Sensitivity of Hawking radiation to superluminal dispersion relations

luis j. garay

¹Universidad Complutense de Madrid ²Instituto de Estructura de la Materia, CSIC

C.Barceló, *ljg*, G.Jannes, PRD 79 (2009)

Valencia, 3 February 2009

Outline

- Introduction
 - Modified dispersion relations
 - Superluminal dispersion relations
 - Summary of results
- Standard Hawking radiation
 - Geometry collapse
 - Wave equation inner product
 - Bogoliubov coefficient β
- Hawking radiation with superluminal dispersion
 - Modified wave equation
 - Scalar product
 - Bogoliubov coefficient β
 - Modified Hawking spectrum
- Results
 - Dependence on ω_c'
 - Frequency dependence of $\kappa_{\omega'}$
 - Dependence on time
- Conclusions
 - Summary
 - Remarks

Modified dispersion relations

- Effects of (Lorentz breaking) superluminal dispersion relations on Hawking radiation produced by collapsing configurations.
- Hawking's original derivation rested on the assumption that the low-energy laws of physics, and in particular Lorentz invariance, are preserved up to arbitrarily large scales.
- **Robustness:** Analyze effective field theories with high-energy modifications of the dispersion relations.
 - ✓ Subluminal modifications (under reasonable assumptions)
 - dampen the influence of ultra-high frequencies;
 - do not explore arbitrarily large frequencies.
 - ? Superluminal modifications magnify the influence of ultra-high energies.

Superluminal dispersion relations

- Superluminal is qualitatively different to subluminal:
 - The horizon lies ever closer to the singularity for increasing frequencies. This causes the interior of the (zero-frequency) horizon to be exposed to the outside world.
 - Boundary conditions at the horizon \Rightarrow
 - \Rightarrow boundary conditions at the singularity!
 - Moreover, if quantum effects remove the general relativistic singularity, a critical frequency might appear above which no horizon would be experienced at all.

Superluminal dispersion relations

- Superluminal is qualitatively different to subluminal:
 - The horizon lies ever closer to the singularity for increasing frequencies. This causes the interior of the (zero-frequency) horizon to be exposed to the outside world.
 - Boundary conditions at the horizon \Rightarrow
 - \Rightarrow boundary conditions at the singularity!
 - Moreover, if quantum effects remove the general relativistic singularity, a critical frequency might appear above which no horizon would be experienced at all.
- Our approach:
 - Hawking derivation through the relation between the asymptotic past and future in a collapsing configuration.
 - No extra assumptions on the asymptotic regions (only standard ones: Minkowski geometry in the past and flatness at spatial infinity also in the future).

Summary of results

Differences in the late-time radiation (superluminal vs. relativistic)

- At any instant, above a critical frequency, there is no horizon. This induces a cutoff in the modes contributing to radiation.
 - Intensity is lower even if the critical frequency is well above the Planck scale.
 - Radiation will extinguish as time advances.

Summary of results

Differences in the late-time radiation (superluminal vs. relativistic)

- At any instant, above a critical frequency, there is no horizon. This induces a cutoff in the modes contributing to radiation.
 - Intensity is lower even if the critical frequency is well above the Planck scale.
 - Radiation will extinguish as time advances.
- Surface gravity is frequency-dependent and the radiation depends on the physics inside the black hole. The radiation spectrum undergoes a strong qualitative modification:
 - High-frequency radiation is not negligible compared to the low-frequency thermal part, but can even become dominant.
 - This effect becomes more important with increasing critical frequency.

Standard Hawking radiation *Geometry — collapse*

• Painlevé-Gullstrand 1 + 1 spacetime

 $ds^{2} = -[c^{2} - v^{2}(t, x)]dt^{2} - 2v(t, x)dtdx + dx^{2},$

- regular at the horizon
- c = speed of light, v = velocity of free-fall
- acoustic models: c = speed of sound, v = flow velocity

Standard Hawking radiation *Geometry* — *collapse*

• Painlevé-Gullstrand 1 + 1 spacetime

 $ds^{2} = -[c^{2} - v^{2}(t, x)]dt^{2} - 2v(t, x)dtdx + dx^{2},$

- regular at the horizon
- c = speed of light, v = velocity of free-fall
- acoustic models: c = speed of sound, v = flow velocity

$$ar{v}(x) = -c \sqrt{rac{2M/c^2}{x+2M/c^2}}$$
 $v(t,x) = egin{cases} ar{v}(\xi(t)), & x \leq \xi(t) \ ar{v}(x), & x \geq \xi(t) \end{cases}$

Wave equation — inner product

- Wave equation: $(\partial_t + \partial_x v)(\partial_t + v\partial_x)\phi = c^2 \partial_x^2 \phi$
- Equivalent to 3 + 1 spherical symmetry if backscattering (grey-body factors) is ignored
- Klein-Gordon product: $(\varphi_1, \varphi_2) \equiv -i \int_{\Sigma_t} dx \ \varphi_1 \ \overleftrightarrow{\partial_t} \ \varphi_2^*$

Wave equation — inner product

- Wave equation: $(\partial_t + \partial_x v)(\partial_t + v\partial_x)\phi = c^2 \partial_x^2 \phi$
- Equivalent to 3 + 1 spherical symmetry if backscattering (grey-body factors) is ignored
- Klein-Gordon product: $(\varphi_1, \varphi_2) \equiv -i \int_{\Sigma_t} dx \ \varphi_1 \ \partial_t \ \varphi_2^*$
- Future null coordinates

u(t,x)
ightarrow t-x/c , w(t,x)
ightarrow t+x/c, when $t,x
ightarrow +\infty$

• Independent of Σ_t . For $t \to \infty$,

$$(\varphi_1, \varphi_2) = -\frac{ic}{2} \left\{ \int_{-\infty}^{+\infty} du \left[\varphi_1 \partial_u \varphi_2^* - \varphi_2^* \partial_u \varphi_1 \right]_{w=+\infty} \right. \\ \left. + \int_{-\infty}^{+\infty} dw \left[\varphi_1 \partial_w \varphi_2^* - \varphi_2^* \partial_w \varphi_1 \right]_{u=+\infty} \right\}$$

• Likewise for past null coordinates U, W and $t \to -\infty$.

luis j. garay (UCM)

Superluminal sensitivity of Hawking radiation

Bogoliubov coefficient β

(i)

• Right-moving positive frequency past and future modes:

$$\psi'_{\omega'} = rac{1}{\sqrt{2\pi c \ \omega'}} \mathrm{e}^{-i\omega' U}, \qquad \psi_{\omega} = rac{1}{\sqrt{2\pi c \ \omega}} \mathrm{e}^{-i\omega \mathrm{u}}.$$

- Hawking radiation is encoded in $\beta_{\omega\omega'} \equiv (\psi'_{\omega'}, \psi^*_{\omega})$.
- Mode mixing happens in the right-moving sector. Therefore, we only need the first term of the previous KG expression:

$$\begin{split} \beta_{\omega\omega'} &= -\frac{ic}{2} \int_{-\infty}^{+\infty} \mathrm{d} u \left[\psi'_{\omega'} \partial_u \psi_{\omega} - \psi_{\omega} \partial_u \psi'_{\omega'} \right]_{W=+\infty} \\ &= \frac{1}{2\pi} \sqrt{\frac{\omega}{\omega'}} \int \mathrm{d} u \, \, \mathrm{e}^{-i\omega' U(u)} \mathrm{e}^{-i\omega u}. \end{split}$$

• All the info is contained in $U = U(u) \equiv U(u, w \rightarrow +\infty)$.

luis j. garay (UCM)

Superluminal sensitivity of Hawking radiation

Bogoliubov coefficient β (ii)

- At late times, $U = U_H Ae^{-\kappa u/c}$, where U_H , A and the surface gravity $\kappa \equiv c \left| \frac{d\bar{v}}{dx} \right|_{x_H}$ are constants.
- We can define a threshold time u_I at which an asymptotic observer will start to detect thermal radiation from the black hole. This retarded time corresponds to the moment at which the function U(u) enters the exponential regime.
- Rewrite as $U = U_H A_0 e^{-\kappa (u-u_I)/c}$, valid for $u > u_I$.
- Obtain $\beta_{\omega\omega'}$. [Dirac-delta normalization]

Bogoliubov coefficient β (ii)

- At late times, $U = U_H Ae^{-\kappa u/c}$, where U_H , A and the surface gravity $\kappa \equiv c \left| \frac{d\bar{v}}{dx} \right|_{x_H}$ are constants.
- We can define a threshold time u_I at which an asymptotic observer will start to detect thermal radiation from the black hole. This retarded time corresponds to the moment at which the function U(u) enters the exponential regime.
- Rewrite as $U = U_H A_0 e^{-\kappa (u-u_I)/c}$, valid for $u > u_I$.
- Obtain $\beta_{\omega\omega'}$. [Dirac-delta normalization]
- Narrow wave packets:

$$P_{\omega_{j},u_{l}}(\omega) \equiv \begin{cases} \frac{e^{i\omega u_{l}}}{\sqrt{\Delta\omega}}, & -\frac{1}{2}\Delta\omega < \omega - \omega_{j} < \frac{1}{2}\Delta\omega, \\ 0, & \text{otherwise}; \end{cases}$$

- centered at $u_l \equiv u_0 + 2\pi l/\Delta \omega$, with u_0 an overall reference;
- central frequency: $\omega_j \equiv j\Delta\omega$; width: $\Delta\omega \ll \omega_j$.

Bogoliubov coefficient β (iii)

Define

$$\beta_{\omega_j,u_l;\omega'} \equiv \int \mathrm{d}\omega \ \beta_{\omega\omega'} P_{\omega_j,u_l}(\omega),$$

 $z = (c\Delta\omega/2\kappa)\ln(\omega'A_0)$, $z_l = (\Delta\omega/2)(u_l - u_l)$.

• Number of particles with frequency ω_j detected at time u_l by an asymptotic observer:

• Hawking's formula (in the absence of backscattering): Planckian spectrum with temperature $T_H = \kappa/(2\pi c)$.

luis j. garay (UCM)

Superluminal sensitivity of Hawking radiation

Hawking radiation with superluminal dispersion Modified wave equation (i)

Quartic modification to wave equation:

$$(\partial_t + \partial_x v)(\partial_t + v \partial_x)\phi = c^2 \left(\partial_x^2 + \frac{1}{k_P^2}\partial_x^4\right)\phi$$
 ,

- Dispersion relation: $(\omega vk)^2 = c^2k^2(1 + k^2/k_p^2)$.
 - $k_{\mathcal{P}}$: 'Planck scale' non-relativistic deviations.
 - In BEC, $k_P = 2/\xi$ (inverse of the healing length)

Hawking radiation with superluminal dispersion Modified wave equation (i)

Quartic modification to wave equation:

$$(\partial_t + \partial_x v)(\partial_t + v \partial_x)\phi = c^2 \left(\partial_x^2 + \frac{1}{k_p^2}\partial_x^4\right)\phi$$
 ,

- Dispersion relation: $(\omega vk)^2 = c^2k^2(1 + k^2/k_p^2)$.
 - $k_{\mathcal{P}}$: 'Planck scale' non-relativistic deviations.
 - In BEC, $k_P = 2/\mathcal{E}$ (inverse of the healing length)
- Modification in the phase and the group velocities,

$$v_{k,ph}\equiv \omega/k=c_{k,ph}+v$$
 , $v_{k,g}\equiv d\omega/dk=c_{k,g}+v$,

due to k-dependent phase and group speeds of light/sound

$$c_{k,ph} = c\sqrt{1 + k^2/k_p^2}$$
, $c_{k,g} = c \frac{1 + 2k^2/k_p^2}{\sqrt{1 + k^2/k_p^2}}$

Modified wave equation (ii)

[Hawking radiation with superluminal dispersion]

- Both speeds $c_{k,g}$ and $c_{k,ph}$ show the same qualitative behaviour. Our results are independent of the choice $\rightarrow c_k$.
- Frequency-dependent horizon when $c_k + v = 0$.

luis j. garay (UCM)

Modified wave equation (ii)

[Hawking radiation with superluminal dispersion]

- Both speeds $c_{k,g}$ and $c_{k,ph}$ show the same qualitative behaviour. Our results are independent of the choice $\rightarrow c_k$.
- Frequency-dependent horizon when $c_k + v = 0$.
- Since c_k becomes arbitrarily high for increasing wave number, there will be a critical ω'_c such that waves with an initial frequency $\omega' > \omega'_c$ do not experience a horizon at all. The only exception occurs when the velocity profile ends in a singularity $\bar{v} \to -\infty$, which implies $\omega'_c \to \infty$.

Scalar product

[Hawking radiation with superluminal dispersion]

• Same as before for *t* = constant. It is well-defined and conserved:

$$\partial_t(\varphi_1,\varphi_2) = \int \mathrm{d}x \; \varphi_1 \; \stackrel{\leftrightarrow}{\partial^4_t} \varphi_2^* = 0.$$

- There is a preferred time frame: the 'laboratory' time t.
- Perform the same change of coordinates $(t, x \rightarrow u, w)$ as before and evaluate at $t \rightarrow +\infty$.
- The relevant part (right-moving sector) of the inner product is

$$-\frac{ic}{2}\int_{-\infty}^{+\infty} \mathrm{d} u \ \left[\varphi_1\partial_u\varphi_2^*-\varphi_2^*\partial_u\varphi_1\right]_{w=+\infty}.$$

• Invariant under change of integration variable $u \rightarrow f(u)$.

Bogoliubov coefficient β (i)

[Hawking radiation with superluminal dispersion]

• With slowly varying profiles, the past and future right-moving positive-energy modes are (up to grey-body factors)

$$\psi_{\omega'}' pprox rac{1}{\sqrt{2\pi c \omega'}} e^{-i \omega' \mathfrak{U}_{\omega'}(u,w)}, \qquad \psi_\omega pprox rac{1}{\sqrt{2\pi c \omega}} e^{-i \omega u_\omega(u,w)},$$

where $\mathcal{U}_{\omega'}(u,w)$ and $u_\omega(u,w)$ can be obtained by integration of the ray equation

$$\mathrm{d}x/\mathrm{d}t = c_{k(\omega')}(t,x) + v(t,x).$$

- Integration for an initial frequency ω' starting from the past left infinity towards the right gives $\mathcal{U}_{\omega'}(u, w) = \text{constant}$.
- Starting from the future, we can define $u_{\omega}(u,w)$.
- *Ditto* for $\mathscr{W}_{\omega'}$ and w_{ω} .
- $\mathcal{U}_{\omega'}$ and u_{ω} are not null (geometric) coordinates, since they are frequency-dependent, but share many properties with them.
- Simple (piecewise) profile \rightarrow explicit integration.

luis j. garay (UCM)

Bogoliubov coefficient β (ii)

[Hawking radiation with superluminal dispersion]

• When calculating $\beta_{\omega,\omega'}$, change integration variables

 $u, w \rightarrow u_{\omega}(u, w), w_{\omega}(u, w)$

• $w \to \infty$ implies $w_\omega \to \infty$, $u_\omega \to u_\omega(u)$, $\mathcal{U}_{\omega'} \to \mathcal{U}_{\omega'}(u)$.

Then, up to grey-body factors,

$$egin{aligned} eta_{\omega\omega'} &= -rac{\mathrm{i}c}{2}\int_{-\infty}^{+\infty}\mathrm{d} u_\omega [\psi_{\omega'}'\partial_{u_\omega}\psi_\omega - \psi_\omega\partial_{u_\omega}\psi_{\omega'}']_{w_\omega=+\infty} \ &pprox rac{1}{2\pi}\sqrt{rac{\omega}{\omega'}}\int\mathrm{d} u_\omega\;\mathrm{e}^{-i\omega'\mathfrak{U}_{\omega'}(u_\omega)}\mathrm{e}^{-i\omega u_\omega}. \end{aligned}$$

luis j. garay (UCM)

Superluminal sensitivity of Hawking radiation

Bogoliubov coefficient β (iii)

[Hawking radiation with superluminal dispersion]

- Integration of the ray equation provides the relation between $\mathcal{U}_{\omega'}$ and u_{ω} where ω' is the initial frequency of a ray at the past left infinity and $\omega = \omega(\omega')$ is its final frequency when reaching the future right infinity.
- Result: $\mathcal{U}_{\omega'} = \mathcal{U}_{H,\omega'} A_0 e^{-\kappa_{\omega'}(u_\omega \bar{u}_{I,\omega'_c})/c};$
 - valid for $\omega' < \omega_c'$ (for which a horizon is experienced;
 - valid for times $u_{\omega} > u_{I,\omega'_c}$, where u_{I,ω'_c} is the largest threshold time (this induces a slight underestimation of the effect).
- The term carrying $\mathcal{U}_{H,\omega'}$ is moduloed away, so the only relevant frequency-dependent factor that we are left with is the surface gravity $\kappa_{\omega'}$.

Modified Hawking spectrum (i)

[Hawking radiation with superluminal dispersion]

- Smear with narrow packets.
- Change integration variable from ω' to z: $[\kappa_0 \equiv \kappa_{\omega'=0}]$

$$m{z}=rac{\mathbf{c}\Delta\omega}{2\kappa_0}\ln(\omega'A_0),\qquad m{z}_{l,\omega'}=rac{\kappa_{\omega'}}{\kappa_0}rac{\Delta\omega}{2}(m{u}_l-ar{m{u}}_{I,\omega_c'}).$$

• Number of particles (with frequency ω_j at time u_l):

$$N_{\omega_j,u_l} = \int_{-\infty}^{z_c} \mathrm{d}z rac{\kappa_0}{\kappa_{\omega'}} rac{\sin^2 \left[rac{\kappa_0}{\kappa_{\omega'}}(z-z_{l,\omega'})
ight]}{\pi \left[rac{\kappa_0}{\kappa_{\omega'}}(z-z_{l,\omega'})
ight]^2} \; rac{1}{\exp(2\pi c\omega_j/\kappa_{\omega'})-1}.$$

- Dependence on the critical frequency ω_c^\prime (through $z_{
 m c}$)
- Importance of the frequency-dependent $\kappa_{\omega'}$.
- As u_l increases, a smaller part of the central peak will be integrated over, so the radiation will die off.

luis j. garay (UCM)

Superluminal sensitivity of Hawking radiation

Modified Hawking spectrum (ii)

[Hawking radiation with superluminal dispersion]

- Given a concrete profile, we can explicitly deduce the relation between $\kappa_{\omega'}$ and ω' as follows:
 - The horizon for a particular initial frequency ω' is formed when $c_k^2(x_{H,\omega'}) = v^2(x_{H,\omega'})$. This is an equation for $x_{H,\omega'}$.
 - Use this value in the expression for the surface gravity.
- For a Schwarzschild profile,

$$\kappa_{\omega'} \equiv \left. c \left| rac{dar v}{dx}
ight|_{x_{H,\omega'}} = \kappa_0 rac{1}{2\sqrt{2}} \left(1 + \sqrt{1 + 4rac{\omega'^2}{c^2 k_P^2}}
ight)^{3/2}.$$

• Everything is ready for evaluation.

Modified Hawking spectrum (iii)

[Hawking radiation with superluminal dispersion]

- Frequencies $\omega' > \omega'_c$ do not contribute to the radiation at all, since they do not experience a horizon.
- This cut-off is not imposed *ad hoc*, but appears explicitly because of the superluminal character of the system at high frequencies.
- The critical frequency depends directly on the physics inside the horizon, i.e. on the velocity profile, and can be calculated from the dispersion relation.

dep- ω'_{c} freq-dep- $\kappa_{\omega'}$ dep-time

Results Dependence on ω'_{c}

Profile with $\kappa_{\omega'} = \kappa_0$ constant

- Important decrease even when $\omega_c' \geq k_P$
- Contributions from extremely wide range of frequencies

dep- ω_c' freq-dep- $\kappa_{\omega'}$ dep-time

Frequency dependence of $\kappa_{\omega'}$

Schwarzschild profile ($\omega_c' \sim k_P$)

- Important ultraviolet contribution
- 'Interior' of black hole is explored

luis j. garay (UCM)

Superluminal sensitivity of Hawking radiation

Valencia, 2009

Dependence on time

For a solar-mass black hole:

- As time increases, radiation dies off
- Decay rate $\sim 0.3 \text{ ms}^{-1}$

luis j. garay (UCM)

Superluminal sensitivity of Hawking radiation

22/26

Conclusions Summary (i)

- Collapsing configuration with superluminal dispersion:
 - horizon, surface gravity... become frequency-dependent
 - interior of the (zero-frequency) horizon is probed
 - at every moment of collapse: critical ω'_c above which there is no horizon (unless we allow for an untamed singularity)

Conclusions Summary (i)

- Collapsing configuration with superluminal dispersion:
 - horizon, surface gravity... become frequency-dependent
 - interior of the (zero-frequency) horizon is probed
 - at every moment of collapse: critical ω'_c above which there is no horizon (unless we allow for an untamed singularity)
- Hawking radiation:
 - ω_c^{\prime} -dependent: radiation fainter than standard HR radiation dies off
 - $\kappa_{\omega'}$ -dependent: high-frequency contribution

luis j. garay (UCM)

Superluminal sensitivity of Hawking radiation

Conclusions Summary (i)

- Collapsing configuration with superluminal dispersion:
 - horizon, surface gravity... become frequency-dependent
 - interior of the (zero-frequency) horizon is probed
 - at every moment of collapse: critical ω'_c above which there is no horizon (unless we allow for an untamed singularity)
- Hawking radiation:
 - ω_c^{\prime} -dependent: radiation fainter than standard HR radiation dies off
 - $\kappa_{\omega'}$ -dependent: high-frequency contribution
- Superluminal dispersion leads to strong modification of standard Hawking spectrum, even if $\omega_c' \gg k_P$
- Schwarzschild profile does not reproduce standard spectrum

[Conclusions]

• Recovering standard Hawking radiation

- If the velocity profile is such that the surface gravity is frequency independent, then the thermal form is preserved.
- If we do not regularize the singularity, there is no critical frequency and the Hawking spectrum is unchanged:
 - full intensity
 - stationarity

Summary

(ii)

Remarks

[Conclusions]

- Conditions for robustness of Hawking radiation
 - 1. freely falling frame is preferred
 - 2. high-frequency excitations start off in ground state at the horizon (w.r.t. freely falling frame)
 - 3. adiabatic evolution

Remarks

- Conditions for robustness of Hawking radiation
 - 1. freely falling frame is preferred
 - 2. high-frequency excitations start off in ground state at the horizon (w.r.t. freely falling frame)
 - 3. adiabatic evolution
- Superluminal dispersion:
 - Lorentz breaking \rightarrow preferred frame: the lab frame
 - Assumption 1 is not satisfied
 - Horizon approaches singularity as ω' increases
 - Conditions at horizon \rightsquigarrow conditions at singularity!
 - Low-frequency modes couple to the collapsing geometry Ultrahigh-frequency modes couple to the lab frame
 - Assumption 2 is not satisfied

