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Modified dispersion relations [Introduction]

Effects of (Lorentz breaking) superluminal dispersion relations
on Hawking radiation produced by collapsing configurations.
Hawking’s original derivation rested on the assumption that
the low-energy laws of physics, and in particular Lorentz
invariance, are preserved up to arbitrarily large scales.
Robustness: Analyze effective field theories with high-energy
modifications of the dispersion relations.
X Subluminal modifications (under reasonable assumptions)

dampen the influence of ultra-high frequencies;
do not explore arbitrarily large frequencies.

? Superluminal modifications magnify the influence of
ultra-high energies.
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Superluminal dispersion relations [Introduction]

Superluminal is qualitatively different to subluminal:
The horizon lies ever closer to the singularity for increasing
frequencies. This causes the interior of the (zero-frequency)
horizon to be exposed to the outside world.
Boundary conditions at the horizon Ñ

Ñ boundary conditions at the singularity!
Moreover, if quantum effects remove the general relativistic
singularity, a critical frequency might appear above which
no horizon would be experienced at all.

Our approach:
Hawking derivation through the relation between the
asymptotic past and future in a collapsing configuration.
No extra assumptions on the asymptotic regions (only
standard ones: Minkowski geometry in the past and
flatness at spatial infinity also in the future).
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Summary of results [Introduction]

Differences in the late-time radiation (superluminal vs. relativistic)

At any instant, above a critical frequency, there is no horizon.
This induces a cutoff in the modes contributing to radiation.

Intensity is lower even if the critical frequency is well
above the Planck scale.
Radiation will extinguish as time advances.

Surface gravity is frequency-dependent and the radiation
depends on the physics inside the black hole.
The radiation spectrum undergoes a strong qualitative
modification:

High-frequency radiation is not negligible compared to the
low-frequency thermal part, but can even become dominant.
This effect becomes more important with increasing critical
frequency.
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Standard Hawking radiation
Geometry — collapse

Painlevé-Gullstrand 1 + 1 spacetimeds2 = −[c2 − v2(t,x)]dt2 − 2v(t,x)dtdx + dx2 ,
regular at the horizon
c = speed of light, v = velocity of free-fall
acoustic models: c = speed of sound, v = flow velocity

Schwarzschild-type velocity
profile v̄(x) (only qualitative
features are relevant)

v̄(x) = −c

√ 2M/c2
x + 2M/c2

v(t,x) = { v̄(ξ(t)), x ≤ ξ(t),
v̄(x), x ≥ ξ(t).
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Wave equation — inner product [Standard Hawking radiation]

Wave equation: (∂t + ∂xv)(∂t + v∂x)φ = c2∂2
xφ

Equivalent to 3 + 1 spherical symmetry if backscattering
(grey-body factors) is ignored

Klein-Gordon product: (φ1, φ2) ≡ −i
∫Σt

dx φ1 ↔∂t φ∗2

Future null coordinates

u(t,x)→ t − x/c , w(t,x)→ t + x/c, when t,x → +∞
Independent of Σt . For t →∞,

(φ1, φ2) = − ic2
{∫ +∞
−∞

du [φ1∂uφ∗2 − φ∗2∂uφ1]w=+∞
+∫ +∞

−∞
dw [φ1∂wφ∗2 − φ∗2∂wφ1]u=+∞

}
.

Likewise for past null coordinates U,W and t → −∞.
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Bogoliubov coefficient β (i) [Standard Hawking radiation]

Right-moving positive frequency past and future modes:

ψ′ω′ = 1√2πc ω′
e−iω′U , ψω = 1√2πc ω

e−iωu.

Hawking radiation is encoded in βωω′ ≡ (ψ′ω′ , ψ∗ω).
Mode mixing happens in the right-moving sector. Therefore,
we only need the first term of the previous KG expression:

βωω′ = − ic2
∫ +∞
−∞

du
[
ψ′ω′∂uψω − ψω∂uψ′ω′

]
w=+∞

= 12π
√
ω
ω′

∫ du e−iω′U(u)e−iωu.

All the info is contained in U = U(u) ≡ U(u,w → +∞).
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Bogoliubov coefficient β (ii) [Standard Hawking radiation]

At late times, U = UH − Ae−κu/c , where UH , A and the
surface gravity κ ≡ c

∣∣ dv̄dx
∣∣
xH

are constants.
We can define a threshold time uI at which an asymptotic
observer will start to detect thermal radiation from the black
hole. This retarded time corresponds to the moment at which
the function U(u) enters the exponential regime.
Rewrite as U = UH − A0e−κ(u−uI )/c, valid for u > uI .
Obtain βωω′ . [Dirac-delta normalization]

Narrow wave packets:

Pωj ,ul (ω) ≡ { eiωul√∆ω , −12∆ω < ω − ωj < 12∆ω,0, otherwise;

centered at ul ≡ u0 + 2πl/∆ω, with u0 an overall reference;
central frequency: ωj ≡ j∆ω; width: ∆ω � ωj .

luis j. garay (UCM) Superluminal sensitivity of Hawking radiation Valencia, 2009 9/26
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Bogoliubov coefficient β (iii) [Standard Hawking radiation]

Define
βωj ,ul ;ω′ ≡

∫ dω βωω′Pωj ,ul (ω),
z = (c∆ω/2κ) ln(ω′A0) , zl = (∆ω/2)(ul − uI ).

Number of particles with frequency ωj detected at time ul by
an asymptotic observer:

Nωj ,ul = ∫ +∞
0 dω′|βωj ,ul ;ω′ |2 = ∫ +∞

−∞
dzsin2(z − zl)

π(z − zl)2 1exp(2πcωj/κ)− 1
= 1exp(2πcωj/κ)− 1 .

Hawking’s formula (in the absence of backscattering):
Planckian spectrum with temperature TH = κ/(2πc).
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Hawking radiation with superluminal dispersion
Modified wave equation (i)

Quartic modification to wave equation:

(∂t + ∂xv)(∂t + v∂x)φ = c2(∂2
x + 1

k2
P
∂4

x

)
φ ,

Dispersion relation: (ω − vk)2 = c2k2 (1 + k2/k2
P
)
.

kP : ‘Planck scale’ — non-relativistic deviations.
In BEC, kP = 2/ξ (inverse of the healing length)

Modification in the phase and the group velocities,

vk,ph ≡ ω/k = ck,ph + v , vk,g ≡ dω/dk = ck,g + v ,

due to k-dependent phase and group speeds of light/sound

ck,ph = c
√1 + k2/k2

P , ck,g = c 1 + 2k2/k2
P√1 + k2/k2
P

.
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Modified wave equation (ii) [Hawking radiation with superluminal dispersion]

k

c

k,g

k,ph

k
P

c

c

Both speeds ck,g and ck,ph show the same qualitative
behaviour. Our results are independent of the choice → ck.
Frequency-dependent horizon when ck + v = 0.

Since ck becomes arbitrarily high for increasing wave number,
there will be a critical ω′c such that waves with an initial
frequency ω′ > ω′c do not experience a horizon at all.
The only exception occurs when the velocity profile ends in a
singularity v̄ → −∞, which implies ω′c →∞.
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Scalar product [Hawking radiation with superluminal dispersion]

Same as before for t =constant. It is well-defined and
conserved:

∂t(φ1, φ2) = ∫ dx φ1 ↔∂4
t φ∗2 = 0.

There is a preferred time frame: the ‘laboratory’ time t.
Perform the same change of coordinates (t,x → u,w) as
before and evaluate at t → +∞.
The relevant part (right-moving sector) of the inner product is

− ic2
∫ +∞
−∞

du [φ1∂uφ∗2 − φ∗2∂uφ1]w=+∞ .
Invariant under change of integration variable u→ f (u).
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Bogoliubov coefficient β (i) [Hawking radiation with superluminal dispersion]

With slowly varying profiles, the past and future right-moving
positive-energy modes are (up to grey-body factors)

ψ′ω′ ≈
1√2πcω′

e−iω′Uω′ (u,w), ψω ≈
1√2πcω

e−iωuω(u,w),
where Uω′(u,w) and uω(u,w) can be obtained by integration
of the ray equation dx/dt = ck(ω′)(t,x) + v(t,x).

Integration for an initial frequency ω′ starting from the past
left infinity towards the right gives Uω′(u,w) =constant.
Starting from the future, we can define uω(u,w).
Ditto for Wω′ and wω.

Uω′ and uω are not null (geometric) coordinates, since they
are frequency-dependent, but share many properties with them.
Simple (piecewise) profile → explicit integration.
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Bogoliubov coefficient β (ii) [Hawking radiation with superluminal dispersion]

When calculating βω,ω′ , change integration variables

u,w → uω(u,w),wω(u,w)
w →∞ implies wω →∞, uω → uω(u), Uω′ →Uω′(u).
Then, up to grey-body factors,

βωω′ = − ic2
∫ +∞
−∞

duω[ψ′ω′∂uωψω − ψω∂uωψ′ω′ ]wω=+∞
≈ 12π

√
ω
ω′

∫ duω e−iω′Uω′ (uω)e−iωuω .
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Bogoliubov coefficient β (iii) [Hawking radiation with superluminal dispersion]

Integration of the ray equation provides the relation between
Uω′ and uω where ω′ is the initial frequency of a ray at the
past left infinity and ω = ω(ω′) is its final frequency when
reaching the future right infinity.
Result: Uω′ =UH,ω′ − A0e−κω′ (uω−ūI,ω′c )/c;

valid for ω′ < ω′c (for which a horizon is experienced;
valid for times uω > uI,ω′c , where uI,ω′c is the largest
threshold time (this induces a slight underestimation of the
effect).

The term carrying UH,ω′ is moduloed away, so the only
relevant frequency-dependent factor that we are left with is
the surface gravity κω′ .
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Modified Hawking spectrum (i) [Hawking radiation with superluminal dispersion]

Smear with narrow packets.
Change integration variable from ω′ to z: [κ0 ≡ κω′=0]

z =c∆ω2κ0 ln(ω′A0), zl,ω′ = κω′
κ0

∆ω2 (ul − ūI,ω′c ).
Number of particles (with frequency ωj at time ul):

Nωj ,ul = ∫ zc

−∞
dz κ0
κω′

sin2 [ κ0
κω′

(z − zl,ω′ )]
π
[
κ0
κω′

(z − zl,ω′ )]2 1exp(2πcωj/κω′ )− 1 .
Dependence on the critical frequency ω′c (through zc)
Importance of the frequency-dependent κω′ .
As ul increases, a smaller part of the central peak will be
integrated over, so the radiation will die off.
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Modified Hawking spectrum (ii) [Hawking radiation with superluminal dispersion]

Given a concrete profile, we can explicitly deduce the relation
between κω′ and ω′ as follows:

The horizon for a particular initial frequency ω′ is formed
when c2

k(xH,ω′) = v2(xH,ω′). This is an equation for xH,ω′ .
Use this value in the expression for the surface gravity.

For a Schwarzschild profile,

κω′ ≡ c
∣∣∣∣dv̄
dx

∣∣∣∣
xH,ω′

= κ0 12√2
(1 +√1 + 4 ω′2

c2k2
P

)3/2
.

Everything is ready for evaluation.
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Modified Hawking spectrum (iii) [Hawking radiation with superluminal dispersion]

Frequencies ω′ > ω′c do not contribute to the radiation at all,
since they do not experience a horizon.
This cut-off is not imposed ad hoc, but appears explicitly
because of the superluminal character of the system at high
frequencies.
The critical frequency depends directly on the physics inside
the horizon, i.e. on the velocity profile, and can be calculated
from the dispersion relation.
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Results
Dependence on ω′c

Profile with κω′ = κ0 constant

ω
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ω

Important decrease even
when ω′c ≥ kP

Contributions from
extremely wide range of
frequencies
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Frequency dependence of κω′ [Results]

Schwarzschild profile (ω′c ∼ kP)
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Important ultraviolet contribution
‘Interior’ of black hole is explored
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Dependence on time [Results]

For a solar-mass black hole:

ω

60

4

8

10040

0

6

120

10

2

0

E

8020

Standard HR

time ul (ms):
0
3.5
5.6
8.0
80ω3 N

ω
As time increases, radiation dies off
Decay rate ∼ 0.3 ms−1
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Conclusions
Summary (i)

Collapsing configuration with superluminal dispersion:
horizon, surface gravity. . . become frequency-dependent
interior of the (zero-frequency) horizon is probed
at every moment of collapse: critical ω′c above which there
is no horizon (unless we allow for an untamed singularity)

Hawking radiation:
ω′c-dependent: radiation fainter than standard HR

radiation dies off
κω′-dependent: high-frequency contribution

Superluminal dispersion leads to strong modification of
standard Hawking spectrum, even if ω′c � kP

Schwarzschild profile does not reproduce standard spectrum
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Summary (ii) [Conclusions]

Recovering standard Hawking radiation
If the velocity profile is such that the surface gravity is
frequency independent, then the thermal form is preserved.
If we do not regularize the singularity, there is no critical
frequency and the Hawking spectrum is unchanged:

full intensity
stationarity
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Remarks [Conclusions]

Conditions for robustness of Hawking radiation
1. freely falling frame is preferred
2. high-frequency excitations start off in ground state at the

horizon (w.r.t. freely falling frame)
3. adiabatic evolution

Superluminal dispersion:
Lorentz breaking Ï preferred frame: the lab frame

Assumption 1 is not satisfied
Horizon approaches singularity as ω′ increases

Conditions at horizon  conditions at singularity!
Low-frequency modes couple to the collapsing geometry
Ultrahigh-frequency modes couple to the lab frame

Assumption 2 is not satisfied
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