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Outline

The behaviour of ultracold atoms in optical lattices is analyzed by
means of absorption images of the atomic sample after trap release

The density profile obtained by averaging over multiple shots is
usually intended as representing the mean value of the density
operator in the given many-body state

An alternative interpretation is instead based on coherente states
and makes use of a generalized quantum measure (POVM))

This observation might have experimental relevance
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Double-well potential

In a suitable approximation, the dynamics of cold atoms in an double-well
potential can be described by a two-mode Bose-Hubbard hamiltonian:

H = E (a†1a1 + a†2a2) + U
(
(a†1a1)2 + (a†2a2)2

)
− T (a†1a2 + a†2a1)

Trapping potential term ∝ E ;

On-site boson-boson repulsive interaction term ∝ U

Hopping term ∝ T ;

The total number N of particles is conserved: the Hilbert space is thus
(N + 1)-dimensional.
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Number states

The N + 1-dimensional Hilbert space can be spanned by Fock states

|k, N − k〉 =
(a†1)k(a†2)N−k√

k!(N − k)!
|0〉

with k particles in the first well and N − k in the second.

Number states are:

Orthonormal: 〈k, N − k|k ′, N − k ′〉 = δkk′

Complete:
∑N

k=0 |k, N − k〉〈k, N − k| = 1N+1
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Phase states

Alternatively one can introduce coherent-like states

|N; ϕ, ξ〉 =
1√
N!

(√
ξ e iϕ/2a†1 +

√
1− ξ e−iϕ/2a†2

)N

|0〉

in which all N particles are in a coherent superposition, with definite

- relative phase ϕ ∈ [0, 2π],

- mean occupation number ξ ∈ [0, 1],

〈N;ϕ, ξ|a†1a1|N;ϕ, ξ〉 = Nξ 〈N;ϕ, ξ|a†2a2|N;ϕ, ξ〉 = N(1− ξ)
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Phase states

Phase states are:

Normalized,
〈N;ϕ, ξ|N;ϕ, ξ〉 = 1 ;

Near-orthogonal (for large N),

〈N;ϕ, ξ|N;ϕ′, ξ′〉 ≈ 0 unless ϕ = ϕ′, ξ = ξ′;

Overcomplete,∫ 1

0

dξ

∫ 2π

0

dϕ

2π
|N;ϕ, ξ〉〈N;ϕ, ξ| =

1

N + 1
1N+1 .
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Quantum phase transition in optical lattice

The Bose-Hubbard Hamiltonian describes a cross-over between a
superfluid and insulator pahse, driven by the ratio T/U:

T/U � 1

Insulator phase,
the ground state is a Fock state

|MI 〉 ∼ |N/2, N/2〉

T/U � 1

Superfluid phase,
the ground state is a coherent state

|SF 〉 ∼ |N;ϕ, 1/2〉
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The measuring process

In general, it is very hard to perform density measurements inside the
trapping potential. An indirect procedure is then adopted:

The trapping potential is switched off

The atoms expand freely (no interaction)

The two fractions of condensate once contained in the two wells can
overlap and interfere with each other

After a certain time t, the expanding cloud is illuminated and the
corresponding absorption image collected; it shows interference
fringes, irrespectively from the system initial state

The average density profile is obtained by superimposing many
absorption images
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Absorption images

exhibit interference. Why then does the recorded image show fringes? The resolution, as
we show for a special case, depends on the fact that the image does not record the sin-
gle-particle density. 

The Case of BECs with Definite Particle Number. As reported by Andrews et al.
(1997), the potential barrier separating the two BECs was five times higher than the
energy corresponding to the critical temperature for the BEC phase transition and 
50 times higher than the chemical potentials of the BECs in each well. Under those con-
ditions, the state of the double-well BEC system is indistinguishable from that of two
BECs that were condensed in separate traps at an infinite distance from each other and
then brought together. In principle, we can therefore know exactly how many particles
occupy each of the two BECs. That is, the system is in a number state. The single-parti-
cle density of this double-well number state ρ1(N) does not exhibit interference, a point
we now demonstrate for a simplified double-well number state with only two particles. 

We call the single-atom state centered in the right well χR(r) and the single-atom
state centered in the left well χL(r), where r denotes the center-of-mass position of the
trapped atom. Thus, a two-particle number state with one atom in each well is represent-
ed by a wave function Ψ(N):
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Figure 5. Sodium Atom
BECs and Their Interference 
(a) Phase contrast images of a
single Bose condensate (upper
panel) and double Bose conden-
sates were taken in the magnetic
trap of the MIT group. An argon
ion laser that was focused into
the center of the trap created a
double-well potential. Changes
from 7 to 43 mW in the power of
the laser-light sheet caused the
distance between the two con-
densates to vary. (b) The interfer-
ence pattern of two expanding
condensates was observed after
a 40-ms time of flight for two 
different powers of the argon-
laser-light sheet (raw-data
images). The periods of the
fringes were 20 and 15 µm;
the laser powers were 3 and 
5 mW; and the maximum absorp-
tions were 90% and 50%,
respectively, for the left and right
images. The fields of view were
1.1 mm horizontally by 0.5 mm
vertically. The horizontal widths
were compressed fourfold, a con-
dition that enhances the effect 
of the fringe curvature. For the
determination of the fringe 
spacing, the dark central fringe
on the left was excluded.
(Reprinted with permission from Andrews et
al. Science 275, pages 638 and 639.
Copyright 1997 American Association for the
Advancement of Science.) 

from M.R. Andrews et al., Science 275 (1997) 637
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The many-body model

Introduce a complete set of single-particle atom states

{|wi 〉}∞i=1 , |wi 〉 = a†i |0〉

The bosonic creation operator can then be decomposed as

ψ†(x) =
∑

i

w∗i (x) a†i
[a†i , aj ] = 〈wi |wj〉 = δij

[ψ†(x), ψ(y)] = δ(x − y)

where wi (x) = 〈x |wi 〉 are the corresponding wavefunctions

The free evolution after trap release is described by a unitary operator Ut :

|wi 〉 → |wi (t)〉 = Ut |wi 〉
|wi (t)〉 := a†i (t)|0〉 , a†i (t) ≡ Ut a†i U†t

R. Floreanini Quantum measuring processes for trapped ultracold atoms



Density profiles after free expansion

At the time of trap release, prepare the system in the condensed state
|N;ϕ, ξ〉; then, using

ψ(x)|N;ϕ, ξ, t〉 =
√

N
(√

ξ e i ϕ
2 w1(x , t)+

√
1− ξ e−i ϕ

2 w2(x , t)
)
|N−1;ϕ, ξ, t〉

the average of the density operator n(x) = ψ†(x)ψ(x) at time t will be
given by

〈n(x , t)〉ϕ,ξ = N
[
ξ |w1(x , t)|2 + (1− ξ) |w2(x , t)|2

+2
√
ξ(1− ξ)<e

(
w1(x , t)w∗2 (x , t) e iϕ

)]
showing the expected interference fringes, modulated as

<e
[
w1(x , t)w∗2 (x , t) e iϕ

]
∝ cos

(md

t
x + ϕ

)
where d is the distance between the wells, while m is the atom mass
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On the other hand, preparing the system in a number state |k , N − k, t〉,
one gets

〈n(x , t)〉k = 〈k, N − k, t|ψ†(x)ψ(x) |k , N − k , t〉

= k |w1(x , t)|2 + (N − k) |w2(x , t)|2

and no interference fringes should be observed

Nevertheless, in actual data one notices:

Experimental results

every one-shot image shows a density profile compatible with that of
a phase state, i.e. 〈n(x , t)〉ϕ,ξ, the better, the larger N is

the space between fringes is the same in each shot, but the offset
(given by the value of relative phase ϕ) changes randomly from
image to image, unless one already starts with |N;ϕ, ξ〉
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The theoretical interpretation

In quantum mechanics, mean values refer to statistical averages over
many experimental runs; and indeed, superimposing multiple shots,
the interference fringes disappear

However, for large N, one can assimilate ensamble abverages with
mean values with respect to macroscopically occupied many-body
states

The observation that the experimentally obtained one-shot density
profiles reproduce the mean 〈n(x , t)〉ϕ,ξ even starting with a number
state |k , N − k〉 suggests an interpretation in terms of a quantum
generalized measure
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Experimental average

After collecting N single shots, all obtained starting from the same initial
number state |k , N − k〉, the experimental average density profile is
obtained through

n(x , t) =
∑

(ϕi ,ξi )

N (ϕi , ξi )

N
〈n(x , t)〉ϕi ,ξi

where N (ϕi , ξi ) enumerates the number of times a pair (ϕi , ξi ) with the
corresponding pattern 〈n(x , t)〉ϕi ,ξi is obtained

A natural theoretical prediction for the weights N (ϕi , ξi )/N is, for
sufficiently large N , given by the overlap probabilities

Nk(ϕ, ξ)

N
= |〈ϕ, ξ; N|k ,N − k〉|2 =

(
N

k

)
ξk (1− ξ)N−k
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Quantum generalized measure

For sufficiently large number N of single-shot picuters, the average
density is thus given by

nk(x , t) =

∫ 1

0

dξ

∫ 2π

0

dϕ |〈ϕ, ξ; N|k,N − k〉|2 〈n(x , t)〉ϕ,ξ

= Tr
[
ρ′k(t) n(x)

]
where the transformed density matrix ρ′k is obtained from the initial one
ρk = |k ,N − k〉〈k,N − k| through the action of the map

ρk → ρ′k =

∫ 1

0

dξ

∫ 2π

0

dϕ Pϕ,ξ ρk Pϕ,ξ Pϕ,ξ = |ϕ, ξ; N〉〈ϕ, ξ; N|

The set
{

Pϕ,ξ
}

(ϕ,ξ)
form a Positive Operator Valued Measure (POVM),

that generalizes the von Neumann projective measure
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Remarks

The average nk(x , t) in general differs from the expression 〈n(x , t)〉k
of the mean density usually adopted to fit experimental data:

〈n(x , t)〉k = k|w1(x , t)|2 + (N − k)|w2(x , t)|2

nk(x , t) =
N

N + 2

[
(k + 1)|w1(x , t)|2 + (N − k + 1)|w2(x , t)|2

]

Although the difference becomes of order one for large N

nk(x , t)− 〈n(x , t)〉k ≈ |w1(x , t)|2 − |w2(x , t)|2 + O

(
1

N

)
it is suppressed by a factor 1/N with respect to the dominant
contribution N|w1|
For the state |N/2, N/2〉 the two expression coincide
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Density correlations in optical lattices

When the N atoms are confined in a one-dimensional lattice with M
sites, it is more convenient to look at density-density correlations n(x , x ′)
as averages of the two-point operator

ψ†(x)ψ†(x ′)ψ(x)ψ(x ′)

After integration with respect to the barycenter coordinate,
R = (x + x ′)/2, and a suitable normalization, one is lead to study the
behaviour of the following observable:

G(r , t) ≡
∫

dR n(R − r
2 ,R + r

2 , t)∫
dR n(R − r

2 , t) n(R + r
2 , t)

It measures the conditional probability of finding two atoms at points
separated by a distance r , averaged over all positions; in absence of
correlations, it takes a constant value equal to one
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Density correlations averages

When the system is initiallly prepared in a number state
|k1, k2, . . . , kM ; N〉, with ki representing the occupation number of the
i-th site, the generalized quantum measure based on the POVM gives

G~k(r , t) =
N(N − 1)

N2

{
1 +

1

(N + M)(N + M − 1)

M∑
i 6=j=1

(ki + 1)(kj + 1)e iQ(i−j)r

}

with Q = md/t, while the standard trace formula would yield

〈G(r , t)〉~k =
N(N − 1)

N2

{
1 +

1

N(N − 1)

M∑
i 6=j=1

kikje
iQ(i−j)r

}

Using a bicromatic lattice to fill the M sites with unequal number of
atoms, the two averages are seen to give different predictions
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Simulations: G~k vs 〈G〉~k
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Height of secondary peak
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Outlook

Density profiles obtained superimposing absorption images obtained
after the release of the confining optical lattice can be theoretically
described in terms of a generalized quantum measure based on
coherent-like states

This result can be naively understood by interpreting the formation
of the absorption image as the result of the interaction of the system
with a classical, macroscopic measuring apparatus: many atoms
concur to the formation of a single pixel in the image and this is
possible only if all atoms are in a same coherent superposition

Coherent states are much more stable against the decohering effects
due to the presence of an external environment:

ΓFock

Γcoherent
' N
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