := \sup_{x \in G} \langle x, \text{Im } z \rangle$.

Theorem. The following are equivalent:

a) $T_\mu : A(I - G) \to A(I)$ is surjective for some bounded I.

b) $T_\mu : A(I - G) \to A(I)$ is surjective for any I.

c) For any $\eta > 0$ there are $\eta_0 > 0$ and $\rho_\eta(t) = o(t)$ such that

$$|\hat{\mu}(z)| \geq e^{H_G(z) - \eta |\text{Im}(z)|}$$

if $\rho_\eta(|\text{Re}(z)|) \leq |\text{Im}(z)| \leq \eta_0 |\text{Re } z|$.
Hyperfunctions and elementary solutions

For $c \geq 0$ and $U \subset \mathbb{R}$ open let

$$\mathcal{B}_c(U) := \mathcal{H}(U \times (\mathbb{R} \setminus [-c, c])) / \mathcal{H}(U \times \mathbb{R})$$

= generalized hyperfunctions on U

$$\mathcal{B}_0(U) =: \mathcal{B}(U) = \text{hyperfunctions on } U$$
$\mu \in \mathcal{A}(\mathbb{R})'$ canonically defines a convolution operator

$$S_\mu : \mathcal{B}_c(U - G) \rightarrow \mathcal{B}_c(U) \text{ via}$$

$$S_\mu(u)(z) := \langle y\mu, u(z - y) \rangle \text{ for } u \in \mathcal{B}_c(U - G).$$
\(\mu \in \mathcal{A}(\mathbb{R})' \) canonically defines a convolution operator

\[
S_{\mu} : \mathcal{B}_c(U - G) \rightarrow \mathcal{B}_c(U) \text{ via }
S_{\mu}(u)(z) := \langle y\mu, u(z - y) \rangle \text{ for } u \in \mathcal{B}_c(U - G).
\]

\(E \in \mathcal{B}_c(I - G) \) is a \(\{t\} \)-elementary solution for \(S_{\mu} \) if

\[
S_{\mu}(E) = \delta_t = \text{ point evaluation at } t \in I.
\]

Notice that elementary solutions are \(\{0\} \)-elementary solutions.
Theorem. The following are equivalent:

a) $T_\mu : A(I - G) \rightarrow A(I)$ is surjective for some bounded I.

b) $\forall K \subset I \exists J \subset I, \gamma > 0 \forall t \in I \setminus J, 0 < c < \gamma$:
 there is a $\{t\}$-elementary solution $E \in \mathcal{B}_c(I - G)$ such that

 $E|_{K - G} \in \mathcal{H}((K - G) \times]) - \gamma, \gamma[).$

\[E|_{K - G} \in \mathcal{H}((K - G) \times]) - \gamma, \gamma[). \]

c) $\hat{\mu}$ satisfies (2).

d) S_μ admits hyperfunction elementary solutions E_\pm such that
 $E_+|_{-a_+, \infty[} \text{ is holomorphic and bounded on the shifted cone}$

 $-a_+ + \varepsilon + \{z \in \mathbb{C}_+ \mid \vert \text{Im}(z)\vert \leq \varepsilon \vert \text{Re}(z)\vert\}, \varepsilon > 0$

(similarly for $E_-|_{-\infty, a_-[}$).
Remark. ”d) ⇒ e) ⇒ b)” where

b) $\forall K \subset I \exists J \subset I, \gamma > 0 \forall t \in I \setminus J, 0 < c < \gamma$: there is a $\{t\}$-elementary solution $E \in B_c(I - G)$ such that

$$E|_{K - G} \in \mathcal{H}((K - G) \times] - \gamma, \gamma[).$$

d) S_μ admits hyperfunction elementary solutions E_\pm such that $E_+ |_{-a_+, \infty}$ is holomorphic and bounded on the shifted cone

$$-a_+ + \varepsilon + \{z \in \mathbb{C}_+ \mid \| \text{Im}(z) \| \leq \varepsilon \| \text{Re}(z) \| \}, \varepsilon > 0$$

(similarly for $E_- |_{-\infty, a_-}$).

e) S_μ admits hyperfunction elementary solutions E_\pm such that $E_+ |_{-a_+, \infty}$ and $E_- |_{-\infty, a_-}$ are real analytic.
Theorem. The following are equivalent:

a) $T_\mu : A(I - G) \to A(I)$ is surjective for some bounded I.

b) $T_\mu : A(I - G) \to A(I)$ is surjective for any I.

c) For any $\eta > 0$ there are $\eta_0 > 0$ and $\rho_\eta(t) = o(t)$ such that

$$|\hat{\mu}(z)| \geq e^{H_G(z) - \eta |\text{Im}(z)|}$$

(2)

if $\rho_\eta(|\text{Re}(z)|) \leq |\text{Im}(z)| \leq \eta_0 |\text{Re} z|$.

d) S_μ admits hyperfunction elementary solutions E_\pm such that $E_+|_{-\infty, a-}$ and $E_-|_{-a+, \infty}$ are real analytic.
Theorem. The following are equivalent.

a) $T_\mu : A(I - G) \rightarrow A(I)$ admits a continuous linear right inverse for some bounded I.

b) $T_\mu : A(I - G) \rightarrow A(I)$ admits a continuous linear right inverse for any I.

c) There is $\rho(t) = o(t)$ such that

$$|\hat{\mu}(z)| \geq e^{HG(z) - \rho(|z|)} \text{ if } |\text{Im}(z)| \geq \rho(|\text{Re}(z)|).$$

(3)

d) S_μ has hyperfunction fundamental solutions E_\pm such that $\text{supp}(E_+) \subset \left]-\infty, -a_+\right]$ and $\text{supp}(E_-) \subset \left]-a_-, \infty\right].$
References
