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Outline

• Background:                                                        
Edge states in the integer quantum hall effect

• Main idea:                                                                     
Measuring the non-equilibrium electronic distribution in an edge state 
and it´s relaxation

• The experiments by F. Pierre et al!  

• The theory:                                                                 
Perturbative and non-perturbative results for the distribution 
function. 

• Summary



What is an Edge state?

Classical:  Cyclotron orbits and Skipping orbits

2D electron gas
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Halperin, Phys. Rev. B 25, 2185 (1982)



What is an Edge state?

Classical:  Cyclotron orbits and Skipping orbits
Current flows along the edge of the sample! 

2D electron gas

B

Contact

Contact

Quantum:  Edge states! 

•Explains the IQH effect!
•Robust again disorder!
•Analogue to light rays in optics! 
•Allows for nanostructure engineering!!

Halperin, Phys. Rev. B 25, 2185 (1982)



Measuring the electronic distribution in an edge state 
2

µ1 (1)

We describe the ES’s in terms of scattering states χαE(x) with energy E and label α = o, i (i : inner, o : outer).

The inter-ES interaction is given by

Hint =
1

2

�

α

�
dE dE

�
Uα(E

�
, E) a

†
αE�aαE , (2)

where a
†
αE (aαE) is the creation (annihilation) operator for the scattering state χαE and Uα(E

�
, E) is the potential

operator for scattering a particle from E to E
�
in the ES α at the expense of a particle scattering in the opposite

ES ᾱ. Explicitly Uα(E1� , E1, t) =
�
dE2dE2�V

αᾱ
E1�E2� ,E1E2

a
†
ᾱE2�

(t)aᾱE2
(t) in the Heisenberg picture and V

αᾱ
E1�E2� ,E1E2

is the inter-ES electron-electron interaction matrix element for the scattering process (αE1, ᾱE2) → (αE1� , ᾱE2�).

Using the Heisenberg equation of motion i�∂taαE(t) = [aαE(t), H], the electronic distribution function fα(E) in ES

α can be found by evaluating �a†αE(t)aαE�(t)� = δ(E − E
�
)fα(E). The non-interacting distributions are f

0
i (E) =

f
0
µi
(E) and f

0
o (E) = Rf

0
µ1
(E) + T f

0
µ2
(E), where f

0
µ ≡ {1 + exp[(E − µ)/kbT ]}−1

and T (R) is the transmission

(reflection) probability of the QPC, see Fig. ??. The chemical potential of the inner ES µi can experimentally be

tuned independently of µ1 and µ2 by using an additional QPC (not shown in Fig. ??). To second order in the

interaction matrix element the distribution is f
(2)
α = f

0
α + δf (2)

α , where (see Supplementary Material
?

for details)

δf (2)
α (E) =

2π
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dω
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a
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(E + �ω, E,ω)

�
. (3)

The first term contains the absorption potential fluctuation spectrum
?

S
a
δUαδUα

(E,E
�
,ω) describing an absorption

of energy �ω by the ES ᾱ while the ES α goes from energy E
�
to E. Likewise the second term with the emission

fluctuation spectrum S
e
δUαδUα

describes the emission of energy �ω from the ES ᾱ to the ES α, which consequently

leads to the transition E → E + �ω in α. The fluctuation spectra are to lowest order in the interaction and defined

by 2πδ(ω + ω�
)S

a
δUαδUα

(E
�
, E,ω) ≡ �δUα(E,E

�
,ω)(1)δUα(E

�
, E,ω�

)
(1)�, where δU (1)

α ≡ U
(1)
α − �U (1)

α � is the Fourier

transformed operator for the deviation from the average potential to first order in the interaction. The emission

spectrum is found by interchanging the two δUα in the absorption spectrum or equivalently by changing the sign of

ω. Explicitly, the spectra are found to be

S
a
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�
, E,ω) =

h
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��|V αᾱ
E�E��+�ω,EE�� |2f0

ᾱ(E
��
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0
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+ �ω)], (4a)

S
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(E
�
, E,ω) =
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0
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)], (4b)

where the interpretation in terms of emission and absorption spectra is clear. By inserting these into Eq. (3) the

similarity with the collision integral in the Boltzmann equation becomes evident.

Next we wish to calculate δf (2)
α (E). To this end, the inter-ES scattering process (αE1, ᾱE2) → (αE1� , ᾱE2�) needs to

be considered. If the ES’s are perfectly translation invariant, then energy and momentum conservation together reduce

the available one dimensional phase space enormously compared to higher dimensions
?
. This leads us to consider the

more realistic non-translation invariant case caused by the fact that the ES’s follow the equipotential lines created

by the sample edges and the impurity potential. Including this non-translation invariant ES physics leads to the

presence of non-momentum conserving scattering processes increasing the phase space substantially
? ?

. The broken

translation invariance is included into the model of the inter-ES interaction matrix element |V αᾱ
E1�E2� ,E1E2

|2. To avoid

modeling a specific geometry we perform a statistical average over the geometry of the ES’s and thereby introduce the

momentum breaking correlation length �p, which is smaller than the size of the region of relaxation L. For simplicity,

an effective interaction of the form V (x, x
�
) = δ(x− x

�
)g(x) is used and it is assumed that the deviation of g(x) from
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ᾱ(E
��
)[1− f

0
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E�E��,EE��+�ω|2f0
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be considered. If the ES’s are perfectly translation invariant, then energy and momentum conservation together reduce

the available one dimensional phase space enormously compared to higher dimensions
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. This leads us to consider the

more realistic non-translation invariant case caused by the fact that the ES’s follow the equipotential lines created

by the sample edges and the impurity potential. Including this non-translation invariant ES physics leads to the

presence of non-momentum conserving scattering processes increasing the phase space substantially
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ᾱ(E

��
)], (4b)

where the interpretation in terms of emission and absorption spectra is clear. By inserting these into Eq. (3) the

similarity with the collision integral in the Boltzmann equation becomes evident.
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be considered. If the ES’s are perfectly translation invariant, then energy and momentum conservation together reduce

the available one dimensional phase space enormously compared to higher dimensions
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. This leads us to consider the

more realistic non-translation invariant case caused by the fact that the ES’s follow the equipotential lines created

by the sample edges and the impurity potential. Including this non-translation invariant ES physics leads to the

presence of non-momentum conserving scattering processes increasing the phase space substantially
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where the interpretation in terms of emission and absorption spectra is clear. By inserting these into Eq. (3) the

similarity with the collision integral in the Boltzmann equation becomes evident.

Next we wish to calculate δf (2)
α (E). To this end, the inter-ES scattering process (αE1, ᾱE2) → (αE1� , ᾱE2�) needs to

be considered. If the ES’s are perfectly translation invariant, then energy and momentum conservation together reduce

the available one dimensional phase space enormously compared to higher dimensions
?
. This leads us to consider the

more realistic non-translation invariant case caused by the fact that the ES’s follow the equipotential lines created

by the sample edges and the impurity potential. Including this non-translation invariant ES physics leads to the

presence of non-momentum conserving scattering processes increasing the phase space substantially
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where the interpretation in terms of emission and absorption spectra is clear. By inserting these into Eq. (3) the

similarity with the collision integral in the Boltzmann equation becomes evident.

Next we wish to calculate δf (2)
α (E). To this end, the inter-ES scattering process (αE1, ᾱE2) → (αE1� , ᾱE2�) needs to

be considered. If the ES’s are perfectly translation invariant, then energy and momentum conservation together reduce

the available one dimensional phase space enormously compared to higher dimensions
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. This leads us to consider the

more realistic non-translation invariant case caused by the fact that the ES’s follow the equipotential lines created

by the sample edges and the impurity potential. Including this non-translation invariant ES physics leads to the

presence of non-momentum conserving scattering processes increasing the phase space substantially
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ES ᾱ. Explicitly Uα(E1� , E1, t) =
�
dE2dE2�V

αᾱ
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ᾱ(E

��
)], (4b)

where the interpretation in terms of emission and absorption spectra is clear. By inserting these into Eq. (3) the

similarity with the collision integral in the Boltzmann equation becomes evident.

Next we wish to calculate δf (2)
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be considered. If the ES’s are perfectly translation invariant, then energy and momentum conservation together reduce

the available one dimensional phase space enormously compared to higher dimensions
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. This leads us to consider the

more realistic non-translation invariant case caused by the fact that the ES’s follow the equipotential lines created

by the sample edges and the impurity potential. Including this non-translation invariant ES physics leads to the

presence of non-momentum conserving scattering processes increasing the phase space substantially
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(t) in the Heisenberg picture and V

αᾱ
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where the interpretation in terms of emission and absorption spectra is clear. By inserting these into Eq. (3) the

similarity with the collision integral in the Boltzmann equation becomes evident.

Next we wish to calculate δf (2)
α (E). To this end, the inter-ES scattering process (αE1, ᾱE2) → (αE1� , ᾱE2�) needs to

be considered. If the ES’s are perfectly translation invariant, then energy and momentum conservation together reduce

the available one dimensional phase space enormously compared to higher dimensions
?
. This leads us to consider the

more realistic non-translation invariant case caused by the fact that the ES’s follow the equipotential lines created

by the sample edges and the impurity potential. Including this non-translation invariant ES physics leads to the

presence of non-momentum conserving scattering processes increasing the phase space substantially
? ?

. The broken

translation invariance is included into the model of the inter-ES interaction matrix element |V αᾱ
E1�E2� ,E1E2

|2. To avoid

modeling a specific geometry we perform a statistical average over the geometry of the ES’s and thereby introduce the

momentum breaking correlation length �p, which is smaller than the size of the region of relaxation L. For simplicity,

an effective interaction of the form V (x, x
�
) = δ(x− x
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)g(x) is used and it is assumed that the deviation of g(x) from
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leads to the transition E → E + �ω in α. The fluctuation spectra are to lowest order in the interaction and defined

by 2πδ(ω + ω�
)S

a
δUαδUα

(E
�
, E,ω) ≡ �δUα(E,E

�
,ω)(1)δUα(E

�
, E,ω�

)
(1)�, where δU (1)

α ≡ U
(1)
α − �U (1)

α � is the Fourier

transformed operator for the deviation from the average potential to first order in the interaction. The emission

spectrum is found by interchanging the two δUα in the absorption spectrum or equivalently by changing the sign of

ω. Explicitly, the spectra are found to be

S
a
δUαδUα

(E
�
, E,ω) =

h

�
dE

��|V αᾱ
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where the interpretation in terms of emission and absorption spectra is clear. By inserting these into Eq. (3) the

similarity with the collision integral in the Boltzmann equation becomes evident.

Next we wish to calculate δf (2)
α (E). To this end, the inter-ES scattering process (αE1, ᾱE2) → (αE1� , ᾱE2�) needs to

be considered. If the ES’s are perfectly translation invariant, then energy and momentum conservation together reduce

the available one dimensional phase space enormously compared to higher dimensions
?
. This leads us to consider the

more realistic non-translation invariant case caused by the fact that the ES’s follow the equipotential lines created

by the sample edges and the impurity potential. Including this non-translation invariant ES physics leads to the

presence of non-momentum conserving scattering processes increasing the phase space substantially
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. The broken

translation invariance is included into the model of the inter-ES interaction matrix element |V αᾱ
E1�E2� ,E1E2

|2. To avoid

modeling a specific geometry we perform a statistical average over the geometry of the ES’s and thereby introduce the

momentum breaking correlation length �p, which is smaller than the size of the region of relaxation L. For simplicity,

an effective interaction of the form V (x, x
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) = δ(x− x
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)g(x) is used and it is assumed that the deviation of g(x) from
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where the interpretation in terms of emission and absorption spectra is clear. By inserting these into Eq. (3) the

similarity with the collision integral in the Boltzmann equation becomes evident.

Next we wish to calculate δf (2)
α (E). To this end, the inter-ES scattering process (αE1, ᾱE2) → (αE1� , ᾱE2�) needs to

be considered. If the ES’s are perfectly translation invariant, then energy and momentum conservation together reduce

the available one dimensional phase space enormously compared to higher dimensions
?
. This leads us to consider the

more realistic non-translation invariant case caused by the fact that the ES’s follow the equipotential lines created

by the sample edges and the impurity potential. Including this non-translation invariant ES physics leads to the

presence of non-momentum conserving scattering processes increasing the phase space substantially
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. The broken
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αᾱ
E1�E2� ,E1E2

a
†
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E�E��,EE��+�ω|2f0
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where the interpretation in terms of emission and absorption spectra is clear. By inserting these into Eq. (3) the

similarity with the collision integral in the Boltzmann equation becomes evident.

Next we wish to calculate δf (2)
α (E). To this end, the inter-ES scattering process (αE1, ᾱE2) → (αE1� , ᾱE2�) needs to

be considered. If the ES’s are perfectly translation invariant, then energy and momentum conservation together reduce

the available one dimensional phase space enormously compared to higher dimensions
?
. This leads us to consider the

more realistic non-translation invariant case caused by the fact that the ES’s follow the equipotential lines created

by the sample edges and the impurity potential. Including this non-translation invariant ES physics leads to the

presence of non-momentum conserving scattering processes increasing the phase space substantially
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. The broken

translation invariance is included into the model of the inter-ES interaction matrix element |V αᾱ
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|2. To avoid

modeling a specific geometry we perform a statistical average over the geometry of the ES’s and thereby introduce the

momentum breaking correlation length �p, which is smaller than the size of the region of relaxation L. For simplicity,

an effective interaction of the form V (x, x
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) = δ(x− x
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)g(x) is used and it is assumed that the deviation of g(x) from
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ᾱ(E
��
+ �ω)[1− f

0
ᾱ(E

��
)], (4b)

where the interpretation in terms of emission and absorption spectra is clear. By inserting these into Eq. (3) the

similarity with the collision integral in the Boltzmann equation becomes evident.

Next we wish to calculate δf (2)
α (E). To this end, the inter-ES scattering process (αE1, ᾱE2) → (αE1� , ᾱE2�) needs to

be considered. If the ES’s are perfectly translation invariant, then energy and momentum conservation together reduce

the available one dimensional phase space enormously compared to higher dimensions
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. This leads us to consider the

more realistic non-translation invariant case caused by the fact that the ES’s follow the equipotential lines created

by the sample edges and the impurity potential. Including this non-translation invariant ES physics leads to the

presence of non-momentum conserving scattering processes increasing the phase space substantially
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. The broken
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|2. To avoid

modeling a specific geometry we perform a statistical average over the geometry of the ES’s and thereby introduce the

momentum breaking correlation length �p, which is smaller than the size of the region of relaxation L. For simplicity,

an effective interaction of the form V (x, x
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ᾱ(E

��
)], (4b)

where the interpretation in terms of emission and absorption spectra is clear. By inserting these into Eq. (3) the

similarity with the collision integral in the Boltzmann equation becomes evident.

Next we wish to calculate δf (2)
α (E). To this end, the inter-ES scattering process (αE1, ᾱE2) → (αE1� , ᾱE2�) needs to

be considered. If the ES’s are perfectly translation invariant, then energy and momentum conservation together reduce

the available one dimensional phase space enormously compared to higher dimensions
?
. This leads us to consider the

more realistic non-translation invariant case caused by the fact that the ES’s follow the equipotential lines created

by the sample edges and the impurity potential. Including this non-translation invariant ES physics leads to the

presence of non-momentum conserving scattering processes increasing the phase space substantially
? ?

. The broken

translation invariance is included into the model of the inter-ES interaction matrix element |V αᾱ
E1�E2� ,E1E2

|2. To avoid

modeling a specific geometry we perform a statistical average over the geometry of the ES’s and thereby introduce the

momentum breaking correlation length �p, which is smaller than the size of the region of relaxation L. For simplicity,

an effective interaction of the form V (x, x
�
) = δ(x− x

�
)g(x) is used and it is assumed that the deviation of g(x) from

Single level quantum dot
measures the distribution!

2

µ1µ2 (1)
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where the interpretation in terms of emission and absorption spectra is clear. By inserting these into Eq. (3) the

similarity with the collision integral in the Boltzmann equation becomes evident.

Next we wish to calculate δf (2)
α (E). To this end, the inter-ES scattering process (αE1, ᾱE2) → (αE1� , ᾱE2�) needs to

be considered. If the ES’s are perfectly translation invariant, then energy and momentum conservation together reduce

the available one dimensional phase space enormously compared to higher dimensions
?
. This leads us to consider the

more realistic non-translation invariant case caused by the fact that the ES’s follow the equipotential lines created

by the sample edges and the impurity potential. Including this non-translation invariant ES physics leads to the

presence of non-momentum conserving scattering processes increasing the phase space substantially
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momentum breaking correlation length �p, which is smaller than the size of the region of relaxation L. For simplicity,

an effective interaction of the form V (x, x
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)g(x) is used and it is assumed that the deviation of g(x) from

2

µ1µ2 (1)

We describe the ES’s in terms of scattering states χαE(x) with energy E and label α = o, i (i : inner, o : outer).

The inter-ES interaction is given by

Hint =
1

2

�

α

�
dE dE

�
Uα(E

�
, E) a

†
αE�aαE , (2)

where a
†
αE (aαE) is the creation (annihilation) operator for the scattering state χαE and Uα(E

�
, E) is the potential

operator for scattering a particle from E to E
�
in the ES α at the expense of a particle scattering in the opposite ES
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αᾱ
E1�E2� ,E1E2

is the

inter-ES electron-electron interaction matrix element for the scattering process (αE1, ᾱE2) → (αE1� , ᾱE2�). Using
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and T (R) is the transmission (reflection) probability of the QPC, see Fig. ??.
The chemical potential of the inner ES µi can experimentally be tuned independently of µ1 and µ2 by using an
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The first term contains the absorption potential fluctuation spectrum
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of energy �ω by the ES ᾱ while the ES α goes from energy E
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to E. Likewise the second term with the emission

fluctuation spectrum S
e
δUαδUα

describes the emission of energy �ω from the ES ᾱ to the ES α, which consequently

leads to the transition E → E + �ω in α. The fluctuation spectra are to lowest order in the interaction and defined

by 2πδ(ω + ω�
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where the interpretation in terms of emission and absorption spectra is clear. By inserting these into Eq. (4) the

similarity with the collision integral in the Boltzmann equation becomes evident.

Next we wish to calculate δf (2)
α (E). To this end, the inter-ES scattering process (αE1, ᾱE2) → (αE1� , ᾱE2�) needs to

be considered. If the ES’s are perfectly translation invariant, then energy and momentum conservation together reduce

the available one dimensional phase space enormously compared to higher dimensions
?
. This leads us to consider the

more realistic non-translation invariant case caused by the fact that the ES’s follow the equipotential lines created

by the sample edges and the impurity potential. Including this non-translation invariant ES physics leads to the

presence of non-momentum conserving scattering processes increasing the phase space substantially
? ?
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Figure 1 | Experimental implementation of non-equilibrium edge-channel spectroscopy. a, Schematic description of the energy distributions’ fD,S(E)
spectroscopy with a single active electronic level of tunable energy Elev(VG) in the quantum dot. b, The current IQD (∂ IQD/∂VG) is proportional to
fS(E)− fD(E) (∂(fS(E)− fD(E))/∂E) ignoring variations in tunnel rates and tunnelling density of states. c, Electron-beam micrograph of the sample. Surface
metal gates appear brighter. Electronic excitations propagate anticlockwise along two edge channels of the quantum Hall regime. The outer edge channel
(solid white lines) is partly transmitted (dashed lines) across the QPC and the quantum dot. The inner edge channel (not shown) is always reflected. The
QPC is used to drive out-of-equilibrium the drain outer edge channel. Gates partly covered by the insets are grounded and do not influence the electron
paths. Left inset: Non-interacting electrons prediction for fD(E) in the outer edge channel at the output of the QPC. Right inset: Equilibrium Fermi function
fS emitted by a cold ground.

channel heated up. Beyond heating, f (E) is here controllably tuned
out-of-equilibrium. Let us consider one edge channel and assume

it can be mapped onto non-interacting 1DCFs. According to the

scattering approach
5
, the energy distribution at the output of a QPC

of transmission τ is a tunable double step (Fig. 1c, left inset)

fD(E)= τ fD1(E)+ (1−τ )fD2(E) (2)

where fD1 (fD2) is the equilibrium Fermi distribution function

in the partially transmitted (reflected) incoming edge channel of

electrochemical potential shifted by eVD1 (eVD2). In the presence

of edge reconstruction, the above energy distribution applies to

the quasiparticles if internal modes are not excited at the QPC.

On the other hand, if internal modes are excited, there are no

theoretical predictions because a QPC is very difficult to treat

non-perturbatively in their natural bosonic formalism.

The sample shown in Fig. 1c was tailored in a two-dimensional

electron gas realized in a GaAs/Ga(Al)As heterojunction, set to

filling factor two and measured in a dilution refrigerator of base

temperature 30mK. The experiment detailed here focuses on the

outer edge channel represented as a white line. The inner edge

channel (not shown) is fully reflected by the QPC and the quantum

dot. We checked that charge tunnelling between edge channels

is negligible along the 0.8 µm propagation length from the QPC

to the quantum dot.

We first carry out a standard nonlinear quantum-dot

characterization
28
(Fig. 2, top left inset). The two large signal stripes
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Figure 4 | Spectroscopy of an edge channel tuned out-of-equilibrium with the voltage across a QPC. The QPC’s conductance is here fixed to

GQPC ≈0.5e2/h. The data in a and the purple star symbols in c and d were obtained in a third cooldown with a renewed ηG =0.062±5%. a, Surface plot of

∂ IQD/∂VG(δVD,VG). The quantum-dot drain contribution (brighter) splits into two similar dips separated by a gate-voltage difference proportional to δVD.

b, Measured ∂ IQD/∂VG (symbols) for the quantum-dot drain contribution. Data have been shifted vertically for clarity, and horizontally to align the peak

corresponding to the fixed potential VD2. The solid lines are fits assuming fD(E) is the weighted sum of two Fermi functions. c, The symbols are the fit

parameters ηGδVG. The solid line is the prediction for non-interacting 1DCFs. d, Generalized non-equilibrium temperature (symbols) and theoretical

prediction for free 1DCFs (solid line). The good data–prediction agreement demonstrates that internal modes are not excited at the QPC within our

experimental accuracy. e, Energy distributions obtained by integrating the data in b.

where µ is the electrochemical potential and θ(E) is the step
function. Consequently, we measure quantitatively the quasipar-
ticle heat current. The result of this procedure is shown as sym-
bols in Figs 3d and 4d using the generalized non-equilibrium
temperature Tqp ≡

√
6hJ qpE /πkB together with the prediction

T1DCF =√
T 2 +τ (1−τ )3(eδVD/πkB)2 if none of the injected power

is carried on by internal modes (solid lines). We find a good
agreement Tqp � T1DCF without fitting parameters and essentially
in or close to error bars. Hence, within our experimental accuracy,
the propagative internal modes do not contribute to heat transport
and therefore are not excited. Note that the relatively small ob-
served deviations are cooldown dependent, which suggests that the

quantum-dot detector is responsible for these deviations. Indeed,
the data can be more accurately accounted for including a second
active quantum-dot level (see Supplementary Information). Last,
preliminary data show a significant energy redistribution with the
inner edge channel for propagations longer than 2 µm in the probed
energy range. Therefore, the observed small discrepancies could also
result from the finite 0.8 µmpropagation length.

Overall, we demonstrate that QPCs in the quantum Hall regime
are tunable electrical beam splitters for one-dimensional fermions,
that is, rigid edge-channel displacements, (1) by comparing the
energy distribution at a QPC output with predictions of the
scattering approach5, and (2) by showing that internal edge-channel
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µ1µ2 (1)

We describe the ES’s in terms of scattering states χαE(x) with energy E and label α = o, i (i : inner, o : outer).

The inter-ES interaction is given by
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i (E) = f

0
µi
(E) and

f
0
o (E) = (1− T )f

0
µ1
(E) + T f

0
µ2
(E), (3)

T = 1/2 (4)
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where f
0
µ ≡ {1+ exp[(E−µ)/kbT ]}−1

and T (R) is the transmission (reflection) probability of the QPC, see Fig. ??.
The chemical potential of the inner ES µi can experimentally be tuned independently of µ1 and µ2 by using an

additional QPC (not shown in Fig. ??). To second order in the interaction matrix element the distribution is
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α , where (see Supplementary Material
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The first term contains the absorption potential fluctuation spectrum
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describes the emission of energy �ω from the ES ᾱ to the ES α, which consequently
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where the interpretation in terms of emission and absorption spectra is clear. By inserting these into Eq. (7) the

similarity with the collision integral in the Boltzmann equation becomes evident.

Next we wish to calculate δf (2)
α (E). To this end, the inter-ES scattering process (αE1, ᾱE2) → (αE1� , ᾱE2�) needs to

be considered. If the ES’s are perfectly translation invariant, then energy and momentum conservation together reduce

the available one dimensional phase space enormously compared to higher dimensions
?
. This leads us to consider the

more realistic non-translation invariant case caused by the fact that the ES’s follow the equipotential lines created

• But the length of propagation is 0.8 micro meter...

•Fits well with non-interacting scattering theory:
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be found by evaluating �a†αE(t)aαE�(t)� = δ(E−E
�
)fα(E). The non-interacting distributions are f

0
i (E) = f

0
µi
(E) and

f
0
o (E) = (1− T )f

0
µ1
(E) + T f

0
µ2
(E), (3)

T = 1/2 (4)

T = 30mK (5)

µ1 − µ2 = −18, 0, 18, 27, 36, 45, 54µV (6)

where f
0
µ ≡ {1+ exp[(E−µ)/kbT ]}−1

and T (R) is the transmission (reflection) probability of the QPC, see Fig. ??.
The chemical potential of the inner ES µi can experimentally be tuned independently of µ1 and µ2 by using an

additional QPC (not shown in Fig. ??). To second order in the interaction matrix element the distribution is

f
(2)
α = f

0
α + δf (2)

α , where (see Supplementary Material
?

for details)
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The first term contains the absorption potential fluctuation spectrum
?

S
a
δUαδUα

(E,E
�
,ω) describing an absorption

of energy �ω by the ES ᾱ while the ES α goes from energy E
�
to E. Likewise the second term with the emission

fluctuation spectrum S
e
δUαδUα

describes the emission of energy �ω from the ES ᾱ to the ES α, which consequently

leads to the transition E → E + �ω in α. The fluctuation spectra are to lowest order in the interaction and defined

by 2πδ(ω + ω�
)S
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δUαδUα

(E
�
, E,ω) ≡ �δUα(E,E
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,ω)(1)δUα(E

�
, E,ω�

)
(1)�, where δU (1)

α ≡ U
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α − �U (1)

α � is the Fourier

transformed operator for the deviation from the average potential to first order in the interaction. The emission

spectrum is found by interchanging the two δUα in the absorption spectrum or equivalently by changing the sign of

ω. Explicitly, the spectra are found to be
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where the interpretation in terms of emission and absorption spectra is clear. By inserting these into Eq. (7) the

similarity with the collision integral in the Boltzmann equation becomes evident.

Next we wish to calculate δf (2)
α (E). To this end, the inter-ES scattering process (αE1, ᾱE2) → (αE1� , ᾱE2�) needs to

be considered. If the ES’s are perfectly translation invariant, then energy and momentum conservation together reduce

the available one dimensional phase space enormously compared to higher dimensions
?
. This leads us to consider the

more realistic non-translation invariant case caused by the fact that the ES’s follow the equipotential lines created

2

µ1µ2 (1)

We describe the ES’s in terms of scattering states χαE(x) with energy E and label α = o, i (i : inner, o : outer).

The inter-ES interaction is given by
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1

2

�
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�
dE dE

�
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�
, E) a

†
αE�aαE , (2)

where a
†
αE (aαE) is the creation (annihilation) operator for the scattering state χαE and Uα(E

�
, E) is the potential

operator for scattering a particle from E to E
�
in the ES α at the expense of a particle scattering in the opposite ES

ᾱ. Explicitly Uα(E1� , E1, t) =
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dE2dE2�V

αᾱ
E1�E2� ,E1E2

a
†
ᾱE2�

(t)aᾱE2
(t) in the Heisenberg picture and V

αᾱ
E1�E2� ,E1E2

is the

inter-ES electron-electron interaction matrix element for the scattering process (αE1, ᾱE2) → (αE1� , ᾱE2�). Using

the Heisenberg equation of motion i�∂taαE(t) = [aαE(t), H], the electronic distribution function fα(E) in ES α can

be found by evaluating �a†αE(t)aαE�(t)� = δ(E−E
�
)fα(E). The non-interacting distributions are f

0
i (E) = f

0
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(E) and
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0
o (E) = (1− T )f

0
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(E) + T f

0
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(E), (3)

T = 1/2 (4)

T = 30mK (5)

µ1 − µ2 = −18, 0, 18, 27, 36, 45, 54µV (6)

0.8µm (7)

where f
0
µ ≡ {1+ exp[(E−µ)/kbT ]}−1

and T (R) is the transmission (reflection) probability of the QPC, see Fig. ??.
The chemical potential of the inner ES µi can experimentally be tuned independently of µ1 and µ2 by using an

additional QPC (not shown in Fig. ??). To second order in the interaction matrix element the distribution is

f
(2)
α = f

0
α + δf (2)

α , where (see Supplementary Material
?

for details)
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The first term contains the absorption potential fluctuation spectrum
?

S
a
δUαδUα

(E,E
�
,ω) describing an absorption

of energy �ω by the ES ᾱ while the ES α goes from energy E
�
to E. Likewise the second term with the emission

fluctuation spectrum S
e
δUαδUα

describes the emission of energy �ω from the ES ᾱ to the ES α, which consequently

leads to the transition E → E + �ω in α. The fluctuation spectra are to lowest order in the interaction and defined

by 2πδ(ω + ω�
)S
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α � is the Fourier

transformed operator for the deviation from the average potential to first order in the interaction. The emission

spectrum is found by interchanging the two δUα in the absorption spectrum or equivalently by changing the sign of

ω. Explicitly, the spectra are found to be
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where the interpretation in terms of emission and absorption spectra is clear. By inserting these into Eq. (7) the

similarity with the collision integral in the Boltzmann equation becomes evident.

Next we wish to calculate δf (2)
α (E). To this end, the inter-ES scattering process (αE1, ᾱE2) → (αE1� , ᾱE2�) needs to

be considered. If the ES’s are perfectly translation invariant, then energy and momentum conservation together reduce
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µ1 (1)

We describe the ES’s in terms of scattering states χαE(x) with energy E and label α = o, i (i : inner, o : outer).

The inter-ES interaction is given by
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dE dE
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αE�aαE , (2)

where a
†
αE (aαE) is the creation (annihilation) operator for the scattering state χαE and Uα(E
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, E) is the potential

operator for scattering a particle from E to E
�
in the ES α at the expense of a particle scattering in the opposite

ES ᾱ. Explicitly Uα(E1� , E1, t) =
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dE2dE2�V

αᾱ
E1�E2� ,E1E2

a
†
ᾱE2�

(t)aᾱE2
(t) in the Heisenberg picture and V

αᾱ
E1�E2� ,E1E2

is the inter-ES electron-electron interaction matrix element for the scattering process (αE1, ᾱE2) → (αE1� , ᾱE2�).

Using the Heisenberg equation of motion i�∂taαE(t) = [aαE(t), H], the electronic distribution function fα(E) in ES

α can be found by evaluating �a†αE(t)aαE�(t)� = δ(E − E
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)fα(E). The non-interacting distributions are f
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(E), where f
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µ ≡ {1 + exp[(E − µ)/kbT ]}−1

and T (R) is the transmission

(reflection) probability of the QPC, see Fig. ??. The chemical potential of the inner ES µi can experimentally be

tuned independently of µ1 and µ2 by using an additional QPC (not shown in Fig. ??). To second order in the

interaction matrix element the distribution is f
(2)
α = f

0
α + δf (2)

α , where (see Supplementary Material
?

for details)
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The first term contains the absorption potential fluctuation spectrum
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S
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(E,E
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,ω) describing an absorption

of energy �ω by the ES ᾱ while the ES α goes from energy E
�
to E. Likewise the second term with the emission

fluctuation spectrum S
e
δUαδUα

describes the emission of energy �ω from the ES ᾱ to the ES α, which consequently

leads to the transition E → E + �ω in α. The fluctuation spectra are to lowest order in the interaction and defined

by 2πδ(ω + ω�
)S
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α � is the Fourier

transformed operator for the deviation from the average potential to first order in the interaction. The emission
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ᾱ(E
��
+ �ω)[1− f

0
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where the interpretation in terms of emission and absorption spectra is clear. By inserting these into Eq. (3) the

similarity with the collision integral in the Boltzmann equation becomes evident.

Next we wish to calculate δf (2)
α (E). To this end, the inter-ES scattering process (αE1, ᾱE2) → (αE1� , ᾱE2�) needs to

be considered. If the ES’s are perfectly translation invariant, then energy and momentum conservation together reduce

the available one dimensional phase space enormously compared to higher dimensions
?
. This leads us to consider the

more realistic non-translation invariant case caused by the fact that the ES’s follow the equipotential lines created

by the sample edges and the impurity potential. Including this non-translation invariant ES physics leads to the

presence of non-momentum conserving scattering processes increasing the phase space substantially
? ?

. The broken

translation invariance is included into the model of the inter-ES interaction matrix element |V αᾱ
E1�E2� ,E1E2

|2. To avoid

modeling a specific geometry we perform a statistical average over the geometry of the ES’s and thereby introduce the

momentum breaking correlation length �p, which is smaller than the size of the region of relaxation L. For simplicity,

an effective interaction of the form V (x, x
�
) = δ(x− x

�
)g(x) is used and it is assumed that the deviation of g(x) from
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µ1µ2 (1)

We describe the ES’s in terms of scattering states χαE(x) with energy E and label α = o, i (i : inner, o : outer).

The inter-ES interaction is given by
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, E) a

†
αE�aαE , (2)

where a
†
αE (aαE) is the creation (annihilation) operator for the scattering state χαE and Uα(E

�
, E) is the potential

operator for scattering a particle from E to E
�
in the ES α at the expense of a particle scattering in the opposite

ES ᾱ. Explicitly Uα(E1� , E1, t) =
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dE2dE2�V

αᾱ
E1�E2� ,E1E2

a
†
ᾱE2�

(t)aᾱE2
(t) in the Heisenberg picture and V

αᾱ
E1�E2� ,E1E2

is the inter-ES electron-electron interaction matrix element for the scattering process (αE1, ᾱE2) → (αE1� , ᾱE2�).

Using the Heisenberg equation of motion i�∂taαE(t) = [aαE(t), H], the electronic distribution function fα(E) in ES

α can be found by evaluating �a†αE(t)aαE�(t)� = δ(E − E
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)fα(E). The non-interacting distributions are f
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0
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0
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(E), where f
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µ ≡ {1 + exp[(E − µ)/kbT ]}−1

and T (R) is the transmission

(reflection) probability of the QPC, see Fig. ??. The chemical potential of the inner ES µi can experimentally be

tuned independently of µ1 and µ2 by using an additional QPC (not shown in Fig. ??). To second order in the

interaction matrix element the distribution is f
(2)
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0
α + δf (2)

α , where (see Supplementary Material
?

for details)
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The first term contains the absorption potential fluctuation spectrum
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S
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(E,E
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,ω) describing an absorption

of energy �ω by the ES ᾱ while the ES α goes from energy E
�
to E. Likewise the second term with the emission

fluctuation spectrum S
e
δUαδUα

describes the emission of energy �ω from the ES ᾱ to the ES α, which consequently

leads to the transition E → E + �ω in α. The fluctuation spectra are to lowest order in the interaction and defined

by 2πδ(ω + ω�
)S
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α � is the Fourier

transformed operator for the deviation from the average potential to first order in the interaction. The emission

spectrum is found by interchanging the two δUα in the absorption spectrum or equivalently by changing the sign of

ω. Explicitly, the spectra are found to be
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where the interpretation in terms of emission and absorption spectra is clear. By inserting these into Eq. (3) the

similarity with the collision integral in the Boltzmann equation becomes evident.

Next we wish to calculate δf (2)
α (E). To this end, the inter-ES scattering process (αE1, ᾱE2) → (αE1� , ᾱE2�) needs to

be considered. If the ES’s are perfectly translation invariant, then energy and momentum conservation together reduce

the available one dimensional phase space enormously compared to higher dimensions
?
. This leads us to consider the

more realistic non-translation invariant case caused by the fact that the ES’s follow the equipotential lines created

by the sample edges and the impurity potential. Including this non-translation invariant ES physics leads to the

presence of non-momentum conserving scattering processes increasing the phase space substantially
? ?

. The broken

translation invariance is included into the model of the inter-ES interaction matrix element |V αᾱ
E1�E2� ,E1E2

|2. To avoid

modeling a specific geometry we perform a statistical average over the geometry of the ES’s and thereby introduce the

momentum breaking correlation length �p, which is smaller than the size of the region of relaxation L. For simplicity,

an effective interaction of the form V (x, x
�
) = δ(x− x

�
)g(x) is used and it is assumed that the deviation of g(x) from
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For only one edge state the experiments are more difficult....
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µ1µ2 (1)

We describe the ES’s in terms of scattering states χαE(x) with energy E and label α = o, i (i : inner, o : outer).

The inter-ES interaction is given by

Hint =
1

2

�

α

�
dE dE

�
Uα(E

�
, E) a

†
αE�aαE , (2)

where a
†
αE (aαE) is the creation (annihilation) operator for the scattering state χαE and Uα(E

�
, E) is the potential

operator for scattering a particle from E to E
�
in the ES α at the expense of a particle scattering in the opposite ES

ᾱ. Explicitly Uα(E1� , E1, t) =
�
dE2dE2�V

αᾱ
E1�E2� ,E1E2

a
†
ᾱE2�

(t)aᾱE2
(t) in the Heisenberg picture and V

αᾱ
E1�E2� ,E1E2

is the

inter-ES electron-electron interaction matrix element for the scattering process (αE1, ᾱE2) → (αE1� , ᾱE2�). Using

the Heisenberg equation of motion i�∂taαE(t) = [aαE(t), H], the electronic distribution function fα(E) in ES α can

be found by evaluating �a†αE(t)aαE�(t)� = δ(E−E
�
)fα(E). The non-interacting distributions are f

0
i (E) = f

0
µi
(E) and

f
0
o (E) = (1− T )f

0
µ1
(E) + T f

0
µ2
(E), (3)

T = 1/2 (4)

T = 30mK (5)

µ1 − µ2 = −18, 0, 18, 27, 36, 45, 54µV (6)

0.8µm (7)

L = 0.8µm, 2.2µm, 4µm, 10µm, 30µm, (8)

where f
0
µ ≡ {1+ exp[(E−µ)/kbT ]}−1

and T (R) is the transmission (reflection) probability of the QPC, see Fig. ??.
The chemical potential of the inner ES µi can experimentally be tuned independently of µ1 and µ2 by using an

additional QPC (not shown in Fig. ??). To second order in the interaction matrix element the distribution is

f
(2)
α = f

0
α + δf (2)

α , where (see Supplementary Material
?

for details)
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The first term contains the absorption potential fluctuation spectrum
?

S
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(E,E
�
,ω) describing an absorption

of energy �ω by the ES ᾱ while the ES α goes from energy E
�
to E. Likewise the second term with the emission

fluctuation spectrum S
e
δUαδUα

describes the emission of energy �ω from the ES ᾱ to the ES α, which consequently

leads to the transition E → E + �ω in α. The fluctuation spectra are to lowest order in the interaction and defined

by 2πδ(ω + ω�
)S
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,ω)(1)δUα(E

�
, E,ω�

)
(1)�, where δU (1)
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α � is the Fourier

transformed operator for the deviation from the average potential to first order in the interaction. The emission

spectrum is found by interchanging the two δUα in the absorption spectrum or equivalently by changing the sign of
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where the interpretation in terms of emission and absorption spectra is clear. By inserting these into Eq. (3) the

similarity with the collision integral in the Boltzmann equation becomes evident.

Next we wish to calculate δf (2)
α (E). To this end, the inter-ES scattering process (αE1, ᾱE2) → (αE1� , ᾱE2�) needs to
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where the interpretation in terms of emission and absorption spectra is clear. By inserting these into Eq. (3) the

similarity with the collision integral in the Boltzmann equation becomes evident.

Next we wish to calculate δf (2)
α (E). To this end, the inter-ES scattering process (αE1, ᾱE2) → (αE1� , ᾱE2�) needs to

be considered. If the ES’s are perfectly translation invariant, then energy and momentum conservation together reduce

the available one dimensional phase space enormously compared to higher dimensions
?
. This leads us to consider the

more realistic non-translation invariant case caused by the fact that the ES’s follow the equipotential lines created

by the sample edges and the impurity potential. Including this non-translation invariant ES physics leads to the

presence of non-momentum conserving scattering processes increasing the phase space substantially
? ?

. The broken

translation invariance is included into the model of the inter-ES interaction matrix element |V αᾱ
E1�E2� ,E1E2

|2. To avoid

modeling a specific geometry we perform a statistical average over the geometry of the ES’s and thereby introduce the

momentum breaking correlation length �p, which is smaller than the size of the region of relaxation L. For simplicity,

an effective interaction of the form V (x, x
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) = δ(x− x
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)g(x) is used and it is assumed that the deviation of g(x) from
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E�E��+�ω,EE�� |2f0
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where the interpretation in terms of emission and absorption spectra is clear. By inserting these into Eq. (3) the

similarity with the collision integral in the Boltzmann equation becomes evident.
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ᾱ. Explicitly Uα(E1� , E1, t) =
�
dE2dE2�V

αᾱ
E1�E2� ,E1E2

a
†
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where the interpretation in terms of emission and absorption spectra is clear. By inserting these into Eq. (3) the

similarity with the collision integral in the Boltzmann equation becomes evident.
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ᾱ. Explicitly Uα(E1� , E1, t) =
�
dE2dE2�V

αᾱ
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E�E��,EE��+�ω|2f0
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ᾱE2�

(t)aᾱE2
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where f
0
µ ≡ {1+ exp[(E−µ)/kbT ]}−1

and T (R) is the transmission (reflection) probability of the QPC, see Fig. ??.
The chemical potential of the inner ES µi can experimentally be tuned independently of µ1 and µ2 by using an

additional QPC (not shown in Fig. ??). To second order in the interaction matrix element the distribution is

f
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α , where (see Supplementary Material
?

for details)
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The first term contains the absorption potential fluctuation spectrum
?

S
a
δUαδUα

(E,E
�
,ω) describing an absorption

of energy �ω by the ES ᾱ while the ES α goes from energy E
�
to E. Likewise the second term with the emission

fluctuation spectrum S
e
δUαδUα

describes the emission of energy �ω from the ES ᾱ to the ES α, which consequently

leads to the transition E → E + �ω in α. The fluctuation spectra are to lowest order in the interaction and defined

by 2πδ(ω + ω�
)S

a
δUαδUα

(E
�
, E,ω) ≡ �δUα(E,E

�
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)
(1)�, where δU (1)
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(1)
α − �U (1)

α � is the Fourier

transformed operator for the deviation from the average potential to first order in the interaction. The emission

spectrum is found by interchanging the two δUα in the absorption spectrum or equivalently by changing the sign of

ω. Explicitly, the spectra are found to be
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where the interpretation in terms of emission and absorption spectra is clear. By inserting these into Eq. (11) the

Loses energy Gains energy



Relaxation due to inter edge state interaction
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µ1µ2 (1)

We describe the ES’s in terms of scattering states χαE(x) with energy E and label α = o, i (i : inner, o : outer).
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where a
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ᾱE2�

(t)aᾱE2
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αᾱ
E1�E2� ,E1E2

is the
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be found by evaluating �a†αE(t)aαE�(t)� = δ(E−E
�
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µ1 − µ2 = −18, 0, 18, 27, 36, 45, 54µV (6)

0.8µm (7)

L = 0.8µm, 2.2µm, 4µm, 10µm, 30µm, (8)

where f
0
µ ≡ {1+ exp[(E−µ)/kbT ]}−1

and T (R) is the transmission (reflection) probability of the QPC, see Fig. ??.
The chemical potential of the inner ES µi can experimentally be tuned independently of µ1 and µ2 by using an

additional QPC (not shown in Fig. ??). To second order in the interaction matrix element the distribution is
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α , where (see Supplementary Material
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for details)
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The first term contains the absorption potential fluctuation spectrum
?

S
a
δUαδUα

(E,E
�
,ω) describing an absorption

of energy �ω by the ES ᾱ while the ES α goes from energy E
�
to E. Likewise the second term with the emission

fluctuation spectrum S
e
δUαδUα

describes the emission of energy �ω from the ES ᾱ to the ES α, which consequently

leads to the transition E → E + �ω in α. The fluctuation spectra are to lowest order in the interaction and defined

by 2πδ(ω + ω�
)S
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(1)�, where δU (1)

α ≡ U
(1)
α − �U (1)

α � is the Fourier

transformed operator for the deviation from the average potential to first order in the interaction. The emission

spectrum is found by interchanging the two δUα in the absorption spectrum or equivalently by changing the sign of

ω. Explicitly, the spectra are found to be
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where the interpretation in terms of emission and absorption spectra is clear. By inserting these into Eq. (3) the

similarity with the collision integral in the Boltzmann equation becomes evident.

Next we wish to calculate δf (2)
α (E). To this end, the inter-ES scattering process (αE1, ᾱE2) → (αE1� , ᾱE2�) needs to
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where a
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αE (aαE) is the creation (annihilation) operator for the scattering state χαE and Uα(E
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, E) is the potential
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in the ES α at the expense of a particle scattering in the opposite ES
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†
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(t) in the Heisenberg picture and V

αᾱ
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is the

inter-ES electron-electron interaction matrix element for the scattering process (αE1, ᾱE2) → (αE1� , ᾱE2�). Using

the Heisenberg equation of motion i�∂taαE(t) = [aαE(t), H], the electronic distribution function fα(E) in ES α can

be found by evaluating �a†αE(t)aαE�(t)� = δ(E−E
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)fα(E). The non-interacting distributions are f
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(E) and
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µ1 − µ2 = −18, 0, 18, 27, 36, 45, 54µV (6)

0.8µm (7)

L = 0.8µm, 2.2µm, 4µm, 10µm, 30µm, (8)

where f
0
µ ≡ {1+ exp[(E−µ)/kbT ]}−1

and T (R) is the transmission (reflection) probability of the QPC, see Fig. ??.
The chemical potential of the inner ES µi can experimentally be tuned independently of µ1 and µ2 by using an

additional QPC (not shown in Fig. ??). To second order in the interaction matrix element the distribution is

f
(2)
α = f

0
α + δf (2)

α , where (see Supplementary Material
?

for details)

δf (2)
α (E) =
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. (9)

The first term contains the absorption potential fluctuation spectrum
?

S
a
δUαδUα

(E,E
�
,ω) describing an absorption

of energy �ω by the ES ᾱ while the ES α goes from energy E
�
to E. Likewise the second term with the emission

fluctuation spectrum S
e
δUαδUα

describes the emission of energy �ω from the ES ᾱ to the ES α, which consequently

leads to the transition E → E + �ω in α. The fluctuation spectra are to lowest order in the interaction and defined

by 2πδ(ω + ω�
)S

a
δUαδUα

(E
�
, E,ω) ≡ �δUα(E,E

�
,ω)(1)δUα(E
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, E,ω�

)
(1)�, where δU (1)

α ≡ U
(1)
α − �U (1)

α � is the Fourier

transformed operator for the deviation from the average potential to first order in the interaction. The emission

spectrum is found by interchanging the two δUα in the absorption spectrum or equivalently by changing the sign of

ω. Explicitly, the spectra are found to be
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, E,ω) =
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where the interpretation in terms of emission and absorption spectra is clear. By inserting these into Eq. (3) the

similarity with the collision integral in the Boltzmann equation becomes evident.

Next we wish to calculate δf (2)
α (E). To this end, the inter-ES scattering process (αE1, ᾱE2) → (αE1� , ᾱE2�) needs to

Basic scattering process: 
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We describe the ES’s in terms of scattering states χαE(x) with energy E and label α = o, i (i : inner, o : outer).
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where a
†
αE (aαE) is the creation (annihilation) operator for the scattering state χαE and Uα(E

�
, E) is the potential

operator for scattering a particle from E to E
�
in the ES α at the expense of a particle scattering in the opposite ES

ᾱ. Explicitly Uα(E1� , E1, t) =
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(t) in the Heisenberg picture and V

αᾱ
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inter-ES electron-electron interaction matrix element for the scattering process (αE1, ᾱE2) → (αE1� , ᾱE2�). Using

the Heisenberg equation of motion i�∂taαE(t) = [aαE(t), H], the electronic distribution function fα(E) in ES α can
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where f
0
µ ≡ {1+ exp[(E−µ)/kbT ]}−1

and T (R) is the transmission (reflection) probability of the QPC, see Fig. ??.
The chemical potential of the inner ES µi can experimentally be tuned independently of µ1 and µ2 by using an

additional QPC (not shown in Fig. ??). To second order in the interaction matrix element the distribution is
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α , where (see Supplementary Material
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for details)
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The first term contains the absorption potential fluctuation spectrum
?

S
a
δUαδUα

(E,E
�
,ω) describing an absorption

of energy �ω by the ES ᾱ while the ES α goes from energy E
�
to E. Likewise the second term with the emission

fluctuation spectrum S
e
δUαδUα

describes the emission of energy �ω from the ES ᾱ to the ES α, which consequently

leads to the transition E → E + �ω in α. The fluctuation spectra are to lowest order in the interaction and defined

by 2πδ(ω + ω�
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transformed operator for the deviation from the average potential to first order in the interaction. The emission
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E�E��+�ω,EE�� |2f0
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where the interpretation in terms of emission and absorption spectra is clear. By inserting these into Eq. (11) the
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be found by evaluating �a†αE(t)aαE�(t)� = δ(E−E
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where f
0
µ ≡ {1+ exp[(E−µ)/kbT ]}−1

and T (R) is the transmission (reflection) probability of the QPC, see Fig. ??.
The chemical potential of the inner ES µi can experimentally be tuned independently of µ1 and µ2 by using an

additional QPC (not shown in Fig. ??). To second order in the interaction matrix element the distribution is

f
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α = f

0
α + δf (2)

α , where (see Supplementary Material
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for details)
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The first term contains the absorption potential fluctuation spectrum
?

S
a
δUαδUα

(E,E
�
,ω) describing an absorption

of energy �ω by the ES ᾱ while the ES α goes from energy E
�
to E. Likewise the second term with the emission

fluctuation spectrum S
e
δUαδUα

describes the emission of energy �ω from the ES ᾱ to the ES α, which consequently

leads to the transition E → E + �ω in α. The fluctuation spectra are to lowest order in the interaction and defined

by 2πδ(ω + ω�
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α � is the Fourier

transformed operator for the deviation from the average potential to first order in the interaction. The emission

spectrum is found by interchanging the two δUα in the absorption spectrum or equivalently by changing the sign of

ω. Explicitly, the spectra are found to be
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where the interpretation in terms of emission and absorption spectra is clear. By inserting these into Eq. (11) the
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Lack of translational invariance??

2

µ1 (1)

We describe the ES’s in terms of scattering states χαE(x) with energy E and label α = o, i (i : inner, o : outer).

The inter-ES interaction is given by

Hint =
1

2

�

α

�
dE dE

�
Uα(E

�
, E) a

†
αE�aαE , (2)

where a
†
αE (aαE) is the creation (annihilation) operator for the scattering state χαE and Uα(E

�
, E) is the potential

operator for scattering a particle from E to E
�
in the ES α at the expense of a particle scattering in the opposite

ES ᾱ. Explicitly Uα(E1� , E1, t) =
�
dE2dE2�V

αᾱ
E1�E2� ,E1E2

a
†
ᾱE2�

(t)aᾱE2
(t) in the Heisenberg picture and V

αᾱ
E1�E2� ,E1E2

is the inter-ES electron-electron interaction matrix element for the scattering process (αE1, ᾱE2) → (αE1� , ᾱE2�).

Using the Heisenberg equation of motion i�∂taαE(t) = [aαE(t), H], the electronic distribution function fα(E) in ES

α can be found by evaluating �a†αE(t)aαE�(t)� = δ(E − E
�
)fα(E). The non-interacting distributions are f

0
i (E) =

f
0
µi
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0
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0
µ1
(E) + T f

0
µ2
(E), where f

0
µ ≡ {1 + exp[(E − µ)/kbT ]}−1

and T (R) is the transmission

(reflection) probability of the QPC, see Fig. ??. The chemical potential of the inner ES µi can experimentally be

tuned independently of µ1 and µ2 by using an additional QPC (not shown in Fig. ??). To second order in the

interaction matrix element the distribution is f
(2)
α = f

0
α + δf (2)

α , where (see Supplementary Material
?

for details)
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The first term contains the absorption potential fluctuation spectrum
?

S
a
δUαδUα

(E,E
�
,ω) describing an absorption

of energy �ω by the ES ᾱ while the ES α goes from energy E
�
to E. Likewise the second term with the emission

fluctuation spectrum S
e
δUαδUα

describes the emission of energy �ω from the ES ᾱ to the ES α, which consequently

leads to the transition E → E + �ω in α. The fluctuation spectra are to lowest order in the interaction and defined

by 2πδ(ω + ω�
)S
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δUαδUα
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, E,ω) ≡ �δUα(E,E

�
,ω)(1)δUα(E

�
, E,ω�

)
(1)�, where δU (1)

α ≡ U
(1)
α − �U (1)

α � is the Fourier

transformed operator for the deviation from the average potential to first order in the interaction. The emission

spectrum is found by interchanging the two δUα in the absorption spectrum or equivalently by changing the sign of
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S
a
δUαδUα

(E
�
, E,ω) =

h

�
dE

��|V αᾱ
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where the interpretation in terms of emission and absorption spectra is clear. By inserting these into Eq. (3) the

similarity with the collision integral in the Boltzmann equation becomes evident.

Next we wish to calculate δf (2)
α (E). To this end, the inter-ES scattering process (αE1, ᾱE2) → (αE1� , ᾱE2�) needs to

be considered. If the ES’s are perfectly translation invariant, then energy and momentum conservation together reduce

the available one dimensional phase space enormously compared to higher dimensions
?
. This leads us to consider the

more realistic non-translation invariant case caused by the fact that the ES’s follow the equipotential lines created

by the sample edges and the impurity potential. Including this non-translation invariant ES physics leads to the

presence of non-momentum conserving scattering processes increasing the phase space substantially
? ?

. The broken

translation invariance is included into the model of the inter-ES interaction matrix element |V αᾱ
E1�E2� ,E1E2

|2. To avoid

modeling a specific geometry we perform a statistical average over the geometry of the ES’s and thereby introduce the

momentum breaking correlation length �p, which is smaller than the size of the region of relaxation L. For simplicity,

an effective interaction of the form V (x, x
�
) = δ(x− x

�
)g(x) is used and it is assumed that the deviation of g(x) from

2

µ1µ2 (1)

We describe the ES’s in terms of scattering states χαE(x) with energy E and label α = o, i (i : inner, o : outer).

The inter-ES interaction is given by

Hint =
1

2

�

α

�
dE dE

�
Uα(E

�
, E) a

†
αE�aαE , (2)

where a
†
αE (aαE) is the creation (annihilation) operator for the scattering state χαE and Uα(E

�
, E) is the potential

operator for scattering a particle from E to E
�
in the ES α at the expense of a particle scattering in the opposite

ES ᾱ. Explicitly Uα(E1� , E1, t) =
�
dE2dE2�V

αᾱ
E1�E2� ,E1E2

a
†
ᾱE2�

(t)aᾱE2
(t) in the Heisenberg picture and V

αᾱ
E1�E2� ,E1E2

is the inter-ES electron-electron interaction matrix element for the scattering process (αE1, ᾱE2) → (αE1� , ᾱE2�).

Using the Heisenberg equation of motion i�∂taαE(t) = [aαE(t), H], the electronic distribution function fα(E) in ES

α can be found by evaluating �a†αE(t)aαE�(t)� = δ(E − E
�
)fα(E). The non-interacting distributions are f

0
i (E) =

f
0
µi
(E) and f

0
o (E) = Rf

0
µ1
(E) + T f

0
µ2
(E), where f

0
µ ≡ {1 + exp[(E − µ)/kbT ]}−1

and T (R) is the transmission

(reflection) probability of the QPC, see Fig. ??. The chemical potential of the inner ES µi can experimentally be

tuned independently of µ1 and µ2 by using an additional QPC (not shown in Fig. ??). To second order in the

interaction matrix element the distribution is f
(2)
α = f

0
α + δf (2)

α , where (see Supplementary Material
?

for details)

δf (2)
α (E) =

2π

� ∞

−∞
dω
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α(E)]S

a
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δUαδUα
(E + �ω, E,ω)

�
. (3)

The first term contains the absorption potential fluctuation spectrum
?

S
a
δUαδUα

(E,E
�
,ω) describing an absorption

of energy �ω by the ES ᾱ while the ES α goes from energy E
�
to E. Likewise the second term with the emission

fluctuation spectrum S
e
δUαδUα

describes the emission of energy �ω from the ES ᾱ to the ES α, which consequently

leads to the transition E → E + �ω in α. The fluctuation spectra are to lowest order in the interaction and defined

by 2πδ(ω + ω�
)S

a
δUαδUα

(E
�
, E,ω) ≡ �δUα(E,E

�
,ω)(1)δUα(E

�
, E,ω�

)
(1)�, where δU (1)

α ≡ U
(1)
α − �U (1)

α � is the Fourier

transformed operator for the deviation from the average potential to first order in the interaction. The emission

spectrum is found by interchanging the two δUα in the absorption spectrum or equivalently by changing the sign of

ω. Explicitly, the spectra are found to be

S
a
δUαδUα

(E
�
, E,ω) =
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�
dE

��|V αᾱ
E�E��+�ω,EE�� |2f0

ᾱ(E
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)[1− f
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ᾱ(E
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0
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)], (4b)

where the interpretation in terms of emission and absorption spectra is clear. By inserting these into Eq. (3) the

similarity with the collision integral in the Boltzmann equation becomes evident.

Next we wish to calculate δf (2)
α (E). To this end, the inter-ES scattering process (αE1, ᾱE2) → (αE1� , ᾱE2�) needs to

be considered. If the ES’s are perfectly translation invariant, then energy and momentum conservation together reduce

the available one dimensional phase space enormously compared to higher dimensions
?
. This leads us to consider the

more realistic non-translation invariant case caused by the fact that the ES’s follow the equipotential lines created

by the sample edges and the impurity potential. Including this non-translation invariant ES physics leads to the

presence of non-momentum conserving scattering processes increasing the phase space substantially
? ?

. The broken

translation invariance is included into the model of the inter-ES interaction matrix element |V αᾱ
E1�E2� ,E1E2

|2. To avoid

modeling a specific geometry we perform a statistical average over the geometry of the ES’s and thereby introduce the

momentum breaking correlation length �p, which is smaller than the size of the region of relaxation L. For simplicity,

an effective interaction of the form V (x, x
�
) = δ(x− x

�
)g(x) is used and it is assumed that the deviation of g(x) from

QPC QD

Yes, Real edge state follow the equipotential lines!
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Relaxation description
Scattering basis states:

2

µ1µ2 (1)

We describe the ES’s in terms of scattering states χαE(x) with energy E and label α = o, i (i : inner, o : outer).

The inter-ES interaction is given by

Hint =
1

2

�

α

�
dE dE

�
Uα(E

�
, E) a

†
αE�aαE , (2)

where a
†
αE (aαE) is the creation (annihilation) operator for the scattering state χαE and Uα(E

�
, E) is the potential

operator for scattering a particle from E to E
�
in the ES α at the expense of a particle scattering in the opposite ES

ᾱ. Explicitly Uα(E1� , E1, t) =
�
dE2dE2�V

αᾱ
E1�E2� ,E1E2

a
†
ᾱE2�

(t)aᾱE2
(t) in the Heisenberg picture and V

αᾱ
E1�E2� ,E1E2

is the

inter-ES electron-electron interaction matrix element for the scattering process (αE1, ᾱE2) → (αE1� , ᾱE2�). Using

the Heisenberg equation of motion i�∂taαE(t) = [aαE(t), H], the electronic distribution function fα(E) in ES α can

be found by evaluating �a†αE(t)aαE�(t)� = δ(E−E
�
)fα(E). The non-interacting distributions are f

0
i (E) = f

0
µi
(E) and

f
0
o (E) = (1− T )f

0
µ1
(E) + T f

0
µ2
(E), (3)

T = 1/2 (4)

T = 30mK (5)

µ1 − µ2 = −18, 0, 18, 27, 36, 45, 54µV (6)

0.8µm (7)

L = 0.8µm, 2.2µm, 4µm, 10µm, 30µm, (8)

f
0
outer(E) f

0
inner(E) (9)

(10)

where f
0
µ ≡ {1+ exp[(E−µ)/kbT ]}−1

and T (R) is the transmission (reflection) probability of the QPC, see Fig. ??.
The chemical potential of the inner ES µi can experimentally be tuned independently of µ1 and µ2 by using an

additional QPC (not shown in Fig. ??). To second order in the interaction matrix element the distribution is

f
(2)
α = f

0
α + δf (2)

α , where (see Supplementary Material
?

for details)

δf (2)
α (E) =

2π

� ∞

−∞
dω
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f
0
α(E + �ω)[1− f

0
α(E)]S
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(E,E + �ω,ω)
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δUαδUα
(E + �ω, E,ω)

�
. (11)

The first term contains the absorption potential fluctuation spectrum
?

S
a
δUαδUα

(E,E
�
,ω) describing an absorption

of energy �ω by the ES ᾱ while the ES α goes from energy E
�
to E. Likewise the second term with the emission

fluctuation spectrum S
e
δUαδUα

describes the emission of energy �ω from the ES ᾱ to the ES α, which consequently

leads to the transition E → E + �ω in α. The fluctuation spectra are to lowest order in the interaction and defined

by 2πδ(ω + ω�
)S

a
δUαδUα

(E
�
, E,ω) ≡ �δUα(E,E

�
,ω)(1)δUα(E

�
, E,ω�

)
(1)�, where δU (1)

α ≡ U
(1)
α − �U (1)

α � is the Fourier

transformed operator for the deviation from the average potential to first order in the interaction. The emission

spectrum is found by interchanging the two δUα in the absorption spectrum or equivalently by changing the sign of

ω. Explicitly, the spectra are found to be

S
a
δUαδUα

(E
�
, E,ω) =

h

�
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��
)], (12b)

where the interpretation in terms of emission and absorption spectra is clear. By inserting these into Eq. (11) the

2

µ1µ2 (1)

We describe the ES’s in terms of scattering states χαE(x) with energy E and label α = o, i (i : inner, o : outer).

The inter-ES interaction is given by

Hint =
1

2

�

α

�
dE dE

�
Uα(E

�
, E) a

†
αE�aαE , (2)

where a
†
αE (aαE) is the creation (annihilation) operator for the scattering state χαE and Uα(E

�
, E) is the potential

operator for scattering a particle from E to E
�
in the ES α at the expense of a particle scattering in the opposite ES

ᾱ. Explicitly Uα(E1� , E1, t) =
�
dE2dE2�V

αᾱ
E1�E2� ,E1E2

a
†
ᾱE2�

(t)aᾱE2
(t) in the Heisenberg picture and V

αᾱ
E1�E2� ,E1E2

is the

inter-ES electron-electron interaction matrix element for the scattering process (αE1, ᾱE2) → (αE1� , ᾱE2�). Using

the Heisenberg equation of motion i�∂taαE(t) = [aαE(t), H], the electronic distribution function fα(E) in ES α can

be found by evaluating �a†αE(t)aαE�(t)� = δ(E−E
�
)fα(E). The non-interacting distributions are f

0
i (E) = f

0
µi
(E) and

f
0
o (E) = (1− T )f

0
µ1
(E) + T f

0
µ2
(E), (3)

T = 1/2 (4)

T = 30mK (5)

µ1 − µ2 = −18, 0, 18, 27, 36, 45, 54µV (6)

0.8µm (7)

L = 0.8µm, 2.2µm, 4µm, 10µm, 30µm, (8)

f
0
outer(E) f

0
inner(E) (9)

(10)

where f
0
µ ≡ {1+ exp[(E−µ)/kbT ]}−1

and T (R) is the transmission (reflection) probability of the QPC, see Fig. ??.
The chemical potential of the inner ES µi can experimentally be tuned independently of µ1 and µ2 by using an

additional QPC (not shown in Fig. ??). To second order in the interaction matrix element the distribution is

f
(2)
α = f

0
α + δf (2)

α , where (see Supplementary Material
?

for details)

δf (2)
α (E) =

2π

� ∞

−∞
dω

�
f
0
α(E + �ω)[1− f

0
α(E)]S

a
δUαδUα

(E,E + �ω,ω)

− f
0
α(E)[1− f

0
α(E + �ω)]Se

δUαδUα
(E + �ω, E,ω)

�
. (11)

The first term contains the absorption potential fluctuation spectrum
?

S
a
δUαδUα

(E,E
�
,ω) describing an absorption

of energy �ω by the ES ᾱ while the ES α goes from energy E
�
to E. Likewise the second term with the emission

fluctuation spectrum S
e
δUαδUα

describes the emission of energy �ω from the ES ᾱ to the ES α, which consequently

leads to the transition E → E + �ω in α. The fluctuation spectra are to lowest order in the interaction and defined

by 2πδ(ω + ω�
)S

a
δUαδUα

(E
�
, E,ω) ≡ �δUα(E,E

�
,ω)(1)δUα(E

�
, E,ω�

)
(1)�, where δU (1)

α ≡ U
(1)
α − �U (1)

α � is the Fourier

transformed operator for the deviation from the average potential to first order in the interaction. The emission

spectrum is found by interchanging the two δUα in the absorption spectrum or equivalently by changing the sign of

ω. Explicitly, the spectra are found to be

S
a
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(E
�
, E,ω) =

h

�
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��|V αᾱ
E�E��+�ω,EE�� |2f0

ᾱ(E
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)[1− f

0
ᾱ(E
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(E
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, E,ω) =

h

�
dE

��|V αᾱ
E�E��,EE��+�ω|2f0

ᾱ(E
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+ �ω)[1− f

0
ᾱ(E

��
)], (12b)

where the interpretation in terms of emission and absorption spectra is clear. By inserting these into Eq. (11) the

Hamiltonian: 

2

µ1µ2 (1)

We describe the ES’s in terms of scattering states χαE(x) with energy E and label α = o, i (i : inner, o : outer).

The inter-ES interaction is given by

Hint =
1

2

�

α

�
dE dE

�
Uα(E

�
, E) a

†
αE�aαE , (2)

H = H0 +Hint (3)

H0 =

�

α

�
dE E a

†
αEaαE
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1
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�

α

�
dE1dE2dE1�dE2�V

αᾱ
E1�E2� ,E1E2

a
†
αE1�

a
†
ᾱE2�

aᾱE2
aαE1

(4)

where a
†
αE (aαE) is the creation (annihilation) operator for the scattering state χαE and Uα(E

�
, E) is the potential

operator for scattering a particle from E to E
�
in the ES α at the expense of a particle scattering in the opposite ES

ᾱ. Explicitly Uα(E1� , E1, t) =
�
dE2dE2�V

αᾱ
E1�E2� ,E1E2

a
†
ᾱE2�

(t)aᾱE2
(t) in the Heisenberg picture and V

αᾱ
E1�E2� ,E1E2

is the

inter-ES electron-electron interaction matrix element for the scattering process (αE1, ᾱE2) → (αE1� , ᾱE2�). Using

the Heisenberg equation of motion i�∂taαE(t) = [aαE(t), H], the electronic distribution function fα(E) in ES α can

be found by evaluating �a†αE(t)aαE�(t)� = δ(E−E
�
)fα(E). The non-interacting distributions are f

0
i (E) = f

0
µi
(E) and

f
0
o (E) = (1− T )f

0
µ1
(E) + T f

0
µ2
(E), (5)

T = 1/2 (6)

T = 30mK (7)

µ1 − µ2 = −18, 0, 18, 27, 36, 45, 54µV (8)

0.8µm (9)

L = 0.8µm, 2.2µm, 4µm, 10µm, 30µm, (10)

f
0
outer(E) f

0
inner(E) (11)

(12)

where f
0
µ ≡ {1+ exp[(E−µ)/kbT ]}−1

and T (R) is the transmission (reflection) probability of the QPC, see Fig. ??.
The chemical potential of the inner ES µi can experimentally be tuned independently of µ1 and µ2 by using an

additional QPC (not shown in Fig. ??). To second order in the interaction matrix element the distribution is

f
(2)
α = f

0
α + δf (2)

α , where (see Supplementary Material
?

for details)

δf (2)
α (E) =

2π

� ∞

−∞
dω

�
f
0
α(E + �ω)[1− f

0
α(E)]S
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(E,E + �ω,ω)

− f
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0
α(E + �ω)]Se

δUαδUα
(E + �ω, E,ω)

�
. (13)

The first term contains the absorption potential fluctuation spectrum
?

S
a
δUαδUα

(E,E
�
,ω) describing an absorption

of energy �ω by the ES ᾱ while the ES α goes from energy E
�
to E. Likewise the second term with the emission

fluctuation spectrum S
e
δUαδUα

describes the emission of energy �ω from the ES ᾱ to the ES α, which consequently

leads to the transition E → E + �ω in α. The fluctuation spectra are to lowest order in the interaction and defined

by 2πδ(ω + ω�
)S

a
δUαδUα

(E
�
, E,ω) ≡ �δUα(E,E

�
,ω)(1)δUα(E

�
, E,ω�

)
(1)�, where δU (1)

α ≡ U
(1)
α − �U (1)

α � is the Fourier

transformed operator for the deviation from the average potential to first order in the interaction. The emission

spectrum is found by interchanging the two δUα in the absorption spectrum or equivalently by changing the sign of

Single-particle part: 

2

µ1µ2 (1)

We describe the ES’s in terms of scattering states χαE(x) with energy E and label α = o, i (i : inner, o : outer).

The inter-ES interaction is given by

Hint =
1

2

�

α

�
dE dE

�
Uα(E

�
, E) a

†
αE�aαE , (2)

H = H0 +Hint (3)

H0 =

�

α

�
dE E a

†
αEaαE
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�
dE1dE2dE1�dE2�V
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E1�E2� ,E1E2
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†
αE1�
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†
ᾱE2�

aᾱE2
aαE1

(4)

where a
†
αE (aαE) is the creation (annihilation) operator for the scattering state χαE and Uα(E

�
, E) is the potential

operator for scattering a particle from E to E
�
in the ES α at the expense of a particle scattering in the opposite ES

ᾱ. Explicitly Uα(E1� , E1, t) =
�
dE2dE2�V

αᾱ
E1�E2� ,E1E2

a
†
ᾱE2�

(t)aᾱE2
(t) in the Heisenberg picture and V

αᾱ
E1�E2� ,E1E2

is the

inter-ES electron-electron interaction matrix element for the scattering process (αE1, ᾱE2) → (αE1� , ᾱE2�). Using

the Heisenberg equation of motion i�∂taαE(t) = [aαE(t), H], the electronic distribution function fα(E) in ES α can

be found by evaluating �a†αE(t)aαE�(t)� = δ(E−E
�
)fα(E). The non-interacting distributions are f

0
i (E) = f

0
µi
(E) and

f
0
o (E) = (1− T )f

0
µ1
(E) + T f

0
µ2
(E), (5)

T = 1/2 (6)

T = 30mK (7)

µ1 − µ2 = −18, 0, 18, 27, 36, 45, 54µV (8)

0.8µm (9)

L = 0.8µm, 2.2µm, 4µm, 10µm, 30µm, (10)

f
0
outer(E) f

0
inner(E) (11)

(12)

where f
0
µ ≡ {1+ exp[(E−µ)/kbT ]}−1

and T (R) is the transmission (reflection) probability of the QPC, see Fig. ??.
The chemical potential of the inner ES µi can experimentally be tuned independently of µ1 and µ2 by using an

additional QPC (not shown in Fig. ??). To second order in the interaction matrix element the distribution is

f
(2)
α = f

0
α + δf (2)

α , where (see Supplementary Material
?

for details)

δf (2)
α (E) =

2π
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−∞
dω

�
f
0
α(E + �ω)[1− f
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(E + �ω, E,ω)
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. (13)

The first term contains the absorption potential fluctuation spectrum
?

S
a
δUαδUα

(E,E
�
,ω) describing an absorption

of energy �ω by the ES ᾱ while the ES α goes from energy E
�
to E. Likewise the second term with the emission

fluctuation spectrum S
e
δUαδUα

describes the emission of energy �ω from the ES ᾱ to the ES α, which consequently

leads to the transition E → E + �ω in α. The fluctuation spectra are to lowest order in the interaction and defined

by 2πδ(ω + ω�
)S

a
δUαδUα
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, E,ω) ≡ �δUα(E,E

�
,ω)(1)δUα(E

�
, E,ω�

)
(1)�, where δU (1)

α ≡ U
(1)
α − �U (1)

α � is the Fourier

transformed operator for the deviation from the average potential to first order in the interaction. The emission

spectrum is found by interchanging the two δUα in the absorption spectrum or equivalently by changing the sign of

Inter edge state interaction:

2

µ1µ2 (1)

We describe the ES’s in terms of scattering states χαE(x) with energy E and label α = o, i (i : inner, o : outer).

The inter-ES interaction is given by
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1
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dE dE

�
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�
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†
αE�aαE , (2)

H = H0 +Hint (3)

H0 =
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(4)

where a
†
αE (aαE) is the creation (annihilation) operator for the scattering state χαE and Uα(E

�
, E) is the potential

operator for scattering a particle from E to E
�
in the ES α at the expense of a particle scattering in the opposite ES

ᾱ. Explicitly Uα(E1� , E1, t) =
�
dE2dE2�V

αᾱ
E1�E2� ,E1E2

a
†
ᾱE2�

(t)aᾱE2
(t) in the Heisenberg picture and V

αᾱ
E1�E2� ,E1E2

is the

inter-ES electron-electron interaction matrix element for the scattering process (αE1, ᾱE2) → (αE1� , ᾱE2�). Using

the Heisenberg equation of motion i�∂taαE(t) = [aαE(t), H], the electronic distribution function fα(E) in ES α can

be found by evaluating �a†αE(t)aαE�(t)� = δ(E−E
�
)fα(E). The non-interacting distributions are f

0
i (E) = f

0
µi
(E) and

f
0
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0
µ1
(E) + T f

0
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(E), (5)

T = 1/2 (6)

T = 30mK (7)

µ1 − µ2 = −18, 0, 18, 27, 36, 45, 54µV (8)

0.8µm (9)

L = 0.8µm, 2.2µm, 4µm, 10µm, 30µm, (10)

f
0
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0
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(12)

where f
0
µ ≡ {1+ exp[(E−µ)/kbT ]}−1

and T (R) is the transmission (reflection) probability of the QPC, see Fig. ??.
The chemical potential of the inner ES µi can experimentally be tuned independently of µ1 and µ2 by using an

additional QPC (not shown in Fig. ??). To second order in the interaction matrix element the distribution is

f
(2)
α = f

0
α + δf (2)

α , where (see Supplementary Material
?

for details)

δf (2)
α (E) =

2π

� ∞

−∞
dω

�
f
0
α(E + �ω)[1− f

0
α(E)]S

a
δUαδUα

(E,E + �ω,ω)

− f
0
α(E)[1− f

0
α(E + �ω)]Se

δUαδUα
(E + �ω, E,ω)

�
. (13)

The first term contains the absorption potential fluctuation spectrum
?

S
a
δUαδUα

(E,E
�
,ω) describing an absorption

of energy �ω by the ES ᾱ while the ES α goes from energy E
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to E. Likewise the second term with the emission

fluctuation spectrum S
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δUαδUα

describes the emission of energy �ω from the ES ᾱ to the ES α, which consequently

leads to the transition E → E + �ω in α. The fluctuation spectra are to lowest order in the interaction and defined
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transformed operator for the deviation from the average potential to first order in the interaction. The emission

spectrum is found by interchanging the two δUα in the absorption spectrum or equivalently by changing the sign of
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Note: The edges are an open system connected to large Fermi reservoirs, 
i.e. not an isolated 1D infinite system.  
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and T (R) is the transmission (reflection) probability of the QPC, see Fig. ??.
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Supplementary Material for

“Interaction induced edge channel equilibration”

In this Supplementary Material we present details of the derivation of the leading order correction to
the distribution functions as given in Eq. (2) of the main text. We also describe the model used for the
Coulomb matrix elements given in Eq. (4) of the main text. Finally, we explain the iteration procedure
and how we fitted our theoretical predictions with the experiment of [7].

THE EQUATION OF MOTION APPROACH AND THE DISTRIBUTION FUNCTION

Our starting point is the Hamiltonian describing the dynamics of the electrons in the inner and outer ES’s after
the QPC:

H =
∑

α=i,o

∫

dxψ†
α(x)T α(x)ψα(x) +

1

2

∑

αβ

∫

dxdx′ ψ†
α(x)ψ†

β(x′)Vαβ(x, x′)ψβ(x′)ψα(x) . (8)

The first term describes the kinetic energy plus the single particle potential and the second term the inter and intra
ES Coulomb interaction of the outer (o) and inner (i) ES’s. The intra-ES interaction typically leads only to a small
contribution to the relaxation due to the presence of both the direct and the exchange term as we shall see shortly.
Therefore the focus in the paper is on the inter-ES interaction Vαᾱ, using the shorthand notation ᾱ = δiαo+ δoαi (for
the opposite ES of α). Introducing the scattering state representation

aαE =

∫

dxχ∗
αE(x)ψα(x) ⇔ ψα(x) =

∫

dE χαE(x)aα(E) , (9)

makes the single-particle part of the Hamiltonian diagonal. In this representation, the equation of motion for the
annihilation operators i!∂taαE(t) = [aαE(t), H ] in the Heisenberg picture (i.e. A(t) ≡ eiHtAe−iHt) becomes

i!
d

dt
aαE(t) = EaαE(t) +

∫

dE′ Uα(E, E′, t)aαE′(t) . (10)

In the case of inter-ES interactions only, the potential operator is given by
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′E2
a†

ᾱE2′
(t)aᾱE

2
(t) , (11)

where V αᾱ
EE2′ ,E

′E2
, defined in Eq. (16) below, is the Coulomb matrix element for a transition from an energy E′ to E

in ES α and a simultaneous transition from energy E2 to E2′ in ES ᾱ. A standard perturbation treatment to second
order in V αᾱ leads to the result

δ(E − E′)f (2)
α (E) ≡ 〈a†

αEaαE′〉
(2)

= δ(E − E′)
(

f0
α(E) + δf (2)

α (E)
)

, (12)

with the inter-ES relaxation given by

δf (2)
α (E) = (2π)2!

∫

dω dE′|V αᾱ
EE′+!ω,E+!ωE′ |2 (13)

×
[
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α(E)]f0
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ᾱ(E′ + !ω)] − f0
α(E)[1 − f0

α(E + !ω)]f0
ᾱ(E′ + !ω)[1 − f0

ᾱ(E′)]
]

.

The combination of Fermi functions which appears here ensures the Pauli exclusion principle. Furthermore one can
easily show that

〈δUα(E, E′, ω)(1)δUα(E′, E, ω′)(1)〉 = (2π)2!δ(ω + ω′)

∫

dE2′ |V αᾱ
E′E2′+!ω,EE2′

|2f0
ᾱ(E2′)[1 − f0

ᾱ(E2′ + !ω)] , (14)

where δUα(E, E′, ω)(1) = Uα(E, E′, ω)(1) − 〈Uα(E, E′, ω)(1)〉 and Uα(E, E′, ω)(1) is the Fourier transform of the first
order expansion of (11). This then leads immediately to Eq. (2) of the main text.

Geometrical Averaging 
over the edge state
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where the interpretation in terms of emission and absorption spectra is clear. By inserting these into Eq. (13) the
similarity with the collision integral in the Boltzmann equation becomes evident.

Next we wish to calculate δf (2)
α (E). To this end, the inter-ES scattering process (αE1, ᾱE2) → (αE1� , ᾱE2�) needs to

be considered. If the ES’s are perfectly translation invariant, then energy and momentum conservation together reduce
the available one dimensional phase space enormously compared to higher dimensions? . This leads us to consider the
more realistic non-translation invariant case caused by the fact that the ES’s follow the equipotential lines created
by the sample edges and the impurity potential. Including this non-translation invariant ES physics leads to the
presence of non-momentum conserving scattering processes increasing the phase space substantially? ? . The broken
translation invariance is included into the model of the inter-ES interaction matrix element |V αᾱ

E1�E2� ,E1E2
|2. To avoid

modeling a specific geometry we perform a statistical average over the geometry of the ES’s and thereby introduce the
momentum breaking correlation length �p, which is smaller than the size of the region of relaxation L. For simplicity,
an effective interaction of the form V (x, x�) = δ(x− x�)g(x) is used and it is assumed that the deviation of g(x) from
some mean value g0 is Gaussian distributed, i.e. (g(x)− g0)(g(x�)− g0) = A/(

√
2π�p) exp

�
− (x − x�)2/(2�2p)

�
where

A/(
√
2π�p) is the maximal deviation and · · · denotes the geometrical averaging. This yields an interaction with a

momentum conserving and a momentum breaking part. The latter is (see Supplementary Material? for details)
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|V αᾱ
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∝ e[−(∆k�p)
2/2] (16)

where ∆k = (E1 − E1�)/(�vα) + (E2 − E2�)/(�vᾱ), using linear dispersion relations with different velocities vα for
the two ES’s. Note that for linear dispersions with different velocities there is no phase space for scattering in the
momentum conserving limit, ∆k = 0, but in the very special (almost pathological) case vα = vᾱ, momentum and
energy conservation are equivalent leading to plenty of phase space. The specific model for the interaction and the
matrix element is not of great importance as long as it includes the physics leading to non-momentum conserving
processes, which in turn introduces a new length scale �p.

For energy conserving scattering, the model matrix element Eq. (15) only depends on the transferred energy in the
scattering? , since ∆k = ω(1/vα − 1/vᾱ). This means that the energy integral in the fluctuation spectra of Eqs. (14)

can be done analytically upon which it becomes evident that δf (2)
α (E) ∝ T (1−T ). Thus the greater the shot noise of

the QPC, the faster the relaxation is. The elementary scattering processes leading to relaxation consist of a particle
loosing energy in the noisy outer ES and a particle gaining energy in the noiseless inner ES as illustrated on Fig. ??,
(b). The matrix element introduces a new energy scale ∆E ≡ (�/�p)vαvᾱ/(vᾱ−vα), which limits the possible amount
of energy transferred between the two ES’s in the scattering process since the matrix element is proportional to
e−(�ω/∆E)2 . In the limit that kbT, |µ2 − µ1| � |∆E| the distribution functions for the inner and outer ES can be
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where the interpretation in terms of emission and absorption spectra is clear. By inserting these into Eq. (15) the
similarity with the collision integral in the Boltzmann equation becomes evident.

Next we wish to calculate δf (2)
α (E). To this end, the inter-ES scattering process (αE1, ᾱE2) → (αE1� , ᾱE2�) needs to

be considered. If the ES’s are perfectly translation invariant, then energy and momentum conservation together reduce
the available one dimensional phase space enormously compared to higher dimensions? . This leads us to consider the
more realistic non-translation invariant case caused by the fact that the ES’s follow the equipotential lines created
by the sample edges and the impurity potential. Including this non-translation invariant ES physics leads to the
presence of non-momentum conserving scattering processes increasing the phase space substantially? ? . The broken
translation invariance is included into the model of the inter-ES interaction matrix element |V αᾱ
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|2. To avoid

modeling a specific geometry we perform a statistical average over the geometry of the ES’s and thereby introduce the
momentum breaking correlation length �p, which is smaller than the size of the region of relaxation L. For simplicity,
an effective interaction of the form V (x, x�) = δ(x− x�)g(x) is used and it is assumed that the deviation of g(x) from
some mean value g0 is Gaussian distributed, i.e. (g(x)− g0)(g(x�)− g0) = A/(
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ᾱ
exp

�
−(∆k�p)

2/2
�
, (16)

|V αᾱ
E1�E2� ,E1E2

|2
∆k �=0

∝ e[−(∆k�p)
2/2] (17)

where ∆k = (E1 − E1�)/(�vα) + (E2 − E2�)/(�vᾱ), using linear dispersion relations with different velocities vα for
the two ES’s. Note that for linear dispersions with different velocities there is no phase space for scattering in the
momentum conserving limit, ∆k = 0, but in the very special (almost pathological) case vα = vᾱ, momentum and
energy conservation are equivalent leading to plenty of phase space. The specific model for the interaction and the
matrix element is not of great importance as long as it includes the physics leading to non-momentum conserving
processes, which in turn introduces a new length scale �p.

For energy conserving scattering, the model matrix element Eq. (17) only depends on the transferred energy in the
scattering? , since ∆k = ω(1/vα − 1/vᾱ). This means that the energy integral in the fluctuation spectra of Eqs. (16)

can be done analytically upon which it becomes evident that δf (2)
α (E) ∝ T (1−T ). Thus the greater the shot noise of

the QPC, the faster the relaxation is. The elementary scattering processes leading to relaxation consist of a particle
loosing energy in the noisy outer ES and a particle gaining energy in the noiseless inner ES as illustrated on Fig. ??,
(b). The matrix element introduces a new energy scale ∆E ≡ (�/�p)vαvᾱ/(vᾱ−vα), which limits the possible amount
of energy transferred between the two ES’s in the scattering process since the matrix element is proportional to
e−(�ω/∆E)2 . In the limit that kbT, |µ2 − µ1| � |∆E| the distribution functions for the inner and outer ES can be

= amount of broken momentum conservation
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momentum breaking correlation length �p, which is smaller than the size of the region of relaxation L. For simplicity,
an effective interaction of the form V (x, x�) = δ(x− x�)g(x) is used and it is assumed that the deviation of g(x) from
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where ∆k = (E1 − E1�)/(�vα) + (E2 − E2�)/(�vᾱ), using linear dispersion relations with different velocities vα for
the two ES’s. Note that for linear dispersions with different velocities there is no phase space for scattering in the
momentum conserving limit, ∆k = 0, but in the very special (almost pathological) case vα = vᾱ, momentum and
energy conservation are equivalent leading to plenty of phase space. The specific model for the interaction and the
matrix element is not of great importance as long as it includes the physics leading to non-momentum conserving
processes, which in turn introduces a new length scale �p.

For energy conserving scattering, the model matrix element Eq. (17) only depends on the transferred energy in the
scattering? , since ∆k = ω(1/vα − 1/vᾱ). This means that the energy integral in the fluctuation spectra of Eqs. (16)
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We describe the ES’s in terms of scattering states χαE(x) with energy E and label α = o, i (i : inner, o : outer).
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αᾱ
E1�E2� ,E1E2

a
†
αE1�

a
†
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where a
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αE (aαE) is the creation (annihilation) operator for the scattering state χαE and Uα(E
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, E) is the potential

operator for scattering a particle from E to E
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where f
0
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and T (R) is the transmission (reflection) probability of the QPC, see Fig. ??.
The chemical potential of the inner ES µi can experimentally be tuned independently of µ1 and µ2 by using an
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α � is the Fourier

transformed operator for the deviation from the average potential to first order in the interaction. The emission

spectrum is found by interchanging the two δUα in the absorption spectrum or equivalently by changing the sign of
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potential fluctuation spectra 



Perturbative result II:   Analytic results
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µ1µ2 (1)

We describe the ES’s in terms of scattering states χαE(x) with energy E and label α = o, i (i : inner, o : outer).

The inter-ES interaction is given by
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†
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H = H0 +Hint (3)
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where a
†
αE (aαE) is the creation (annihilation) operator for the scattering state χαE and Uα(E

�
, E) is the potential

operator for scattering a particle from E to E
�
in the ES α at the expense of a particle scattering in the opposite ES

ᾱ. Explicitly Uα(E1� , E1, t) =
�
dE2dE2�V

αᾱ
E1�E2� ,E1E2

a
†
ᾱE2�

(t)aᾱE2
(t) in the Heisenberg picture and V

αᾱ
E1�E2� ,E1E2

is the

inter-ES electron-electron interaction matrix element for the scattering process (αE1, ᾱE2) → (αE1� , ᾱE2�). Using

the Heisenberg equation of motion i�∂taαE(t) = [aαE(t), H], the electronic distribution function fα(E) in ES α can

be found by evaluating �a†αE(t)aαE�(t)� = δ(E−E
�
)fα(E). The non-interacting distributions are f

0
i (E) = f

0
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f
0
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0
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(E) + T f

0
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(E), (5)

T = 1/2 (6)

T = 30mK (7)

µ1 − µ2 = −18, 0, 18, 27, 36, 45, 54µV (8)

0.8µm (9)

L = 0.8µm, 2.2µm, 4µm, 10µm, 30µm, (10)

f
0
outer(E) f

0
inner(E) (11)

(12)

where f
0
µ ≡ {1+ exp[(E−µ)/kbT ]}−1

and T (R) is the transmission (reflection) probability of the QPC, see Fig. ??.
The chemical potential of the inner ES µi can experimentally be tuned independently of µ1 and µ2 by using an

additional QPC (not shown in Fig. ??). To second order in the interaction matrix element the distribution is

f
(2)
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0
α(E) + δf (2)

α (E), where (see Supplementary Material
?

for details)
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�
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The first term contains the absorption potential fluctuation spectrum
?

S
a
δUαδUα

(E,E
�
,ω) describing an absorption

of energy �ω by the ES ᾱ while the ES α goes from energy E
�
to E. Likewise the second term with the emission

fluctuation spectrum S
e
δUαδUα

describes the emission of energy �ω from the ES ᾱ to the ES α, which consequently

leads to the transition E → E + �ω in α. The fluctuation spectra are to lowest order in the interaction and defined

by 2πδ(ω + ω�
)S
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)
(1)�, where δU (1)

α ≡ U
(1)
α − �U (1)

α � is the Fourier

transformed operator for the deviation from the average potential to first order in the interaction. The emission

spectrum is found by interchanging the two δUα in the absorption spectrum or equivalently by changing the sign of

Distribution function:

Limit of no-momentun conservation: 
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ω. Explicitly, the spectra are found to be
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where the interpretation in terms of emission and absorption spectra is clear. By inserting these into Eq. (14) the

similarity with the collision integral in the Boltzmann equation becomes evident.

Next we wish to calculate δf (2)
α (E). To this end, the inter-ES scattering process (αE1, ᾱE2) → (αE1� , ᾱE2�) needs to

be considered. If the ES’s are perfectly translation invariant, then energy and momentum conservation together reduce

the available one dimensional phase space enormously compared to higher dimensions
?
. This leads us to consider the

more realistic non-translation invariant case caused by the fact that the ES’s follow the equipotential lines created

by the sample edges and the impurity potential. Including this non-translation invariant ES physics leads to the

presence of non-momentum conserving scattering processes increasing the phase space substantially
? ?

. The broken

translation invariance is included into the model of the inter-ES interaction matrix element |V αᾱ
E1�E2� ,E1E2

|2. To avoid

modeling a specific geometry we perform a statistical average over the geometry of the ES’s and thereby introduce the

momentum breaking correlation length �p, which is smaller than the size of the region of relaxation L. For simplicity,

an effective interaction of the form V (x, x�
) = δ(x− x�

)g(x) is used and it is assumed that the deviation of g(x) from
some mean value g0 is Gaussian distributed, i.e. (g(x)− g0)(g(x�)− g0) = A/(

√
2π�p) exp

�
− (x − x�

)
2/(2�2p)

�
where

A/(
√
2π�p) is the maximal deviation and · · · denotes the geometrical averaging. This yields an interaction with a

momentum conserving and a momentum breaking part. The latter is (see Supplementary Material
?

for details)
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where ∆k = (E1 − E1�)/(�vα) + (E2 − E2�)/(�vᾱ), using linear dispersion relations with different velocities vα for

the two ES’s. Note that for linear dispersions with different velocities there is no phase space for scattering in the

momentum conserving limit, ∆k = 0, but in the very special (almost pathological) case vα = vᾱ, momentum and

energy conservation are equivalent leading to plenty of phase space. The specific model for the interaction and the

matrix element is not of great importance as long as it includes the physics leading to non-momentum conserving

processes, which in turn introduces a new length scale �p.
For energy conserving scattering, the model matrix element Eq. (16) only depends on the transferred energy in the

scattering
?
, since ∆k = ω(1/vα − 1/vᾱ). This means that the energy integral in the fluctuation spectra of Eqs. (15)

can be done analytically upon which it becomes evident that δf (2)
α (E) ∝ T (1−T ). Thus the greater the shot noise of

the QPC, the faster the relaxation is. The elementary scattering processes leading to relaxation consist of a particle

loosing energy in the noisy outer ES and a particle gaining energy in the noiseless inner ES as illustrated on Fig. ??,
(b). The matrix element introduces a new energy scale ∆E ≡ (�/�p)vαvᾱ/(vᾱ−vα), which limits the possible amount

of energy transferred between the two ES’s in the scattering process since the matrix element is proportional to

e−(�ω/∆E)2
. In the limit that kbT, |µ2 − µ1| � |∆E| the distribution functions for the inner and outer ES can be

found analytically to be

δf (2)
o (E) =− γ2T (1− T )(µ2 − µ1)[f
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2
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i )
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2
+ (E − µ+

i )
2
��

,

where γ2 ≡ (2π)2AL/[h4v2αv
2
ᾱ] and µ±

i = µi± (µ2−µ1) is the maximal and minimal energy of particles affected by the

scattering process in the inner ES. Here it is seen that the maximal available energy (apart from thermal excitations

of order kbT ) is given by the energy difference µ2−µ1 creating the step distribution. The scattering processes create a

linear slope on the plateau of the distribution of the noisy outer ES as shown in Fig.??. The slope crosses the middle
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ᾱ(E
��
)], (15b)

where the interpretation in terms of emission and absorption spectra is clear. By inserting these into Eq. (14) the

similarity with the collision integral in the Boltzmann equation becomes evident.

Next we wish to calculate δf (2)
α (E). To this end, the inter-ES scattering process (αE1, ᾱE2) → (αE1� , ᾱE2�) needs to

be considered. If the ES’s are perfectly translation invariant, then energy and momentum conservation together reduce

the available one dimensional phase space enormously compared to higher dimensions
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. This leads us to consider the

more realistic non-translation invariant case caused by the fact that the ES’s follow the equipotential lines created

by the sample edges and the impurity potential. Including this non-translation invariant ES physics leads to the

presence of non-momentum conserving scattering processes increasing the phase space substantially
? ?

. The broken

translation invariance is included into the model of the inter-ES interaction matrix element |V αᾱ
E1�E2� ,E1E2

|2. To avoid

modeling a specific geometry we perform a statistical average over the geometry of the ES’s and thereby introduce the

momentum breaking correlation length �p, which is smaller than the size of the region of relaxation L. For simplicity,

an effective interaction of the form V (x, x�
) = δ(x− x�

)g(x) is used and it is assumed that the deviation of g(x) from
some mean value g0 is Gaussian distributed, i.e. (g(x)− g0)(g(x�)− g0) = A/(
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where

A/(
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2π�p) is the maximal deviation and · · · denotes the geometrical averaging. This yields an interaction with a

momentum conserving and a momentum breaking part. The latter is (see Supplementary Material
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for details)
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where ∆k = (E1 − E1�)/(�vα) + (E2 − E2�)/(�vᾱ), using linear dispersion relations with different velocities vα for

the two ES’s. Note that for linear dispersions with different velocities there is no phase space for scattering in the

momentum conserving limit, ∆k = 0, but in the very special (almost pathological) case vα = vᾱ, momentum and

energy conservation are equivalent leading to plenty of phase space. The specific model for the interaction and the

matrix element is not of great importance as long as it includes the physics leading to non-momentum conserving

processes, which in turn introduces a new length scale �p.
For energy conserving scattering, the model matrix element Eq. (16) only depends on the transferred energy in the

scattering
?
, since ∆k = ω(1/vα − 1/vᾱ). This means that the energy integral in the fluctuation spectra of Eqs. (15)

can be done analytically upon which it becomes evident that δf (2)
α (E) ∝ T (1−T ). Thus the greater the shot noise of

the QPC, the faster the relaxation is. The elementary scattering processes leading to relaxation consist of a particle

loosing energy in the noisy outer ES and a particle gaining energy in the noiseless inner ES as illustrated on Fig. ??,
(b). The matrix element introduces a new energy scale ∆E ≡ (�/�p)vαvᾱ/(vᾱ−vα), which limits the possible amount

of energy transferred between the two ES’s in the scattering process since the matrix element is proportional to

e−(�ω/∆E)2
. In the limit that kbT, |µ2 − µ1| � |∆E| the distribution functions for the inner and outer ES can be

found analytically to be
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where γ2 ≡ (2π)2AL/[h4v2αv
2
ᾱ] and µ±

i = µi± (µ2−µ1) is the maximal and minimal energy of particles affected by the

scattering process in the inner ES. Here it is seen that the maximal available energy (apart from thermal excitations

of order kbT ) is given by the energy difference µ2−µ1 creating the step distribution. The scattering processes create a

linear slope on the plateau of the distribution of the noisy outer ES as shown in Fig.??. The slope crosses the middle
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Fits well the basic scattering process: 
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Interaction induced edge channel equilibration

Anders Mathias Lunde,∗ Simon E. Nigg, and Markus Büttiker
Département de Physique Théorique, Université de Genève, CH-1211 Genève 4, Switzerland

(Dated: October 15, 2009)

The electronic distribution functions of two Coulomb coupled chiral edge states forming a quasi-
1D system with broken translation invariance are found using the equation of motion approach. We
find that relaxation and thereby energy exchange between the two edge states is determined by the
shot noise of the edge states generated at a quantum point contact (QPC). In close vicinity to the
QPC, we derive analytic expressions for the distribution functions. We further give an iterative
procedure with which we can compute numerically the distribution functions arbitrarily far away
from the QPC. Our results are compared with recent experiments of Le Sueur et al..

PACS numbers: 73.23.-b, 73.43.Cd, 72.70.+m

Two decades ago, edge states (ES’s) [1] were demon-
strated to be a physical reality by creating a non-
equilibrium population [2] through selective injection and
detection of carriers in different states along the same
edge [3, 4, 5]. Experiments revealed that the inter-edge
carrier scattering could be strongly suppressed [3, 4, 5]
over distances of 80 µm. Now in a series of novel experi-
ments the group of Pierre [6, 7] has investigated the non-
equilibrium distribution function in an ES as it evolves
along a channel away from a QPC at which it is initially
created. The experiments are carried out in a high mobil-
ity two-dimensional electron gas at a filling factor ν = 2
such that there is an outer (spin up) non-equilibrium ES
and an inner (spin down) equilibrium ES. The distribu-
tion function is measured with the help of a quantum
dot (QD) sufficiently small to provide transmission only
through a single resonant level, see fig. 1. The QD serves
as an energy spectrometer and permits the reconstruc-
tion of the distribution function in the outer ES.

The experiments reveal two surprising features: First,
the initial non-equilibrium distribution created at the
QPC and calculated form non-interacting scattering the-
ory differs only weakly from the measured one over dis-
tances of close to one micrometer [6, 7]. At large dis-
tances from the QPC, due to the Coulomb interaction be-
tween carriers in the two ES’s, the distribution function
evolves into an equilibrium distribution function at an ef-
fective electrochemical potential and temperature. The
outer non-equilibrium ES transfers part of its energy to
the inner ES. The two ES’s equilibrate towards the same
equilibrium distribution with the same temperature (but
still at different electrochemical potentials due to lack of
particle exchange between the two ES’s). The second
surprise of the experiments is the fact that the temper-
ature of the distribution functions at large distance in
the two ES’s is lower than dictated by equilibrium ther-
modynamic arguments [7]. The first surprise shows that
relaxation due to inter-ES interaction is weak. The sec-
ond surprise implies that equilibration occurs not only
between the inner and outer ES’s but that there must be
an additional equilibration mechanism which cools the

two ES’s below what would be expected from inter-ES
coupling alone. We propose that additional excitations
in the bulk [8], which couple predominantly to the inner
ES, have to be considered to understand this effect. Al-
though the nature of these excitations remains unclear,
the experimental findings of [7] are consistent with this
hypothesis. For example it is found that when the inner
ES is forced to form a short closed loop, then relaxation
in the outer ES is strongly suppressed.

E E

f(E)f(E)

oo

o

ii

i x = 0
x = L

(a)

(b) (c)

QDQPC

µ1

µ2

FIG. 1: (color online). (a) The experimental setup to mea-
sure the electronic distribution function of an ES. The full
(red) curve represents the measured outer ES while the dashed
(blue) curve represents a co-propagating inner ES. The two
ES’s exchange energy via Coulomb interaction between x = 0
and x = L. The initial distribution functions (b) relax, via
energy-conserving particle-hole excitation processes, toward
Fermi functions (c).

The physics of ES’s is often discussed within the frame-
work of bosonization theory, where the elementary exci-
tations have bosonic character and are of collective na-
ture [9, 10]. In contrast, we take the weak equilibration
seen at distances of less than a micrometer as the start-
ing point of a discussion which treats inter-ES interaction
perturbatively [11]. The interaction is described in terms
of two-body collisions. We use the equation of motion ap-
proach for second quantized operators to derive an evo-
lution equation for the distribution functions which re-
sembles a Boltzmann collision term with the added com-
plication that there are two different initial distributions

However: What to do for longer lengths?
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ω. Explicitly, the spectra are found to be
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where the interpretation in terms of emission and absorption spectra is clear. By inserting these into Eq. (15) the
similarity with the collision integral in the Boltzmann equation becomes evident.

Next we wish to calculate δf (2)
α (E). To this end, the inter-ES scattering process (αE1, ᾱE2) → (αE1� , ᾱE2�) needs to

be considered. If the ES’s are perfectly translation invariant, then energy and momentum conservation together reduce
the available one dimensional phase space enormously compared to higher dimensions? . This leads us to consider the
more realistic non-translation invariant case caused by the fact that the ES’s follow the equipotential lines created
by the sample edges and the impurity potential. Including this non-translation invariant ES physics leads to the
presence of non-momentum conserving scattering processes increasing the phase space substantially? ? . The broken
translation invariance is included into the model of the inter-ES interaction matrix element |V αᾱ

E1�E2� ,E1E2
|2. To avoid

modeling a specific geometry we perform a statistical average over the geometry of the ES’s and thereby introduce the
momentum breaking correlation length �p, which is smaller than the size of the region of relaxation L. For simplicity,
an effective interaction of the form V (x, x�) = δ(x− x�)g(x) is used and it is assumed that the deviation of g(x) from
some mean value g0 is Gaussian distributed, i.e. (g(x)− g0)(g(x�)− g0) = A/(

√
2π�p) exp

�
− (x − x�)2/(2�2p)

�
where

A/(
√
2π�p) is the maximal deviation and · · · denotes the geometrical averaging. This yields an interaction with a

momentum conserving and a momentum breaking part. The latter is (see Supplementary Material? for details)

|V αᾱ
E1�E2� ,E1E2

|2
∆k �=0

=
AL

h4v2αv
2
ᾱ
exp

�
−(∆k�p)

2/2
�
, (16)

|V αᾱ
E1�E2� ,E1E2

|2
∆k �=0

∝ e[−(∆k�p)
2/2] (17)

where ∆k = (E1 − E1�)/(�vα) + (E2 − E2�)/(�vᾱ), using linear dispersion relations with different velocities vα for
the two ES’s. Note that for linear dispersions with different velocities there is no phase space for scattering in the
momentum conserving limit, ∆k = 0, but in the very special (almost pathological) case vα = vᾱ, momentum and
energy conservation are equivalent leading to plenty of phase space. The specific model for the interaction and the
matrix element is not of great importance as long as it includes the physics leading to non-momentum conserving
processes, which in turn introduces a new length scale �p.

For energy conserving scattering, the model matrix element Eq. (17) only depends on the transferred energy in the
scattering? , since ∆k = ω(1/vα − 1/vᾱ). This means that the energy integral in the fluctuation spectra of Eqs. (16)

can be done analytically upon which it becomes evident that δf (2)
α (E) ∝ T (1−T ). Thus the greater the shot noise of

the QPC, the faster the relaxation is. The elementary scattering processes leading to relaxation consist of a particle
loosing energy in the noisy outer ES and a particle gaining energy in the noiseless inner ES as illustrated on Fig. ??,
(b). The matrix element introduces a new energy scale ∆E ≡ (�/�p)vαvᾱ/(vᾱ−vα), which limits the possible amount
of energy transferred between the two ES’s in the scattering process since the matrix element is proportional to
e−(�ω/∆E)2 . In the limit that kbT, |µ2 − µ1| � |∆E| the distribution functions for the inner and outer ES can be
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x = 0 x = L x = dx x+ dx (1)

µ
L=∞
out = µ1 + T (µ2 − µ1) (2)

µ
L=∞
inner = µ

L=0
inner (3)

We describe the ES’s in terms of scattering states χαE(x) with energy E and label α = o, i (i : inner, o : outer).

The inter-ES interaction is given by
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(6)

where a
†
αE (aαE) is the creation (annihilation) operator for the scattering state χαE and Uα(E

�
, E) is the potential

operator for scattering a particle from E to E
�
in the ES α at the expense of a particle scattering in the opposite ES

ᾱ. Explicitly Uα(E1� , E1, t) =
�
dE2dE2�V

αᾱ
E1�E2� ,E1E2

a
†
ᾱE2�

(t)aᾱE2
(t) in the Heisenberg picture and V

αᾱ
E1�E2� ,E1E2

is the

inter-ES electron-electron interaction matrix element for the scattering process (αE1, ᾱE2) → (αE1� , ᾱE2�). Using

the Heisenberg equation of motion i�∂taαE(t) = [aαE(t), H], the electronic distribution function fα(E) in ES α can

be found by evaluating �a†αE(t)aαE�(t)� = δ(E−E
�
)fα(E). The non-interacting distributions are f

0
i (E) = f

0
µi
(E) and

f
0
o (E) = (1− T )f

0
µ1
(E) + T f

0
µ2
(E), (7)

T = 1/2 (8)

T = 30mK (9)

µ1 − µ2 = −18, 0, 18, 27, 36, 45, 54µV (10)

0.8µm (11)

L = 0.8µm, 2.2µm, 4µm, 10µm, 30µm, (12)

f
0
outer(E) f

0
inner(E) (13)

(14)

where f
0
µ ≡ {1+ exp[(E−µ)/kbT ]}−1

and T (R) is the transmission (reflection) probability of the QPC, see Fig. ??.
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αᾱ
E1�E2� ,E1E2

a
†
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Beyond perturbation Theory II
Iteration of the perturbative result:

2

(one for each ES). Alternatively the Coulomb matrix ele-
ments which appear in this theory can be taken from an
RPA theory [12] in which the electron densities in each
channel fluctuate and interact through an (effective) ca-
pacitance. To treat equilibration at longer distances we
iterate numerically the solution for short distances. At
large distances the distribution functions approach their
equilibrium form dictated by entropy maximization.

We describe the ES’s in terms of scattering states
χαE(x) with energy E and label α = o, i (i : inner, o :
outer). The inter-ES interaction is given by

Hint =
1

2

∑

α
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dE dE′ Uα(E′, E) a†
αE′aαE , (1)

where a†
αE (aαE) is the creation (annihilation) opera-

tor for the scattering state χαE and Uα(E′, E) is the
potential operator for scattering a particle from E to
E′ in the ES α at the expense of a particle scatter-
ing in the opposite ES ᾱ. Explicitly Uα(E1′ , E1, t) =
∫

dE2dE2′V αᾱ
E1′E2′ ,E1E2

a†
ᾱE2′

(t)aᾱE2
(t) in the Heisenberg

picture and V αᾱ
E1′E2′ ,E1E2

is the inter-ES electron-electron
interaction matrix element for the scattering process
(αE1, ᾱE2) → (αE1′ , ᾱE2′). Using the Heisenberg equa-
tion of motion i!∂taαE(t) = [aαE(t), H ], the electronic
distribution function fα(E) in ES α can be found by
evaluating 〈a†

αE(t)aαE′(t)〉 = δ(E − E′)fα(E). The
non-interacting distributions are f0

i (E) = f0
µi

(E) and
f0

o (E) = Rf0
µ1

(E) + T f0
µ2

(E), where f0
µ ≡ {1+ exp[(E −

µ)/k
b
T ]}−1 and T (R) is the transmission (reflection)

probability of the QPC, see Fig. 1. The chemical po-
tential of the inner ES µi can experimentally be tuned
independently of µ1 and µ2 by using an additional QPC
(not shown in Fig. 1). To second order in the interac-

tion matrix element the distribution is f (2)
α = f0

α + δf (2)
α ,

where (see Supplementary Material for details)
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2π
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δUαδUα

(E, E + !ω, ω)

− f0
α(E)[1 − f0

α(E + !ω)]Se
δUαδUα

(E + !ω, E, ω)

]

. (2)

The first term contains the absorption potential fluctu-
ation spectrum [13] Sa

δUαδUα
(E, E′, ω) describing an ab-

sorption of energy !ω by the ES ᾱ while the ES α goes
from energy E′ to E. Likewise the second term with
the emission fluctuation spectrum Se

δUαδUα
describes the

emission of energy !ω from the ES ᾱ to the ES α, which
consequently leads to the transition E → E + !ω in α.
The fluctuation spectra are to lowest order in the inter-
action and defined by 2πδ(ω + ω′)Sa

δUαδUα
(E′, E, ω) ≡

〈δUα(E, E′, ω)(1)δUα(E′, E, ω′)(1)〉, where δU (1)
α ≡

U (1)
α − 〈U (1)

α 〉 is the Fourier transformed operator for

the deviation from the average potential to first order
in the interaction. The emission spectrum is found by
interchanging the two δUα in the absorption spectrum or
equivalently by changing the sign of ω. Explicitly, the
spectra are found to be

Sa
δUαδUα

(E′, E, ω) =

h

∫

dE′′|V αᾱ
E′E′′+!ω,EE′′ |2f0
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∫

dE′′|V αᾱ
E′E′′,EE′′+!ω|2f0

ᾱ(E′′ + !ω)[1 − f0
ᾱ(E′′)], (3b)

where the interpretation in terms of emission and absorp-
tion spectra is clear. By inserting these into Eq. (2) the
similarity with the collision integral in the Boltzmann
equation becomes evident.

Next we wish to calculate δf (2)
α (E). To this end, the

inter-ES scattering process (αE1, ᾱE2) → (αE1′ , ᾱE2′)
needs to be considered. If the ES’s are perfectly trans-
lation invariant, then energy and momentum conser-
vation together reduce the available one dimensional
phase space enormously compared to higher dimensions
[14]. This leads us to consider the more realistic non-
translation invariant case caused by the fact that the
ES’s follow the equipotential lines created by the sam-
ple edges and the impurity potential. Including this non-
translation invariant ES physics leads to the presence of
non-momentum conserving scattering processes increas-
ing the phase space substantially [15, 16]. The broken
translation invariance is included into the model of the
inter-ES interaction matrix element |V αᾱ

E1′E2′ ,E1E2
|2. To

avoid modeling a specific geometry we perform a statis-
tical average over the geometry of the ES’s and thereby
introduce the momentum breaking correlation length 'p,
which is smaller than the size of the region of relax-
ation L. For simplicity, an effective interaction of the
form V (x, x′) = δ(x − x′)g(x) is used and it is as-
sumed that the deviation of g(x) from some mean value
g0 is Gaussian distributed, i.e. (g(x) − g0)(g(x′) − g0) =
A/(

√
2π'p) exp

[

− (x − x′)2/(2'2
p)

]

where A/(
√

2π'p) is
the maximal deviation and · · · denotes the geometrical
averaging. This yields an interaction with a momentum
conserving and a momentum breaking part. The latter
is (see Supplementary Material for details)

|V αᾱ
E1′E2′ ,E1E2

|2
∆k $=0

=
AL

h4v2
αv2

ᾱ
exp

[

−(∆k'p)
2/2

]

, (4)

where ∆k = (E1 −E1′)/(!vα) + (E2 −E2′)/(!vᾱ), using
linear dispersion relations with different velocities vα for
the two ES’s. Note that for linear dispersions with dif-
ferent velocities there is no phase space for scattering in
the momentum conserving limit, ∆k = 0, but in the very
special (almost pathological) case vα = vᾱ, momentum
and energy conservation are equivalent leading to plenty
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(t) in the Heisenberg picture and V

αᾱ
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the Heisenberg equation of motion i�∂taαE(t) = [aαE(t), H], the electronic distribution function fα(E) in ES α can

be found by evaluating �a†αE(t)aαE�(t)� = δ(E−E
�
)fα(E). The non-interacting distributions are f

0
i (E) = f

0
µi
(E) and

f
0
o (E) = (1− T )f

0
µ1
(E) + T f

0
µ2
(E), (5)

T = 1/2 (6)

T = 30mK (7)

µ1 − µ2 = −18, 0, 18, 27, 36, 45, 54µV (8)

0.8µm (9)

L = 0.8µm, 2.2µm, 4µm, 10µm, 30µm, (10)

f
0
outer(E) f

0
inner(E) (11)

(12)

where f
0
µ ≡ {1+ exp[(E−µ)/kbT ]}−1

and T (R) is the transmission (reflection) probability of the QPC, see Fig. ??.
The chemical potential of the inner ES µi can experimentally be tuned independently of µ1 and µ2 by using an

additional QPC (not shown in Fig. ??). To second order in the interaction matrix element the distribution is

f
(2)
α (E) = f

0
α(E) + δf (2)

α (E), where (see Supplementary Material
?

for details)

δf (2)
α (E) = 2π

� ∞

−∞
dω

�
f
0
α(E + �ω)[1− f

0
α(E)]S

a
δUαδUα

(E,E + �ω,ω)− f
0
α(E)[1− f

0
α(E + �ω)]Se

δUαδUα
(E + �ω, E,ω)

�
.

(13)

The first term contains the absorption potential fluctuation spectrum
?

S
a
δUαδUα

(E,E
�
,ω) describing an absorption
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Beyond perturbation Theory III
Iteration of the perturbative result:

2

(one for each ES). Alternatively the Coulomb matrix ele-
ments which appear in this theory can be taken from an
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large distances the distribution functions approach their
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Hint =
1

2

∑

α

∫

dE dE′ Uα(E′, E) a†
αE′aαE , (1)

where a†
αE (aαE) is the creation (annihilation) opera-

tor for the scattering state χαE and Uα(E′, E) is the
potential operator for scattering a particle from E to
E′ in the ES α at the expense of a particle scatter-
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ᾱ(E′′)[1 − f0
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where the interpretation in terms of emission and absorp-
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lation invariant, then energy and momentum conser-
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phase space enormously compared to higher dimensions
[14]. This leads us to consider the more realistic non-
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avoid modeling a specific geometry we perform a statis-
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is (see Supplementary Material for details)
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where ∆k = (E1 −E1′)/(!vα) + (E2 −E2′)/(!vᾱ), using
linear dispersion relations with different velocities vα for
the two ES’s. Note that for linear dispersions with dif-
ferent velocities there is no phase space for scattering in
the momentum conserving limit, ∆k = 0, but in the very
special (almost pathological) case vα = vᾱ, momentum
and energy conservation are equivalent leading to plenty
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ᾱE2�

aᾱE2
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αᾱ
E1�E2� ,E1E2

a
†
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αᾱ
E1�E2� ,E1E2

is the

inter-ES electron-electron interaction matrix element for the scattering process (αE1, ᾱE2) → (αE1� , ᾱE2�). Using
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ᾱ. Explicitly Uα(E1� , E1, t) =
�
dE2dE2�V

αᾱ
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?

S
a
δUαδUα

(E,E
�
,ω) describing an absorption

of energy �ω by the ES ᾱ while the ES α goes from energy E
�
to E. Likewise the second term with the emission

fluctuation spectrum S
e
δUαδUα

describes the emission of energy �ω from the ES ᾱ to the ES α, which consequently

leads to the transition E → E + �ω in α. The fluctuation spectra are to lowest order in the interaction and defined

by 2πδ(ω + ω�
)S

a
δUαδUα
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�
, E,ω) ≡ �δUα(E,E

�
,ω)(1)δUα(E

�
, E,ω�

)
(1)�, where δU (1)

α ≡ U
(1)
α − �U (1)

α � is the Fourier

transformed operator for the deviation from the average potential to first order in the interaction. The emission

spectrum is found by interchanging the two δUα in the absorption spectrum or equivalently by changing the sign of



Open questions: Extra relaxation channel?
Excess temperature:

4

where γ2 ≡ (2π)2AL/[h4v2αv
2
ᾱ] and µ±

i = µi± (µ2−µ1) is the maximal and minimal energy of particles affected by the
scattering process in the inner ES. Here it is seen that the maximal available energy (apart from thermal excitations
of order kbT ) is given by the energy difference µ2−µ1 creating the step distribution. The scattering processes create a
linear slope on the plateau of the distribution of the noisy outer ES as shown in Fig.??. The slope crosses the middle
of the plateau and it is proportional to the noise of the QPC and the energy available µ2 − µ1. The inner noiseless
distribution gets a tail on both sides of the Fermi level, which extends over the length of the plateau µ2 − µ1. In
the general case, the distribution functions can be found numerically and the matrix elements in Eq. (18) have to be
included in the calculation, but the transferred energy is still limited by ∆E.

The above perturbative results apply for a short distance L after the QPC and express the distribution functions at
L in terms of the (unperturbed) distribution functions at the origin. Once the distribution functions at L are known
we can use them to calculate the distribution functions at a distance 2L via Eq. (16). By iterating this procedure
we can thus describe the effective length dependence of the energy relaxation. A convenient quantity with which to
characterize the relaxation of fα at temperature T is given by the excess temperature Texc,α

? defined as

kbTexc,α ≡

�
6

π2

�
dE

�
fα(E)− θ(µ̃α − E)

�
(E − µ̃α)− (kbT )

2 . (21)

Here ∆fα(E) = fα(E)−θ(µ̃α−E) is the difference between the actual distribution function and a zero temperature
Fermi distribution with the same number of particles and hence µ̃α = E0+

�∞
E0

dEfα(E), where E0 is chosen such that
fα(E) = 1 for E < E0. kbTexc,α gives the energy of the non-thermal excitations in fα. The initial excess temperature
right after the QPC of the inner ES is zero and the one of the outer ES is given by kbT

0
exc,o = { 3

π2 T (1−T )}1/2|µ2−µ1|.
Because of energy conservation,

�
α Texc,α is a conserved quantity in the equilibration process. Furthermore due to

entropy maximization the excess energy is distributed equally among the two ES’s, which in the limit of long distances

thus converge towards Fermi distributions with equal excess temperatures given by kbT
∞(2)
exc = { 3

2π2 T (1−T )}1/2|µ2−
µ1|. The excess temperature of the outer ES measured in? does indeed saturate at large distances toward a finite
value. This value is however found to be systematically lower than the above prediction, for large voltage biases? .

Surprisingly it agrees well with the value kbT
∞(3)
exc = {T (1 − T )}1/2|µ2 − µ1|/π expected from energy equipartition

among three instead of only two channels. What could provide the additional relaxation channel? Excitation of
internal modes of the inner ES has been suggested as an additional relaxation mechanism? . In? it has been observed
that if the inner ES is forced to form a short enough closed loop, such that the energy level spacing of its (discrete)
spectrum is larger than the available energy provided by the voltage bias µ2 − µ1, then relaxation of the outer ES is
strongly suppressed. Thus internal modes of the outer ES are not excited. Motivated by this observation, we suggest
instead, that there exist excitations of localized states in the bulk? , which are coupled via Coulomb interaction to
both the inner ES and an ES on the opposite side of the sample. As long as the bulk excitations can be created, such
a mechanism would allow extra energy to be carried away from the outer ES.

As a first approach we model this extra degree of freedom as an additional ES coupled to the inner ES only, initially
in equilibrium at the electronic temperature, which we take to be T = 30mK. This then contributes an extra collision
term in Eq. (16) and allows a quantitative comparison with the experiment? . The fitting procedure is detailed in
Supplementary Material? and the result is shown in Fig. ??. The best fit is obtained when the coupling strength to
the bulk excitations is about three times larger than the inter-ES coupling strength and when ∆E = 14.3µeV, which
for vo and vi between 104 and 105 m/s leads to �p ≥ 0.5µm. For intermediate distances (i.e. 2.2µm and 4µm) both
the data and our numerics display a similar weakly non-linear behavior of the excess temperature as a function of the
voltage bias.

- measures the energy in the non-thermal excitations in 
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FIG. 6: (color online). Length dependence of the
excess temperature of the outer edge state. Com-
parison between theory and experiment. Symbols
with errorbars show the measurement results of [7].
The thin dashed (red) curves show a least square
exponential fit to the data.
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Summary
•Create and measure an non-equilibrium electron 
distribution of an edge state

•Small review of the experiments by Pierre et al. 

•Description of the physics and modeling of the relaxation 

•Seems to agree with the experiment.... 
   But: What could the extra relaxation channel be?   
Ref.:  Lunde. Nigg and Büttiker, Phys. Rev. B Rapid Comm. 81, 041311 (2010)

see also: Degiovanni et al. Phys. Rev. B Rapid Comm. 81 121302 (2010)
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