Inhomogeneous electron distribution in InN nanocolumns

Jaime A. Segura Ruiz

Electronic, transport and optical properties of low-dimensional systems WS10-ETOLDs. Valencia, May 31 of 2010

VNIVERSITAT DÖVALÈNCIA

Nitride semiconductors:

GaN, AIN, InN

Bandgap of $Ga_{1-x}In_xN$ – Solar spectrum High efficiency solar cells.

Wurtzite structure Non-centrosymmetric

Indium nitride

Low crystalline quality layers. Bandgap (E_G): 1.9 eV

10²¹

Surface electron accumulation layer.

1. Appl. Phys. Lett. **91**, 092101 (2007). 2. J. Appl. Phys. **101**, 081704 (2007). 3. Phys. Rev. Lett. **101**, 106803 (2008).

Nanocolumns (NCs)

Why NCs?

- Higher surface/volume ratio.
- Lower density of dislocations.
- Increase radiative recombination.

NCs grow spontaneously along c-axis. Most surface is non-polar.

Non polar surfaces properties can be studied in more detail.

InN NCs: samples

-Growth: Plasma-assisted MBE.

- -N₂-rich conditions
- -Growth time: 300 m.

 T_{s} , Indium beam equivalent pressure (BEP), N_2 -flux: variables.

Sample	Τs	In-BEP	$N_2^{f lux}$	P _{RF}
	(±C)	(mbar)	(sccm)	(W)
G053	400	3:0£ 10 ^{i 8}	2.0	500
G071	475	3:0£ 10 ^{i 8}	2.0	500
G047	500	3:0£ 10 ^{i 8}	2.0	500
G041	500	1:5£ 10 ^{i 8}	1.5	400
G044	500	3:0£ 10 ^{i 8}	1.5	450
G136	475	3:0£ 10 ^{i 8}	1.5	450

Morphology

- $T_S = 400^{\circ}C$: Coalescence
- T_s=500°C: Baseball-bate shape

Diameters: 80-150 nm (30 nm) Heights: 200-600 nm (1500 nm)

Growth conditions strongly affect NCs morphology.

$T_S = 500^{\circ}C$: Homogeneous NCs

Raman scattering spectroscopy Backscattering Z(X, -)-ZAllowed modes: $A_1(LO) - E_2^h$ E_2^h mode: narrow peak 1,2-500°C Strain free 475⁰C NCs Intensity (arb. units) -6'0 $(^{2}_{XX} < 0.1\%)$ (x2 $A_1(L\Phi)$ PLP⁻ E_(TO A₁(TO) Forbidden modes 7 www 0,0 480 500 580 420 600 440 460 Raman shift (cm⁻¹) Scattering at lateral walls. Plasmon - LO phonon coupled mode (PLP-)

Raman scattering spectroscopy

Photoluminescence: growth conditions

Photoluminescence excitation (PLE)

- 10K.
- Excitation: Halogen lamp + monochromator.
- Detection: N₂-cooled InAs Photodiode.
- Spectral resolution: <1.5 meV

PLE: characteristics

Line-shape similar to bulk material.

Featureless – High electron concentration

Accumulation layer: growth conditions

PLE is different for each sample.

Energy and FWHM of the PL peak increase as E_{abs} increase.

PL peak energy does not follow E_{abs} variation.

Conclusions

• Optical properties and morphology of the nanocolumns are strongly affected by the growth conditions.

- There is electron accumulation at the non-polar surfaces of InN.
- Photoluminescence in InN nanocolumns comes from degenerated electrons recombining with localized holes.

• Differences in the photoluminescence are attributed to different volume and surface charge for each sample. Electron accumulation at non-polar surfaces is not intrinsic.

Acknowledgements:

NanoLICHT European project groups:

Nuria Garro and Andrés Cantarero from the University of Valencia.

Angela Rizzi from the University of Goettingen- Germany.

Fernando Iikawa and his group from the Universidade Estadual de Campinas.