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Motivation

Correlations between structure, electronic properties
and electric transport
Role of surfaces and interfaces

Instabilities: charge and spin density waves, Peierls phase
transitions

Quantum confinement vs. ,classical“ size effects
Role of defects (steps, point defects etc.)

3 Elastic, inelastic, spin-orbit scattering

Pb/Si(557): mono- and multilayer growth



An example of an isotropic 2d
metal.
Pb/Si(111)

Pb/Si(111): basic growth modes

b) 1-3MLat15K d) 1.75 ML deposited

onto 1 ML annealed

A. Petkova, J. Wollschlager, H.-L. Gunter, M. Henzler, Surf. Sci.482-485, 922 (2001)



Conductance of Pb films on Si(111) (7 x 7)
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Dominance of interface scattering
weak dependence on structure

O. Pfennigstorf, A. Petkova, H.-L. Glnter, M.Henzler, Phys. Rev. B 65, 045412 (2002)



Clean Si(557) surface
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Pb multilayer growth on Si(557): LEED

clean

 Growth at 70 K: (557)-step
structure remains as well as
(7X7)
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Pb multilayer growth on Si(557):
conductance

Pb-film Pb 2d-film 2d-interface
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Conductance (mS)

Continuous adsorption 70 K

(a) Percolation threshold close to 0.5 ML

Layer-by-layer growth starting with

* the first monolayer

Parallel to steps: power law G|~ dx
Xx=3upto5ML,x=2uptol1l0 ML

Perpendicular to steps: G.~d

Characteristic oscillations with
Monolayer period in both directions

Increment in G isotropic above 7 ML
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Classical size effects

 From photoemission + magnetoconductance:
mean free path 4 = 5nm >> d in all cases investigated

=>» Interface scattering important

G ”

Diffuse scattering at interface: o ~ d%*

Correction by increase of Fermi surface, i.e. DOS with d: o ~ d*!

-> G||~ d2 correct for d > 5ML

Small d = small number of subbands = x>2 (Calecki et al.)

Overall behavior of G explainable by diffuse inferface scattering
(without oscillations)



Quantum size effect: appearance of
new subbands

Responsible for oscillations

Onset of plateaus by appearance of
new subbands

Non-monotonous variation of
amplitudes and halfwidths

Peaks in G appear before
completion of layers

=>» .chemical“ quantum effect
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Pb-Band structure from DFT
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(V)

Calculations with free-standing Pb films



Fermi surface
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Quantum size effect: appearance of
new subbands

* Responsible for oscillations

* Onset of plateaus by appearance of
new subbands

 Non-monotonous variation of
amplitudes and halfwidths

« Peaksin G appear before
completion of layers

=>» ,.chemical“ quantum effect
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G.~ d: the resistance of single

steps
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TiSi pad
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High T-annealed first monolayer:
- Gaszre-facetting of Si(557)

step density (1/ao)
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One (1.3) ML of Pb on Si(557): Quasi-1D conductance

1 AV after removal of (7x7)
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* Peierls transition only in direction
normal to steps

* ideal 1d conductor Tegenkamp et.al. PRL 95, 176804 (2005)



Nesting and transport:
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Magnetoconductance:
Weak localization

Medium with (mainly elastically) scattering defects for electrons close to E.

If © = 0% constructive interference due to time reversal symmetry for
paths A and B

=>Enhanced resistance
B-field destroys time reversal symmetry =» positive magnetoconductance

If contribution of spin orbit scattering is dominant:
(4r-symmetry of spin wave functions!) Weak anti -localization



Electronic transport beyond the Drude model

. : . . B-field
Manipulation of Weak Localization by B-fields &
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Magnetoconductance - Pb films vs. monolayers
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Conductance change AG vs. magnetic field B:
@ multilayers > Weak Localization

@ monolayer = Weak Anti -Localization
@ spin-orbit and elastic scattering strong for monolayers

@ band structure/Fermi surface is different to Pb films

From: D. Likermann et al., Phys. Rev. B 81 (2010)



Monolayers: anisotropic magnetotransport

@ anisotropy of Pb/Si(557) surface is

reflected in magnetotransport of monolayers
@ Hikami theory fits the data accurately

—> scattering times can be determined

@ elastic scattering time is shorter
perpendicular to the steps

—> steps act as scatterers

D. Likermann et al.Phys. Rev. B 81 (2010)
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Suppressed spin-orbit scattering
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@ peculiar behavior for 1.3 ML:
@ WL in parallel « WAL in perp. direction

D. Likermann et al.,
Phys. Rev. B 81 (2010)
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@ reduced spin-orbit-scattering in parallel

@ maximum @ 1.3 ML, 3 orders of
magnitude

—> reason for metallic conductivity in

1D-regime?
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Tentative explanation:
If bands marked by green dots are spin polarized: Spin Umklapp forbidden

Strictly fulfilled only at 1.3 ML

Outside this coverage:
» Other periodicities along the terraces
» Thermal activation to other bands



Summary

Dc-conductance:

>
>

>
>

Steps very effective for strain accomodation
Conductance measurements very sensitive
to anisotropic layer distortions

Classical

Quantum size effects for very thin layers

Magnetotransport of Pb/Si(557)

Hikami-theory describes the data very well
WL for Pb films, WAL for Pb monolayers

anisotropy of surface visible in conductance and
deduced scattering times

peculiar behavior of spin-orbit scattering time
around 1.3 ML (0.85 PML)

—> spin -orbit scattering strongly suppressed
—> possibly due to spin polarized split-off bands

B-field

Conductance AG (Gg)
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Magnetic field (T)




