





#### <u>Outline</u>

- Hall effects and topological insulators
- HgTe quantum well structures
- experimental observations
  - quantized conductivity
  - non-locality
  - spin polarization



## **Quantum Hall Effect**



Nobel Prize K. von Klitzing 1985







UNI WÜ

chiral edge states











D.B. Chklovskii, B.I. Shklovskii, L.I. Glazman, Phys. Rev. B 46, 4026 (1992)

1d edge channels









UNI WÜ



+

## **Quantum Spin Hall Effect**





UNI

WÜ

#### two copies of QH states,

one for each spin component, each seeing the opposite magnetic field,

are united in one sample and form

#### helical edge states.

This new state **does not break the time reversal symmetry**, and can exist without any external magnetic field.

#### →Quantum Spin Hall State

consisting of **two** counter propagating spin polarized **edge channels**. protected by time reversal symmetry (Kramer's pair), and an **insulating bulk** 







#### Stability of Helical Edge States: 4 = 2 + 2

backscattering between Kramers' doublets is forbidden  $\Psi_{k,s+}, \Psi_{-k,s-}$ 



backscattering is only possible by **time reversal symmetry breaking processes** (for example external magnetic fields)

or if more edge states exist







chiral edge states

helical edge states

In what kind of material does the QSHE exist?







#### **Graphene edge states**



C.L.Kane and E.J.Mele, PRL 95, 226801 (2005)

• Graphene – spin-orbit coupling strength is too weak  $\rightarrow$  gap only about 10<sup>-3</sup> meV.

• **> not** accessible in experiments







## Helical edge states for inverted HgTe QW



B.A Bernevig, T.L. Hughes, S.C. Zhang, Science **314**, 1757 (2006)





# HgTe-Quantum Well Structures







#### Quantum Well Growth by Molecular Beam Epitaxy

MBE











MBE

## HgTe Quantum Wells





## HgTe Quantum Wells

UNI WÜ

Q2220



free electron gas in the  $\ensuremath{\mathsf{QW}}$ 

by donor doping of the barriers







## HgTe Band Structure



#### band structure





UNI WÜ





VBO = 570 meV









invented band structure

## **Band Gap Engineering**











**Simplified Picture** 













 $d < d_c$ , normal regime

 $d > d_c$ , inverted regime





2.0 x 1.0 μm 1.0 x 1.0 μm 1.0 x 0.5 μm



**QSHE Size Dependence** 





König et al., Science 318, 766 (2007)











## **Conductance Quantization**



## Multi-Terminal Probe

UNI

WÜ





generally  $R_{2t} = \frac{(n+1)h}{2e^2}$ 













Q2308: 250 | 90: 0.1 | 400 | 90 | 400 | 90: 0.1 | 1000 |  $n_s$ = 3.1x10<sup>11</sup>,  $\mu$  =143 000









A. Roth, HB et al., Science 325,295 (2009)



UNI WÜ





A. Roth, HB et al., Science 325,295 (2009)



A. Roth, HB et al., Science 325,295 (2009)









A. Roth, HB et al., Science 325,295 (2009)





potential fluctuations introduce areas of normal metallic (n- or p-) conductance in which back scattering becomes possible



UNI

WÜ

The potential landscape is modified by gate (density) sweeps!





Transition from  $2 e^2/h$  to  $3/2 e^2/h$ 



## **Potential Fluctuations**





UNI WÜ

> A. Roth, HB et al., Science 325,295 (2009)

## **Potential Fluctuations**



different gate sweep direction

UNI

WÜ



• Hysteresis effects due to charging of trap states at the SC-insulator interface

J. Hinz, HB et al., Semicond. Sci. Technol. 21 (2006) 501-506









## **Spin Polarizer**





















# QSHE as spin detector and injector









#### structural inversion asymmetry (SIA)

Y.A. Bychkov and E.I. Rashba, JETP Lett. **39**, 78 (1984); J. Phys. C **17**, 6039 (1984):

Rashba-Term:

$$H_{R} = \alpha_{R} \big( \sigma_{x} k_{y} - \sigma_{y} k_{x} \big)$$





### $\mathbf{B}_{eff} \propto \mathbf{p} \times \left(\mathbf{E}_{z} + \mathbf{E}_{x}\right)$



J.Sinova et al., Phys. Rev. Lett. **92**, 126603 (2004)

intrinsic

2DEG

## **Rashba and Spin-Hall Effect**



#### intrinsic SHE

UNI WÜ

Rashba effect





 $B_{eff} \propto p \times E$ 







## **QSHE Spin-Detector**













J.Sinova et al., Phys. Rev. Lett. **92**, 126603 (2004)

## **QSHE Spin-Injector**













## Summary II: QSH Effect



- the QSH effect which consists of
  - an insulating bulk and
  - two counter propagating spin polarized edge channels (Kramers doublet)
- the QSH effect can be used as an effective
  - spin injector and
  - spin detector

UNI

with 100 % spin polarization properties

• the Rashba Effect in HgTe QW structures can be used for spin manipulation







#### **Quantum Transport Group (Würzburg)**

| MBE                       | Litho                     | Transport                                                   | Theory                 |
|---------------------------|---------------------------|-------------------------------------------------------------|------------------------|
| C. Brüne<br>E. Rupp       | A. Roth<br>B. Bü<br>M. Mi | F. Gerhardt<br>ttner C. Thienel<br>ühlbauer H. Thierschmann | A. Astakhova<br>CX Liu |
| <b>x-QT:</b><br>R. Becker | l obretubl für E          | vnorimontollo Physik 3:                                     | W Molonkamp            |

#### E)

C.

T. Beringer

M. Lebrecht

- J. Schneider
- T. Spitz
- S. Wiedmann

N. Eikenberg

R. Rommel

#### **Experimentelle Physik 3**. L.W. Wolenkamp

#### **Collaborations:**

#### **Stanford University**

S.-C. Zhang X.L. Qi T. L. Hughes M. König

**Univ. Würzburg** Inst. f. Theoretische Physik E.M. Hankiewicz

> **Texas A&M University** J. Sinova

#### Weizmann Institute

A. Finkel'stein\* D. Shahar Y. Oleg

#### Institute Néel, CNRS

C. Bäuerle L. Saminaydar



## **Quantum Spin Hall Effect** in HgTe Quantum Wells Thank you for your attention

Quantum Spin Hall Effekt Science 318, 766 (2007)

The Quantum Spin Hall Effect: Theory and Experiment

Julius-Maximilians-

UNIVERSITÄT WÜRZBURG

J. Phys. Soc. Jap. Vol. 77, 31007 (2008) Nonlocal edge state transport in the quantum spin Hall state Science **325**, 294 (2009) Intrinsic Spin Hall Effekt Nature Physics Published online: 02 May 2010 doi:10.1038/nphys1655