

WHAT CLASSICAL FLUID MECHANICS CAN TEACH US ON HAWKING RADIATION

<u>Germain Rousseaux</u>, Christian Mathis, Philippe Maïssa, Jean-Charles Nardin, CNRS, Dieudonné Laboratory, Nice University, France.

Thomas Philbin, Ulf Leonhardt, Saint Andrews University, Scotland.

Towards the Observation of Hawking Radiation in Condensed Matter Systems Valencia, February 1-7, 2009

Outline of the Talk

Maxwell, White, Hawking, Unruh...

A Review of Wave-Current Interaction

Nice Experiments in Nice

Fluid, Optical and Gravitational Horizons : a Catastrophic Story of Caustics

Perspectives

Maxwell, White, Hawking, Unruh...

Once upon a time...

First identification of acoustics rays with null geodesics

Acoustic ray tracing in moving inhomogeneous fluids

Richard W. White

Naval Undersea Research and Development Center, Pasadena Laboratory, Pasadena, California 91107 (Received 30 September 1971)

Null geodesics of the metric tensor formed from the coefficients of the second-order terms in the partial differential equation for sound are interpreted as the space-time path histories of sound pulses in a geometric ray trace theory for sound propagation in moving inhomogeneous inviscid fluids.

$$g_{ij} = \begin{pmatrix} (c^2 - v^{\alpha} v^{\alpha}) & v^1 & v^2 & v^3 \\ v^1 & -1 & 0 & 0 \\ v^2 & 0 & -1 & 0 \\ v^3 & 0 & 0 & -1 \end{pmatrix}.$$
 (16)

Along null geodesics $(ds)^2 = 0$ or $g_{ij}dx^i dx^j = 0$, which can be written, in terms of the substitute variables,

$$c^{2} = \left[v^{\alpha} - \frac{dx^{\alpha}}{dx^{0}} \right] \left[v^{\alpha} - \frac{dx^{\alpha}}{dx^{0}} \right], \qquad (17)$$

The Journal of the Acoustical Society of America

1700 Volume 53

Number 6

1973

Geometrical Acoustics

In a flowing fluid, if sound moves a distance $d\vec{x}$ in time dt then

$$||\mathsf{d}\vec{x} - \vec{v} \, \mathsf{d}t|| = c_s \, \mathsf{d}t.$$

Write this as

$$(\mathrm{d}\vec{x} - \vec{v}\,\mathrm{d}t) \cdot (\mathrm{d}\vec{x} - \vec{v}\,\mathrm{d}t) = c_s^2 \mathrm{d}t^2.$$

Now rearrange a little: (Quadratic!)

$$-(c_s^2 - v^2) dt^2 - 2 \vec{v} \cdot d\vec{x} dt + d\vec{x} \cdot d\vec{x} = 0.$$

Courtesy Matt Visser

Acoustic Metric

Notation — four-dimensional coordinates:

$$x^{\mu} = (x^{0}; x^{i}) = (t; \vec{x}).$$

Then you can write this as

$$g_{\mu\nu} \operatorname{d} x^{\mu} \operatorname{d} x^{\nu} = 0.$$

With an effective acoustic metric

$$g_{\mu\nu}(t,\vec{x}) \propto \begin{bmatrix} -(c_s^2 - v^2) & : & -\vec{v} \\ \cdots & \cdots & \cdots \\ -\vec{v} & : & I \end{bmatrix}$$

Sound cones!

Courtesy Matt Visser

Analogy between Fluid Mechanics and Classical Electromagnetism (v≠0 : curved space-time)

The basic idea: consider fluid flow – Unruh (1981, 1995), Visser (1998)

Continuity:

$$\frac{\partial \rho}{\partial t} + \nabla(\rho \mathbf{v}) = 0$$

Euler's equation:

$$\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} = -\frac{\nabla p}{\rho} + \mathbf{F}$$

Assume fluid is irrotational ($\mathbf{v} = \nabla \phi$), inviscid and barotropic ($p = p(\rho)$) and linearize:

 $ho
ightarrow
ho_0 +
ho_1 \qquad \phi
ightarrow \phi_0 + \phi_1 \qquad p
ightarrow p_0 + p_1$

Relativistic wave equation:

$$\frac{1}{\sqrt{-g}}\frac{\partial}{\partial x^{\mu}}\left(\sqrt{-g}\,g^{\mu\nu}\frac{\partial}{\partial x^{\nu}}\phi_{1}\right) = 0$$

with acoustic metric for massless scalar field:

where
$$g_{\mu\nu} = \frac{\rho_0}{c} \begin{pmatrix} -(c^2 - v^2) & -\mathbf{v}^T \\ \hline -\mathbf{v} & \mathbf{I} \end{pmatrix}$$
 $g = [\det(g^{\mu\nu})]^{-1}$

Analogy between Fluid Mechanics and Classical Electromagnetism (v=0 : flat space-time)

Hydrodynamical
quantitiesElectromagnetic
quantitiesSpecific enthalpy p/ρ Scalar potential V
Velocity \mathbf{u} Velocity \mathbf{u} Vector potential \mathbf{A}
Magnetic induction \mathbf{B}
Electric field \mathbf{E}
Hydrodynamic charge q_H

Rousseaux 2002

CURVED SPACE-TIME ACTS AS A RIVER FLOW

"Acoustic Metric"

Schwarzschild Metric

$$d\widetilde{s}^{2} = -\left(1 - \frac{v^{2}}{c_{s}^{2}}\right)c_{s}^{2}dT^{2} + \left(1 - \frac{v^{2}}{c_{s}^{2}}\right)^{-1}dx^{2} d\widetilde{s}^{2} = -\left(1 - \frac{v_{\text{ff}}^{2}}{c^{2}}\right)c^{2}dt_{s}^{2} + \left(1 - \frac{v_{\text{ff}}^{2}}{c^{2}}\right)^{-1}dr^{2}$$

 $\begin{pmatrix} c_s : \text{speed of sound} \\ v: \text{fluid velocity} \\ T = t + \int \frac{v}{c_s^2 - v^2} dx \\ x: \text{axial coordinate} \end{pmatrix} \checkmark \begin{pmatrix} c: \text{speed of light} \\ v_{\text{ff}} = -c(r/r_g)^{1/2} : \text{free-fall velocity} \\ t_s : \text{Schwarzschild time} \\ r: \text{radial coordinate} \end{pmatrix}$

sonic point

horizon

Courtesy Okuzumi & Sakagami

Laval Nozzle = Dumb Hole

 $c_{s}: \text{sound velocity} \rightarrow c_{s}^{\text{eff}} = v \pm c_{s} = c_{s}(M \pm 1)$ In the supersonic region,
sound waves cannot propagate against the flow $\rightarrow \text{``Acoustic Black Hole''}_{Courtesy Okuzumi \& Sakagami}$

Cosmology in the Bathroom

Black Hole

If the fluid is moving faster than waves (sound, gravity, light), then the waves are swept along with the flow, and cannot escape from that region.

Cosmology in the Kitchen

White Hole

HAWKING TEMPERATURE FOR A CONDENSED MATTER ARTIFICIAL BLACK HOLE

$$T_H = \frac{\hbar}{2\pi k_B c_S} a_S = \frac{\hbar}{2\pi k_B c_S} \frac{1}{2} \left| \frac{\partial (c_S^2 - v^2)}{\partial x} \right|_{x=x_H}$$

The artificial "surface gravity" *a*_S is essentially the "spatial acceleration" of the fluid as it crosses the horizon.

$$T_H \simeq 10^{-8} K$$

Hawking temperature is too feeble to be detectable in water !!!

=> Need for quantum fluids

POSITIVE AND NEGATIVE FREQUENCIES MODE MIXING

Courtesy Okuzumi & Sakagami

A Review of Wave-Current Interaction

RIVER OUTLET AND WAVE-BREAKING

Chawla & Kirby, 2002

$$\begin{aligned} & \frac{d^2w}{dz^2} - \left(k^2 + \frac{1}{U-c}\frac{d^2U}{dz^2}\right)w = 0 \quad -h \le z \le 0 \\ & (U-c)^2\frac{dw}{dz} = \left[g + (U-c)\frac{dU}{dz}\right]w \quad z = 0 \\ & w = 0 \qquad z = -h \\ & U = constante \\ & (\omega - kU)^2 = gk tanh(kh) \\ & U = U_0 + \Omega z \\ & (\omega - kU_0)^2 = [gk - \Omega(\omega - kU_0)] tanh(kh) \end{aligned}$$

Classical View of the Fluid Mechanics Community

Chawla & Kirby, 2002

$$(\omega - kU)^2 = gk \tanh kh$$

Capillary effects

 $x=13.0~\mathrm{m}$

 $x=15.0~{\rm m}$

Wave Envelope near the Blocking Line

Chawla & Kirby, 2002

Nice Experiments in Nice

The Full Dispersion Relation and its solutions (4 or 2)

ACRI : GENIMAR Laboratory

Experimental Setup

Plug Flow

Flat Part without Fluctuations

Transmission and Reduction

Wave Blocking and Beating

Experimental White Horizon

Wave Steepening (no blocking line)

Phase Velocity at the Horizon

Experimental Mode Conversion

Ascending Slope for the Waves

The Experimental Phase-Space

Fluid, Optical and Gravitational Horizons : a Catastrophic Story of Caustics

Wave-Current Interaction

Black Hole

Principal Rainbow and its Supernumerary Arcs

Parabolic Mirror

Cylindrical Mirror

kausticos : to burn in ancient greek

Wave-current interaction as a spatial bifurcation

Dispersion relation in deep water :

 $\omega^2 - 2\omega Uk + U^2 k^2 \approx gk$

Reduced velocity :

$$\mu = -4\left(\frac{U-U^*}{U^*}\right), U^* = -\frac{g}{4\omega}$$

Reduced wavelength :

$$\kappa = \frac{k - k^*}{k^*}, k^* = \frac{4\omega^2}{g}$$

Normal form :

$$\mu - \kappa^2 = 0$$

Wave-blocking is a spatial bifurcation of the saddle-node type (fold caustic) due to the resonance of the incoming and the blue-shifted waves

Rousseaux et al. 2009, submitted

Geometrical Optics :

Minimum of deviation

Wave Optics : Self-wrapping of the wave front

A Fold Caustic

Control parameter of the spatial bifurcation :

$$\mu = -4\left(\frac{U-U^*}{U^*}\right), U^* = -\frac{g}{4\omega}$$

Phase velocity in presence of a counter-current U* :

$$c_{\varphi} = -4U^* \left(\frac{1}{2} + \frac{1}{2}\sqrt{1 - \frac{U}{U^*}}\right)$$

Conservation of wave action :

$$\frac{E}{E_{far}} = (\frac{a}{a_{far}})^2 = \frac{16U^{*2}}{(2U + c_{\varphi})c_{\varphi}}$$

Divergence of water waves energy : $E(\mu) \approx \Theta(\mu) \mu^{-1/2}$

Rousseaux et al. 2009, submitted

Experimental setup

1 cm(1:1)

Courtesy Moisy & Rabaud

1. Acquisition:

- Caméra 2048²
- (+time-resolved exp. 1024² @100Hz)
- optimized random dot pattern

2. Digital Image Correlation:

- PIV algorithm by DaVis (LaVision GmbH)
- 16x16 interrogation windows, 50% ovlp
- $\delta \mathbf{r}$ defined on a 256² grid (128²)

3. Surface reconstruction:

Least-square gradient inversion of $\delta \mathbf{r}$ using Matlab*

* int2grad by J. D'Errico, Matlab Central Server

Principle of the method

Step 1: Image acquisition of a refracted random dot pattern

Z

Step 2: Computation of the displacement field by D.I.C.

Step 3: Free surface reconstruction by a least-square gradient inversion

Courtesy Moisy & Rabaud

Water drop impacting a free surface

QuickTime™ et un décompresseur sont requis pour visionner cette image.

HAWKING RADIATION (1974)

Black Holes are NOT black !!!

Spontaneous Emission : Creation and Annihilation
 Planckian Distribution : Black Body !!!

HAWKING/UNRUH TEMPERATURE

$$g_S = \frac{v_L (R_S)^2}{R_S} = \frac{2GM}{R_S^2} = \frac{c^4}{2GM}$$
$$T_H = \frac{\hbar g_S}{2\pi k_B c} \qquad T_U = \frac{\hbar a}{2\pi k_B c}$$

"God not only plays dice, he also sometimes throws the dice where they cannot be seen." Stephen Hawking Quantum Physics + Relativity + Thermodynamics

UNIFORM ACCELERATED MOTION

$$\frac{dv}{dt} = a \left(1 - \frac{v^2}{c^2}\right)^{3/2} \qquad v(t) = \frac{at}{\sqrt{1 + a^2 t^2/c^2}}$$
$$t(\tau) = \frac{c}{a} \sinh\left(\frac{a\tau}{c}\right)$$
$$dt = \frac{d\tau}{\left(1 - \frac{v^2}{c^2}\right)^{\frac{1}{2}}} \qquad v(\tau) = \frac{c}{a} \tanh\left(\frac{a\tau}{c}\right)$$
$$x(\tau) = \frac{c^2}{a} \cosh\left(\frac{a\tau}{c}\right)$$
$$v'(\tau) = \omega(\tau) \frac{1 \pm v/c}{\sqrt{1 - v^2/c^2}} \qquad \omega'(\tau) = \omega(\tau) e^{\pm a\tau/c} \simeq \omega(\tau) (1 \pm a\tau/c)$$

An accelerated observer sees waves with a time-dependent phase

$$\Delta\phi(\tau) = \int^{\tau} \omega'(\tau') d\tau' = \frac{\omega c}{a} e^{\mp a\tau/c}$$

=> Exponential Red-Shift or Blue-Shift

