# a Bose-Einstein condensate with tunable interaction

Giovanni Modugno

#### LENS and Dipartimento di Fisica, Università di Firenze

EHR Workshop, Valenzia, February 2009



## Weakly interacting BEC



Many-body ground state

The interaction energy cannot be neglected:  $E = K + U + E_{int}$ 

$$E_{\rm int} = gn$$
  $g = \frac{4\pi\hbar^2}{m}a$ 

Interaction makes the BEC superfluid and interesting

Interaction can be tuned, turned from attractive to repulsive and in some cases almost cancelled

## **Scattering length**

Ultracold atoms interact via a two-body isotropic contact potential



Burnett et al. Nature 416, 215 (2002)

## **Scattering length**

Ultracold atoms interact via a two-body isotropic contact potential



## **Scattering length**

The scattering length depends on details of the molecular potential (the position of the last bound state)



If the state has an internal structure and a magnetic moment, a can be varied

#### **Feshbach resonances**



Original idea: H. Feshbach, Ann. Phys. (NY) 5, 357 (1958), U. Fano, Phys. Rev. A 124, 1866 (1961). Ultracold gases: Moerdijk et al, Phys. Rev. A 51, 4852 (1995); Inouye et al, Nature 392, 151 (1998). Recent review: C. Chin et al, arXiv:0812.1496

## A Feshbach resonance (potassium-39)



Free expansion:  $E_{\text{int}} \rightarrow K$ 

## Interaction energy from free expansion



## **Attractive interaction**

Collapse for a <

$$< -0.57 \frac{a_{ho}}{N}$$

#### Solitons for intermediate attraction



Donley et al., Nature 412, 295 (2001)



Strecker et al. Nature 417, 150 (2002); Khaykovich et al. Science 296, 1290 (2002).

## Interaction energy from interferometry

Take a series of equally-spaced energy states...



Let them interfere: Bloch oscillations

$$\Psi = \sum_{l} \sqrt{\rho_{l}} e^{i\vartheta_{l}} \varphi_{l} \qquad \qquad \vartheta_{l}(t) = \frac{Fl\lambda t}{2\hbar}$$

#### Interaction energy from interferometry



#### Interaction energy from interferometry



Scattering length  $(a_0)$ 

## Magnetic dipolar interaction

Anisotropic and long-range

$$U_d = \frac{\mu_0 \mu^2}{4\pi r^3} (1 - 3\cos^2 \vartheta)$$





Repulsive dipolar interaction

$$\mu = 0.95 \ \mu_B \qquad r = 0.2 \ \mu m$$
  
 $U_d \sim 0.5 a_0 \ \sim 10 \ Hz$ 

M. Fattori, et al. Phys. Rev. Lett. 100, 080405; 101, 190405 (2008).

## Magnetic dipolar interaction: experiment



#### **Three-body losses**

Three atoms can recombine into a molecule+atom: three-body loss



Large *a* enhance the recombination at short internuclear distances

$$K_3 \propto \frac{\hbar a^4}{m}$$

The useful range of *a* values is limited

The picture can be much more complex, due to Efimov trimer states



 $n \sim 10^{13} \text{ cm}^{-3} \implies \text{lifetime} < 100 \text{ ms} \text{ for } K_3 < 3 \times 10^{-26}$ 

#### Feshbach resonances and Hawking radiation

Can one employ Feshbach resonances to make an interaction step in the prescribed way?



### Feshbach resonances and Hawking radiation



The magnetic coils are typically macroscopic



Easier for atom chips, but still hard

Laser beams can be focused down to a few  $\mu$ m, and scanned.



Fedichev et al. Phys. Rev. Lett. 77, 2913 (1996).



Unfortunately, there is spontaneous emission:  $a \rightarrow a - ib$ 



Theis et al, Phys. Rev. Lett. 93, 123001 (2005)



Alkaline-earth atoms are more promising, because of the long lifetime of selected excited states and good Franck-Condon factors

Yb: 30 nm change of *a* Enomoto et al. Phys. Rev. Lett. 101, 203201 (2008)



Theis et al, Phys. Rev. Lett. 93, 123001 (2005)