THE SETTINGS	CORLEY MODE	RESULTS	CONCLUSIONS	NUMERICAL PROCEDURE
		00		
		0000		
		00000000		
		000000		
		000		

Spectral Properties of Hawking Radiation in BECs (work in progress)

J. Macher¹ with R. Parentani¹

¹LPT-Orsay, CNRS-Université Paris XI

Workshop: *Toward observation of HR in BECs*, Valencia 2009

(ロ) (同) (三) (三) (三) (三) (○) (○)

THE SETTINGS	Corley mode	RESULTS	Conclusions	NUMERICAL PROCEDURE
		00 0000 00000000 000000 00000		

Set up (Carusotto et al., 2008)

1D BEC, uniformly flowing with $v_0 = -c_0$, constant $V + g\rho \rightarrow$ constant density ρ_0 , with varying sound speed c(x) (*i.e.* varying coupling constant g(x))

$$\frac{c}{c_0}(x;\kappa,n,D) = 1 + D\operatorname{sign}(x) \tanh^{1/n} \left[\left(\frac{\kappa |x|}{c_0 D} \right)^n \right]$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

THE SETTINGS

CONCLUSIONS

NUMERICAL PROCEDURE

Results 00 0000 00000000 0000000 000000 000

Bogolubov-de Gennes equations.

 Production of quasi-particles governed by the Bogolubov-de Gennes equations. At fixed ω̃ = ω/κ, in coordinate x̃ = κx/c₀:

$$\begin{aligned} &(\tilde{\omega} - i\partial_{\tilde{X}})\phi_{\tilde{\omega}} = \left(-\frac{1}{\lambda}\partial_{\tilde{X}}^{2} + \frac{\lambda\tilde{c}^{2}}{2}\right)\phi_{\tilde{\omega}} + \frac{\lambda\tilde{c}^{2}}{2}\varphi_{\tilde{\omega}} \\ &(\tilde{\omega} - i\partial_{\tilde{X}})\varphi_{\tilde{\omega}} = \left(\frac{1}{\lambda}\partial_{\tilde{X}}^{2} - \frac{\lambda\tilde{c}^{2}}{2}\right)\varphi_{\tilde{\omega}} - \frac{\lambda\tilde{c}^{2}}{2}\phi_{\tilde{\omega}} \end{aligned}$$

- Adimensional parameters: κλ = Λ = 2mc₀²/ħ, related to the healing length: Λ = c₀/ξ.
- κ does not appear explicitely → results true for all κ, need only rescaling to get actual values for given κ.

Asymptotic solutions

• In the asymptotic regions $x \to \pm \infty$, normalized solutions

$$\begin{split} \phi_{\omega} &= \frac{1}{\sqrt{|d\omega/dk|}\sqrt{1-D_{k,\omega}^2}}e^{ikx} \\ \varphi_{\omega} &= \frac{D_{k,\omega}}{\sqrt{|d\omega/dk|}\sqrt{1-D_{k,\omega}^2}}e^{ikx} \\ D_{k,\omega} &= 2(\omega+k)/\lambda c^2 - 2k^2/\lambda^2 c^2 - 1 \end{split}$$

- k solution of the dispersion relation ($c_{\pm} = 1 \pm D$): $(\omega + k)^2 = k^2 c_{\pm}^2 + k^4 / \lambda^2$.
- In supersonic region, for ω < ω_{max}, 4 oscill. solutions; in subsonic region, 2 oscill.+ growing + decaying.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

・ロト ・回ト ・ヨト ・ヨ

	· • •					

RESULTS 00 0000 00000000 000000 000000 CONCLUSIONS

NUMERICAL PROCEDURE

Corley mode (Corley & Jacobson, 1996, and subsequent papers by Corley)

◆ロ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Corley mode.

- Link between β_{ω}^{C} , β_{ω} , and/or $\beta_{-\omega}$?
- A bit of algebra gives

$$\frac{|\beta_{\omega}^{\boldsymbol{C}}|^2 - |\beta_{-\omega}|^2}{|\beta_{\omega}^{\boldsymbol{C}}|^2} = O\left[\frac{|\boldsymbol{B}_{\omega}^{\boldsymbol{C}}|^2}{|\beta_{\omega}^{\boldsymbol{C}}|^2}\right]$$

(with the reasonable hypothesis that $|\tilde{B}_{\omega}|$ is of the same order of magnitude as $|B_{\omega}^{C}|$).

• \rightarrow *sufficient* criterium to have $|\beta_{\omega}^{C}|^{2} \simeq |\beta_{\omega}|^{2} \simeq |\beta_{-\omega}|^{2}$:

Corley mode.

- Link between β_{ω}^{C} , β_{ω} , and/or $\beta_{-\omega}$?
- A bit of algebra gives

$$\frac{|\beta_{\omega}^{\boldsymbol{C}}|^2 - |\beta_{-\omega}|^2}{|\beta_{\omega}^{\boldsymbol{C}}|^2} = O\left[\frac{|\boldsymbol{B}_{\omega}^{\boldsymbol{C}}|^2}{|\beta_{\omega}^{\boldsymbol{C}}|^2}\right]$$

(with the reasonable hypothesis that $|\tilde{B}_{\omega}|$ is of the same order of magnitude as $|B_{\omega}^{C}|$).

• \rightarrow *sufficient* criterium to have $|\beta_{\omega}^{C}|^{2} \simeq |\beta_{\omega}|^{2} \simeq |\beta_{-\omega}|^{2}$:

$$\frac{|B_{\omega}^{C}|^{2}}{|\beta_{\omega}^{C}|^{2}} \ll 1$$

(日) (日) (日) (日) (日) (日) (日)

THE SETTINGS	CORLEY MODE	RESULTS	CONCLUSIONS	NUMERICAL PROCEDURE
		•0 0000 0000000 000000 000		

Outline

The settings

Corley mode

Results Typical values of the parameters

Constraints from $|B_{\omega}^{C}/\beta_{\omega}^{C}|^{2} \ll 1$ General properties of the spectra Parameter governing the influence of dispersion Scaling of the corrections

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Numerical procedure

• For ⁸⁷*Rb*, typical $c_0 \simeq 5 \text{mm} \cdot \text{s}^{-1}$, $m \simeq 1.5 \cdot 10^{-25} \text{kg}$. Gives

$$\Lambda=\frac{2mc_0^2}{\hbar}\simeq 10^4 {\rm s}^{-1}$$

- Parameters considered in Carusotto *et al.* 2008 give D = 0.3 and $\kappa \simeq 10^4 s^{-1}$.
- $\lambda = \frac{\Lambda}{\kappa} \simeq 1!$

٠

• In the following, when the goal is to predict experimental results, $\lambda = 1, 10, 100, D \simeq 0.1$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

• For ⁸⁷*Rb*, typical $c_0 \simeq 5 \text{mm} \cdot \text{s}^{-1}$, $m \simeq 1.5 \cdot 10^{-25} \text{kg}$. Gives

$$\Lambda=\frac{2\text{m}c_0^2}{\hbar}\simeq 10^4 {\rm s}^{-1}$$

- Parameters considered in Carusotto *et al.* 2008 give D = 0.3 and $\kappa \simeq 10^4 s^{-1}$.
- $\lambda = \frac{\Lambda}{\kappa} \simeq 1!$

٠

• In the following, when the goal is to predict experimental results, $\lambda = 1, 10, 100, D \simeq 0.1$.

• For ⁸⁷*Rb*, typical $c_0 \simeq 5 \text{mm} \cdot \text{s}^{-1}$, $m \simeq 1.5 \cdot 10^{-25} \text{kg}$. Gives

$$\Lambda=\frac{2\text{m}c_0^2}{\hbar}\simeq 10^4 {\rm s}^{-1}$$

- Parameters considered in Carusotto *et al.* 2008 give D = 0.3 and $\kappa \simeq 10^4 s^{-1}$.
- $\lambda = \frac{\Lambda}{\kappa} \simeq 1!$

٠

• In the following, when the goal is to predict experimental results, $\lambda = 1, 10, 100, D \simeq 0.1$.

• For ${}^{87}Rb$, typical $c_0 \simeq 5 \text{mm} \cdot \text{s}^{-1}$, $m \simeq 1.5 \cdot 10^{-25} \text{kg}$. Gives

$$\Lambda=\frac{2\text{m}c_0^2}{\hbar}\simeq 10^4 {\rm s}^{-1}$$

- Parameters considered in Carusotto *et al.* 2008 give D = 0.3 and $\kappa \simeq 10^4 s^{-1}$.
- $\lambda = \frac{\Lambda}{\kappa} \simeq 1!$

٠

• In the following, when the goal is to predict experimental results, $\lambda = 1, 10, 100, D \simeq 0.1$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

THE SETTINGS	CORLEY MODE	RESULTS	CONCLUSIONS	NUMERICAL PROCEDUI
		00		
		00000000		
		000000		
		000		

Outline

The settings

Corley mode

Results

Typical values of the parameters Constraints from $|B_{\omega}^{C}/\beta_{\omega}^{C}|^{2} \ll 1$

General properties of the spectra Parameter governing the influence of dispersion Scaling of the corrections

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Numerical procedure

 CONCLUSIONS

NUMERICAL PROCEDURE

RESULTS

00 0000 00000000 0000000

RESULTS

00 0000 00000000 0000000

THE SETTINGS	CORLEY MODE	RESULTS	CONCLUSIONS	NUMERICAL PROCEDURE
		00		
		0000		
		000000		
		000		

Outline

The settings

Corley mode

Results

Typical values of the parameters Constraints from $|B_{\omega}^C/\beta_{\omega}^C|^2 \ll 1$

General properties of the spectra

Parameter governing the influence of dispersion Scaling of the corrections

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Numerical procedure

The settings	Corley mode	RESULTS	Conclusions	NUMERICAL PROCEDURE
		00		
		0000000		
		000000		

In the following, f_{ω} designates the energy flux per frequency interval $d\omega$:

$$f_{\omega}=rac{ ilde{\omega}}{2\pi}|eta_{\omega}^{m{C}}|^2$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

RESULTS

CONCLUSIONS

NUMERICAL PROCEDURE

CORLEY MODE

RESULTS

CONCLUSIONS

NUMERICAL PROCEDURE

00 0000 00000000 00000000

RESULTS

00 0000 0000000 0000000 0000000

THE SETTINGS	CORLEY MODE	RESULTS	CONCLUSIONS	NUMERICAL PROCEDURE
		00		
		00000000		
		00000		
		000		

Outline

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

The settings

Corley mode

Results

Typical values of the parameters Constraints from $|B_{\omega}^{C}/\beta_{\omega}^{C}|^{2} \ll 1$ General properties of the spectra Parameter governing the influence of dispersion Scaling of the corrections

Numerical procedure

The settings	CORLEY MODE	RESULTS	CONCLUSIONS	NUMERICAL PROCEDU
		00 0000 0000000 000000		

THE SETTINGS	CORLEY MODE	RESULTS	Conclusions	NUMERICAL PROCEDURE
		00 0000 0000000 000000		
		000		

The settings	CORLEY MODE	RESULTS	CONCLUSIONS	NUMERICAL PROCEDURE
		00		
		00000000		
		000000		

THE SETTINGS	CORLEY MODE	RESULTS	CONCLUSIONS	NUMERICAL PROCEDURE
		00 0000 0000000		
		000000		

THE SETTINGS	CORLEY MODE	RESULTS	CONCLUSIONS	NUMERICAL PROCEDURE
		00 0000 00000000		
		000000		

THE SETTINGS	CORLEY MODE	RESULTS	CONCLUSIONS	NUMERICAL PROCEDURE
		00		
		0000000		
		000		

Outline

The settings

Corley mode

Results

Typical values of the parameters Constraints from $|B_{\omega}^{C}/\beta_{\omega}^{C}|^{2} \ll 1$ General properties of the spectra Parameter governing the influence of dispersion Scaling of the corrections

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Numerical procedure

THE SETTINGS	CORLEY MODE	RESULTS	CONCLUSIONS	NUMERICAL PROCEDURE
		00		
		00000000		
		000000		

THE SETTINGS	CORLEY MODE	RESULTS	CONCLUSIONS	NUMERICAL PROCEDURE
		00		
		00000000		
		000000		

THE SETTINGS	CORLEY MODE	RESULTS	CONCLUSIONS	NUMERICAL PROCEDURE
		00 0000 00000000 000000		

Conclusions

- In BEC experiments the spectra could be non-standard $(T \neq T_H)$, unless one works with very small κ .
- Closer to dispersion-free spectrum if *D* close to 1 (large variation of *c*(*x*)), but LARGE non-adiabatic effects and expected grey-body factors+strong *v* particle creation.
- ω_{max}/κ , NOT Λ/κ governs the influence of dispersion.
- The corrections to the dispersion-free case, scale as λ^{-2} .
- Limitations of our approach:
 - · Corley mode is not what we would have liked...
 - No quantum backaction.

Numerical procedure

- In subsonic region: φ^C_{-ω} = u₀e^{ik^C_{-ω}x}, φ^C_{-ω} fixed by the BdG eqs.
- Integrate deep into supersonic region $\rightarrow \phi^{C}_{-\omega} = \sum_{i} c^{i} e^{ik_{\omega}^{i}x}$,

$$c_{-\omega}^{\nu,out} = N \frac{\gamma_{-\omega}^{C}}{\sqrt{|d(-\omega)/dk_{-\omega}^{\nu,out}|}\sqrt{1 - D_{k_{-\omega}^{\nu,out}}^{2}}}$$
$$c_{\omega}^{\nu,out} = N \frac{B_{\omega}^{C} D_{k_{\omega}^{\nu,out}}}{\sqrt{|d\omega/dk_{\omega}^{\nu,out}|}\sqrt{1 - D_{k_{\omega}^{\nu,out}}^{2}}}$$

• normalized mode: $|\gamma^{C}_{-\omega}|^2 - |B^{C}_{\omega}|^2 = 1$, so:

$$N^{2} = |c_{-\omega}^{u,out}|^{2} \left| \frac{d(-\omega)}{dk_{-\omega}^{u,out}} \right| (1 - D_{k_{-\omega}^{u,out}}^{2}) - |c_{\omega}^{v,out}|^{2} \left| \frac{d\omega}{dk_{\omega}^{v,out}} \right| \frac{1 - D_{k_{\omega}^{v,out}}^{2}}{D_{k_{\omega}^{v,out}}^{2}}$$

Numerical procedure

- In subsonic region: φ^C_{-ω} = u₀e^{ik^C_{-ω}x}, φ^C_{-ω} fixed by the BdG eqs.
- Integrate deep into supersonic region $\rightarrow \phi^{C}_{-\omega} = \sum_{i} c^{i} e^{ik_{\omega}^{i}x}$,

$$c_{-\omega}^{u,out} = N \frac{\gamma_{-\omega}^{C}}{\sqrt{|d(-\omega)/dk_{-\omega}^{u,out}|}\sqrt{1 - D_{k_{-\omega}^{u,out}}^{2}}}$$
$$c_{\omega}^{v,out} = N \frac{B_{\omega}^{C} D_{k_{\omega}^{v,out}}}{\sqrt{|d\omega/dk_{\omega}^{v,out}|}\sqrt{1 - D_{k_{\omega}^{v,out}}^{2}}}$$

• normalized mode: $|\gamma_{-\omega}^C|^2 - |B_{\omega}^C|^2 = 1$, so:

$$N^{2} = |c_{-\omega}^{u,out}|^{2} \left| \frac{d(-\omega)}{dk_{-\omega}^{u,out}} \right| (1 - D_{k_{-\omega}^{u,out}}^{2}) - |c_{\omega}^{v,out}|^{2} \left| \frac{d\omega}{dk_{\omega}^{v,out}} \right| \frac{1 - D_{k_{\omega}^{v,out}}^{2}}{D_{k_{\omega}^{v,out}}^{2}}$$

Numerical procedure

- In subsonic region: φ^C_{-ω} = u₀e^{ik^C_{-ω}x}, φ^C_{-ω} fixed by the BdG eqs.
- Integrate deep into supersonic region $\rightarrow \phi^{C}_{-\omega} = \sum_{i} c^{i} e^{ik_{\omega}^{i}x}$,

$$c_{-\omega}^{u,out} = N \frac{\gamma_{-\omega}^{C}}{\sqrt{|d(-\omega)/dk_{-\omega}^{u,out}|}} \sqrt{1 - D_{k_{-\omega}^{u,out}}^{2}}$$
$$c_{\omega}^{v,out} = N \frac{B_{\omega}^{C} D_{k_{\omega}^{v,out}}}{\sqrt{|d\omega/dk_{\omega}^{v,out}|} \sqrt{1 - D_{k_{\omega}^{v,out}}^{2}}}$$

- normalized mode: $|\gamma^{C}_{-\omega}|^2 - |B^{C}_{\omega}|^2 = 1$, so:

$$N^{2} = |c_{-\omega}^{u,out}|^{2} \left| \frac{d(-\omega)}{dk_{-\omega}^{u,out}} \right| (1 - D_{k_{-\omega}^{u,out}}^{2}) - |c_{\omega}^{v,out}|^{2} \left| \frac{d\omega}{dk_{\omega}^{v,out}} \right| \frac{1 - D_{k_{\omega}^{v,out}}^{2}}{D_{k_{\omega}^{v,out}}^{2}}$$

THE SETTINGS	CORLEY MODE	RESULTS	CONCLUSIONS	NUMERICAL PROCEDURE
		00		
		0000		
		00000000		
		000000		
		000		

• Once *N* is known, $|B_{\omega}^{C}|^{2}$ and $|\beta_{-\omega}^{C}|^{2}$ given by:

$$|\beta_{-\omega}^{C}|^{2} = \frac{1}{N^{2}}|c_{\omega}^{u,in}|^{2} \left|\frac{d\omega}{dk_{\omega}^{u,in}}\right|\frac{1-D_{k_{\omega}^{u,in}}^{2}}{D_{k_{\omega}^{u,in}}^{2}}$$
$$|B_{\omega}^{C}|^{2} = \frac{1}{N^{2}}|c_{\omega}^{v,out}|^{2} \left|\frac{d\omega}{dk_{\omega}^{v,out}}\right|\frac{1-D_{k_{\omega}^{v,out}}^{2}}{D_{k_{\omega}^{v,out}}^{2}}$$