

problems of horizon in effective gravity

- * sources of effective gravity in condensed matter
- * black and white hole horizons
- * Hawking radiation as quantum tunneling
- * analog of Zeldovich-Starobinsky radiation from rotating BH
- * vacuum instability in the presence of horizons & ergoregions
- * from condensed matter to quantum gravity: quantum vacuum as self-sustained Lorentz invariant medium
- * possible instability of astronomical black holes

sources of effective gravity in condensed matter

* Fermi point gravity

* magnon BEC gravity (application of Cornell idea to magnon BEC)

* optical space-times

...

moving dielectric, optical solitons, slow light ...

* elasticity theory of dislocations and disclinations 4D *world crystal*

Spontaneous phase-coherent precession

Ginzburg-Landau energy for magnon BEC

Sonic metric: effective metric in Landau two-fluid hydrodynamics

Superfluid 4He and BEC		Universe
acoustic gravity met	Theories of gravitation of the second	wity general relativity
geometry of effective space tin for quasiparticles (phonons) geodesics for phonons Landau two-fluid equations	he $g_{\mu\nu}$ $ds^2 = g_{\mu\nu}dx^{\mu}dx^{\nu} =$	geometry of space time for matter = 0 geodesics for photons Einstein equations of GR
$\dot{\mathbf{p}} + \nabla \cdot (\mathbf{p} \mathbf{v}_{s} + \mathbf{P}^{Matter}) = 0$ $\dot{\mathbf{v}}_{s} + \nabla (\mathbf{\mu} + \mathbf{v}_{s}^{2}/2) = 0$	dynamic equations for metric field $g_{\mu\nu}$	$\frac{1}{8\pi G} \left(R_{\mu\nu} - g_{\mu\nu} R/2 \right) = T_{\mu\nu}^{Matter}$
equationsequationfor superfluidfor normalcomponentcomponent	$T^{\mu\nu}_{;\nu Matter} = 0$	equation for matter 1/2 of GR

message from: cond-mat

to: quantum gravity

Schwarzschild-Painleve-Gulstrand acoustics

Superfluid 4He & BEC

Gravity

Sonic Black Hole

Landau critical velocity = black hole horizon

gravity emerging near Fermi point

Atiyah-Bott-Shapiro construction:

linear expansion of Hamiltonian near the nodes in terms of Dirac γ -matrices

crossover from hydrodynamics to Einstein general relativity they represent two different limits of hydrodynamic type equations

equations for $g^{\mu\nu}$ depend on hierarchy of ultraviolet cut-off's: Planck energy scale E_{Planck} vs Lorentz violating scale E_{Lorentz}

 $E_{\text{Planck}} >> E_{\text{Lorentz}}$ emergent hydrodynamics

 $E_{\text{Planck}} << E_{\text{Lorentz}}$ emergent general relativity

³He-A with Fermi point

Universe

 $E_{\text{Lorentz}} \ll E_{\text{Planck}}$ $E_{\text{Lorentz}} \sim 10^{-3} E_{\text{Planck}}$

 $E_{\text{Lorentz}} >> E_{\text{Planck}}$ $E_{\text{Lorentz}} > 10^9 E_{\text{Planck}}$

Fermionic horizons: horizon in flowing 3He film & in moving soliton

Quasiparticle energy spectrum in moving texture (Doppler shift)

 $(E - vp_z)^2 = c_x^2 (p_x - p_F)^2 + c_z^2 (z)p_z^2 + c_y^2 p_y^2$

 $ds^{2} = -dt^{2} \left(1 - v^{2}/c_{z}^{2}(z)\right) - 2(v/c_{z}^{2}(z))dzdt + c_{x}^{-2}dx^{2} + c_{y}^{-2}dy^{2} + c_{z}^{-2}(z)dz^{2}$

Soliton: speed of light $c_z(z)$ changes sign across the soliton

Hawking temperature $T_H = (\hbar/2\pi) (dc_z/dz)_{hor}$

Jacobson-GV, PRD 58, 064021 (1998)

Horizon in moving soliton

speed of light $c_z(z)$ changes sign across the soliton

effective metric $ds^{2} = -dt^{2} (1 - v^{2}/c_{z}^{2}(z)) - 2(v/c_{z}^{2}(z))dzdt + c_{x}^{-2}dx^{2} + c_{y}^{-2}dy^{2} + c_{z}^{-2}(z)dz^{2}$

horizons at $c_z(z_h) = \pm v$ $g_{00}=0$ $g^{zz}=0$ between horizons particles move in one direction z=0 - curvature singularity : $c_z(z)=0$

Hawking radiation in semiclassical description: quantum tunneling between classical trajectories

GV: JETP Lett. *69*,705 (1999) Parikh-Wilczek: PRL *85*,5042 (2000)

problem of Hawking radiation in de Sitter universe $ds^2 = -dt^2 c^2 + (d\mathbf{r} - \mathbf{v}dt)^2$ $ds^2 = -dt^2 (c^2 - H^2 r^2) + 2 Hr dr dt + dr^2 + r^2 d\Omega^2$ $\mathbf{v}(\mathbf{r}) = H\mathbf{r}$ de Sitter expansion

* tunneling approach

outside de Sitter horizon r > c/Hpr (r) = E / (-c+v(r)) > 0 E = - clprl + prv(r) > 0 E comoving = - clprl < 0 $S(E) = 2 \text{ Im} \int dr \ p_r (r) = 2E \text{ Im} \int dr/(-c+Hr) = 2\pi E/H$ $W = we -S(E) = we -E/T_H$ $T_H = H/2\pi$ $T_H = H/2\pi$

* Does Hawking radiation really occur in de Sitter universe ? BH has preferred reference frame, de Sitter Universe does not

* cond-mat simulation $ds^2 = -dt^2 + d\mathbf{r}^2/c^2$ $c(t)=e^{-Ht}$ Schutzhold: PRL **95** (2005) 135703; GV: J.Low.Temp.Phys. **113** (1998) 667 activation in de Sitter space-time

$$ds^{2} = -dt^{2}c^{2} + (d\mathbf{r} - \mathbf{v}dt)^{2} \qquad ds^{2} = -dt^{2}(c^{2} - H^{2}r^{2}) + 2Hr dr dt + dr^{2} + r^{2}d\Omega^{2}$$
$$\mathbf{v}(\mathbf{r}) = H\mathbf{r} \qquad \text{de Sitter expansion}$$

* ionization rate of an atom from electron at atomic level $-\varepsilon_0$

$$S(-\varepsilon_0) = 2 \operatorname{Im} \int_0^{r_0} dr \, p_r \, (r) = \pi \, \varepsilon_0 \, / H$$
$$W = w e^{-S(-\varepsilon_0)} = w e^{-\varepsilon_0} / T$$

effective activation temperature

$$T = H/\pi$$

is twice the Hawking temperature

$$T_{\rm H} = H/2\pi$$

suggestion for Hawking type radiation in de Sitter space-time GV: 0803.3367 $ds^2 = -dt^2 c^2 + (d\mathbf{r} - \mathbf{v}dt)^2$ $ds^2 = -dt^2 (c^2 - H^2 r^2) + 2 Hr dr dt + dr^2 + r^2 d\Omega^2$ $\mathbf{v}(\mathbf{r}) = H\mathbf{r}$ de Sitter expansion

pure de Sitter vacuum does not radiate

but observer views thermal bath with twice the Hawking temperature because he/she violates de Sitter symmetry

effective activation temperature

$$T = H/\pi$$

is twice the Hawking temperature

$$T_{\rm H} = H/2\pi$$

Relativistic ripplons living on brane between two shallow superfluids

black hole for ripplons at AB-brane

$$ds^{2} = -dt^{2} \frac{c^{2} - W^{2} - U^{2}}{c^{2} - U^{2}} + dr^{2} \frac{1}{c^{2} - W^{2} - U^{2}} + r^{2} d\phi^{2}$$

Ergoregion instability at the AB-brane in Helsinki experiments

interface between static B-phase and A phase circulating with solid-body velocity $v=\Omega r$ (velocity is shown by arrows)

experimental Landau criterion of ripplon ergregion instability

experimental set-up

critical value $v_{sB}(T)$ depends on T via $\rho_{sB}(T)$, F(T), $\sigma(T)$

experimental Landau criterion of ripplon ergregion instability

lines - theoretical values without fitting

$$\rho_{sB}(v_{sB} - v_n)^2 + \rho_{sA}(v_{sA} - v_n)^2 = 2\sqrt{F\sigma}$$

Proposal for black hole for ripplons at AB-brane (azimuthal flow)

Relativistic ripplons in shallow water

Effective metric for ripplons $ds^2 = g_{\mu\nu}dx^{\mu}dx^{\nu}$

$$ds^{2} = -dt^{2} (1 - v^{2}/c^{2}) + dr^{2} \frac{1}{c^{2} - v^{2}} + r^{2} d\phi^{2}$$
 Speed of "light"
$$c^{2} = gh$$

Courtesy Piotr Pieranski

Observation of instability in the ergoregion in superfluid ⁴He

in the ergoregion attenuation of ripplon transforms to amplification standing waves are excited in the ergoregion with Re ω (k_c)=0

ergoregion instability inside the "white hole" in shallow water

Courtesy Piotr Pieranski

Zeldovich-Starobinsky effect, rotational Unruh effect & ergorgion instability

Radiation by object rotating in quantum vacuum & by circulating superflow

Analog to Kerr Black Hole

Hawking radiation looks as thermal with $T_{\rm H} \sim hg/c$ where g is gravity

metric in rotating frame

$$ds^{2} = -dt^{2}c^{2} + (d\mathbf{r} - \mathbf{v}dt)^{2}$$
$$\mathbf{v}(\mathbf{r}) = \mathbf{\Omega} \mathbf{x} \mathbf{r}$$

Unruh effect: radiation looks as thermal with $T_{\rm U} \sim ha/c$ where *a* is acceleration of a body

H. Takeuchi, M. Tsubota and GV Zel'dovich-Starobinsky Effect in Atomic Bose-Einstein Condensates: Analogy to Kerr Black Hole J. Low Temp. Phys. 150, 624 (2008)

$$ds^{2} = -dt^{2} \left(c^{2} - \Omega^{2} \rho^{2}\right) + 2\Omega \rho^{2} d\phi dt + \rho^{2} d\phi^{2} + d\rho^{2} + dz^{2}$$

tunneling approach

tunneling exponent

$$ds^{2} = -dt^{2} \left(c^{2} - \Omega^{2} \rho^{2}\right) + 2\Omega \rho^{2} d\phi dt + \rho^{2} d\phi^{2} + d\rho^{2} + dz^{2}$$

ergosurface $\rho = c/\Omega$

body surface $R < c/\Omega$

tunneling from zero energy state at the body to the zero energy state at the ergosurface

$$S(E=0) = 2 \operatorname{Im} \int d\rho \, p_{\rho} (\rho) = 2 \operatorname{Im} \int_{R}^{c/\Omega} d\rho (L^{2}/\rho^{2} - L^{2}\Omega^{2}/c^{2})^{1/2} = 2L \ln (c/\Omega R)$$

$$W = we^{-S(E=0)} = w (\Omega R/c)^{2L} = w (\omega R/cL)^{2L}$$

 $\omega = \Omega L$ Zeldovich resonance condition

Calogeracos-GV: JETP Lett. 69 (1999) 281

Vacuum resistance to formation of horizons

spherical acoustic black or white holes are not solutions of hydrodynamic equations

equation along the stream line

horizon cannot be achieved because continuity equation

$$\rho v = Const / r^2$$

requires

everywhere

Hydrodynamic instability is absent if speed of "light" c < s speed of sound

in Fermi superfluids c << s

possible horizons

Painleve-Gulstrand metric

$$ds^{2} = -dt^{2}(c^{2}-v^{2}) + 2v dr dt + dr^{2} + r^{2}d\Omega^{2}$$

Acoustic horizon in Laval nozzle

horizon can be exactly in the middle

Horizons for fermionic quasiparticles

speed of "light" < speed of sound
no hydrodynamic instability</pre>

conclusion

* cond-mat sources: sonic gravity, ripplon gravity, fermionic gravity

* messages from cond-mat to GR:

black hole is radiating, de Sitter is not GV: "On dS radiation via quantum tunneling" 0803.3367 *but detector embedded in de Sitter sees radiation*

vacuum resists to formation of horizon

vacuum may be unstable behind the horizon

* we need relativistic theory of quantum vacuum

black holes in dynamics of quantum vacuum

F.R. Klinkhamer and GV

"Self-tuning vacuum variable and cosmological constant", Phys. Rev. D **77**, 085015 (2008) "Dynamic vacuum variable and equilibrium approach in cosmology", Phys. Rev. D; arXiv:0806.2805 "f(R) cosmology from q-theory", Pis'ma ZhETF **88**, 339 (2008)

* quantum vacuum as self-sustained Lorentz invariant medium

* conserved vacuum charge

- * thermodynamics of relativistic quantum vacuum
- * dynamics of relativistic quantum vacuum

* application to cosmology:

relaxation of cosmological constant from Planck scale to present value

* future application to black hole physics of BH singularity

action

$$S = \int d^4 x \, (-g)^{1/2} \left[\epsilon (q) + K(q)R \right] + S_{\text{matter}}$$

gravitational coupling K(q) is determined by vacuum and thus depends on vacuum variable q

dynamic equations

