Electron Dynamics in Systems with Strong Spin-Orbit Coupling

M. Konig et al., Science **318**, 766 (2007).

atta and B. Das, Appl. Phys. Lett. **56**, 665 (1990) Fig. from I. Zutic et al. Rev. Mod. Phys. **76**, 323 (2004) experiment: H. C. Koo et al., Science **325**, 1515 (2009)

J. Sinova et al., Physical Review Letters **92**, 126603 (2004) Y. K. Kato et al. Science **306**, 1910 (2004).

Au(111)

S. LaShell, B.A. McDougall and E. Jensen, PRL **77**, 3419 (1996) I. A. Nechaev et al. PRB **80**, 113402 (2009)

dispersion $E = \frac{\hbar^2 k^2}{2m} \pm \alpha \hbar k$

$$\begin{aligned} \epsilon(\vec{k},\uparrow) &= \epsilon(-\vec{k},\downarrow) \\ \text{symmetry} \\ \epsilon(\vec{k}_{\parallel}=0,\uparrow) &= \epsilon(-\vec{k}_{\parallel}=0,\downarrow) \end{aligned}$$

S. LaShell, B.A. McDougall and E. Jensen, PRL 77, 3419 (1996) I. A. Nechaev et al. PRB 80, 113402 (2009)

Bi(110)

S. Agergaard et al. NJP 3, 15 (2001)

 \overline{X}_1 \overline{M} $\overline{\Gamma}$ \overline{X}_2

 $\epsilon(0,\uparrow) = \epsilon(0,\downarrow)$ $\epsilon(\bar{M},\uparrow) = \epsilon(\bar{M},\downarrow)$ $\epsilon(\bar{X}_i,\uparrow) = \epsilon(\bar{X}_i,\downarrow)$

Bi(110)

S. Agergaard et al. NJP 3, 15 (2001)

 $\epsilon(0,\uparrow) = \epsilon(0,\downarrow)$ $\epsilon(\bar{M},\uparrow) = \epsilon(\bar{M},\downarrow)$ $\epsilon(\bar{X}_i,\uparrow) = \epsilon(\bar{X}_i,\downarrow)$

Bi(110)

S. Age \overline{X}_1 \overline{M} ϵ ϵ $\overline{\Gamma}$ \overline{X}_2 ϵ ϵ ϵ

S. Agergaard et al. NJP 3, 15 (2001)

$$\epsilon(0,\uparrow) = \epsilon(0,\downarrow)$$

$$\epsilon(\bar{M},\uparrow) = \epsilon(\bar{M},\downarrow)$$

$$\epsilon(\bar{X}_i,\uparrow) = \epsilon(\bar{X}_i,\downarrow)$$

Yu. M. Koroteev et al. PRL 93, 046403 (2004)

$$\alpha^2 F_{\vec{k}_i}(\omega) = \sum_{\vec{q},\nu,f} |g_{i,f}^{\vec{q},\nu}|^2 \delta(\omega - \omega_{\vec{q},\nu}) \delta(\epsilon_{\vec{k}_i} - \epsilon_{\vec{k}_f})$$

- matrix elements
- density of states
- spin (?)

1D

1D

2D

1D

finite T

- quasiparticle interference
- lifetime in Rashba systems
- detailed calculations of spin polarization

standing electron waves on Cu(111) at 4K Crommie, Lutz, Eigler, Nature **363**, 524 (1993)

Origin of the waves at E_F (very small V_{bias}) reciprocal space $\overbrace{k_F}$ first Brillouin zone Fermi surface

point defect in real space

standing electron waves on Cu(111) at 4K Crommie, Lutz, Eigler, Nature **363**, 524 (1993)

standing electron waves on Cu(111) at 4K Crommie, Lutz, Eigler, Nature **363**, 524 (1993)

fermi surfaces by Fourier-transform STM

Be(0001)

Be(1010)

Ph. Sprunger et al., Science **275**, 1764 (1997).

Ph. Hofmann, B.G. Briner, M. Doering, H.-P. Rust, E.W. Plummer and A.M. Bradshaw Phys. Rev. Lett. 79, 265 (1997).
B.G. Briner, Ph. Hofmann, M. Doering, H.-P. Rust, E.W. Plummer and A.M. Bradshaw Europhys. Lett. 39, 67 (1997).
L. Ptersen, P.T. Sprunger, Ph. Hofmann, E. Lægsgaard, B.G. Briner, M. Doering, H.-P. Rust, A.M. Bradshaw
F. Besenbacher and E.W. Plummer, Phys. Rev. B 57, R6858 (1998).

- A Fourier transformation of an STM image gives a direct image of the Fermi surface.
- In addition to this one sees the points corresponding to the FT of the lattice.

Bi(110) fermi surface and spin direction

hv=16 eV, T=30 K

Fermi surface: experiment

hv=16 eV, T=30 K

hv=16 eV, T=30 K

hv=16 eV, T=30 K

hv=16 eV, T=30 K

spectroscopic images

J. I. Pascual et al., Physical Review Letters 93, 196802 (2004)

electron-electron scattering in a Rashba system: detailed theory / experiment

density of states

GW theory confirms unequal contributions from branches

Negligible differences between branch lifetimes

GW theory confirms unequal contributions from branches

GW theory confirms unequal contributions from branches

experiment

experiment

experiment

40

30

20

10

0

0.4

MDC

widths

0.3

0.2

0.1

0.0

Γ/2 (meV)

Solution: 2-D fits

- Calculate spectral function from simple self-energy
- Account for broadening

the situation in region I

Bi/Ag(111) surface alloy: a better example?

C. R. Ast, J. Henk et al. Phys. Rev. Lett. 98, 186807 (2007)
F. Meier et al. Phys. Rev. B 77, 165431 (2008)
G. Bihlmayer et al., Phys. Rev. B 75, 195414 (2007)

enhanced electron-phonon coupling: E. Cappelluti et al. Physical Review B **76**, 085334 (2007)

Bi/Ag(111) temperature dependence

temperature dependence

resulting self-energy

strong lifetime variations on Bi(110)

calculated spin polarization with exp and theo Fermi contour

calculated spin polarization (modulus)

calculation: A. Eiguren

calculated spin polarization with exp and theo Fermi contour

some conclusions

- Very strong impact on quasiparticle interference.
- Lifetimes in Rashba systems independent of branch of dispersion on Au(111).
- No increase of electron-phonon coupling near the van Hove singularity of Bi/Ag(111).
- Strong lifetime effects on the Fermi surface elements of Bi(110). Qualitative agreement with calculated spin polarisation degree. Strong spin polarisation corresponds to long lifetime of the state.

Collaborators and funding

Institute for Storage Ring Facilities University of Aarhus

> Marco Bianchi Dandan Guan Emile Rienks Maria Fuglsang Jensen

Fritz-Haber-Institut der MPG, Berlin

Gustavo Ceballos Martin Hansmann Hans-Peter Rust Karsten Horn

DIPC Donostia/San Sebastian

Zhejiang University, Hangzhou Shining Bao Ilya Nechaev (also Kostroma State University, Russia) Slava Silkin Eugene Chulkov Pedro Echenique

Freie Universität, Berlin

Nacho Pascual Isabel Fernandez-Torrente Patricio Häberle Manuel Ugeda Forschungszentrum Jülich Gustav Bihlmayer Stefan Blügel

University of the Basque Country Asier Eiguren

Universität Zürich / Swiss Light Source Paul Scherrer Institut

Fabian Meier Jürg Osterwalder

Inst. of Strength Physics and Mat. Science Russian Academy of Sciences, Tomsk Yu. M. Koroteev

> The Danish National Research Council Lundbeck Foundation The Carlsberg Foundation Ikerbasque Foundation The Spanish Ministry for Science and Technology

spin polarisation

expectation value

operator

$$S^{2} = S_{x}^{2} + S_{y}^{2} + S_{z}^{2} = \frac{3}{4}\hbar^{2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad \langle S^{2} \rangle = \frac{3}{4}\hbar^{2}$$

values

spin polarisation (modulus)

$$0\ldots \frac{1}{4}\hbar^2$$

$$\langle S_x \rangle^2 + \langle S_y \rangle^2 + \langle S_z \rangle^2$$

 $\chi = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$

example for maximum polarisation:

here we use the Bloch spinor:

$$\chi = \begin{pmatrix} u_{\mathbf{k}}(\mathbf{r}) \\ v_{\mathbf{k}}(\mathbf{r}) \end{pmatrix} e^{i\mathbf{k}\mathbf{r}}$$

El-ph coupling on Bi(100)

• markedly different T-dependence on different k-points

J. E. Gayone, S. V. Hoffmann, Z. Li and Ph. Hofmann, Physical Review Letters 91, 127601 (2003).

El-ph coupling on Bi(100)

- The coupling parameter λ depends strongly on the binding energy.
- λ, measured in this way, cannot be interpreted as the massenhancement parameter at the Fermi level.
- J. E. Gayone, S. V. Hoffmann, Z. Li and Ph. Hofmann, Physical Review Letters 91, 127601 (2003).

Why is λ energy-dependent?

$$\alpha^2 F_{\vec{k}_i}(\omega) = \sum_{\vec{q},\nu,f} |g_{i,f}^{\vec{q},\nu}|^2 \delta(\omega - \omega_{\vec{q},\nu}) \delta(\epsilon_{\vec{k}_i} - \epsilon_{\vec{k}_f})$$

- The phonon energy window is small (≈10 meV)
- The bulk density of states is strongly energy dependent.
- This is reflected in a strong energy dependence of the inter-band scattering.

Why is λ energy-dependent?

- The phonon energy window is small (≈10 meV)
- The bulk density of states is strongly energy dependent.
- This is reflected in a strong energy dependence of the inter-band scattering.

Why is λ energy-dependent?

- The phonon energy window is small (≈10 meV)
- The bulk density of states is strongly energy dependent.
- This is reflected in a strong energy dependence of the inter-band scattering.

geometric structure of Bi(110)

side view perpendicular to m

side view parallel to m

- one dangling bond per unit cell
- only one mirror plane
- no reconstruction

• profound change of dispersion and Fermi surface

very good agreement with experiment

• profound change of dispersion and Fermi surface

very good agreement with experiment

profound change of dispersion and Fermi surface

very good agreement with experiment

Ast and Höchst, PRL 90, 016403 (2003)

Lindhard susceptibility

$$\chi(\vec{q}) = \int \frac{f(\vec{k}) - f(\vec{k} - \vec{q})d\vec{k}}{\epsilon(\vec{k}) - \epsilon(\vec{k} - \vec{q})(2\pi)^2}$$

Ast and Höchst, PRL 90, 016403 (2003)

Lindhard susceptibility

$$\chi(\vec{q}) = \int \frac{f(\vec{k}) - f(\vec{k} - \vec{q})d\vec{k}}{\epsilon(\vec{k}) - \epsilon(\vec{k} - \vec{q})(2\pi)^2}$$

Ast and Höchst, PRL 90, 016403 (2003)

• A temperature-induced leading edge shift indicates a CDW formation caused by nesting.

There should not be a CDW

 for a spin-orbit spit Fermi surface, there should not be a singularity in the susceptibility.

There should not be a CDW

 for a spin-orbit spit Fermi surface, there should not be a singularity in the susceptibility.

Is there a charge density wave on Bi(111)?

- STM does not show signs of a charge density wave.
- the observed structures are consistent with the picture of quasiparticle interference just developed.
- Transmission electron microscopy does not show a charge density wave either (not shown)

Is there a gap opening at low temperature?

quantum spin Hall effect edge state

time-reversal symmetry: at k=0 $\epsilon(\vec{k},\uparrow) = \epsilon(-\vec{k},\downarrow) \qquad \epsilon(\vec{k}_{\parallel} = 0,\uparrow) = \epsilon(-\vec{k}_{\parallel} = 0,\downarrow)$

quantum spin Hall effect edge state

time-reversal symmetry: at k=0
$$\epsilon(\vec{k},\uparrow) = \epsilon(-\vec{k},\downarrow) \qquad \epsilon(\vec{k}_{\parallel}=0,\uparrow) = \epsilon(-\vec{k}_{\parallel}=0,\downarrow)$$

quantum spin Hall effect edge state

time-reversal symmetry: at k=0 $\epsilon(\vec{k},\uparrow) = \epsilon(-\vec{k},\downarrow) \qquad \epsilon(\vec{k}_{\parallel}=0,\uparrow) = \epsilon(-\vec{k}_{\parallel}=0,\downarrow)$

a highly one-dimensional surface: Bi(114)

electronic structure of Bi(114) - simplified

electronic structure of Bi(114) - simplified

electronic structure of Bi(114) - simplified

some conclusions

- The surfaces of Bi are good metals, even the (111) surface for which no bonds are broken.
- The reason is the symmetry-loss and the strong spinorbit splitting.
- The peculiar spin structure leads to unusual standing electron waves and prevents charge density waves.
- In the one-dimensional case there is great similarity to the quantum spin Hall effect.

semiconductor surfaces: 2D metal -> Mott insulator

semiconductor surfaces: 2D metal -> Mott insulator

Bi(110): LEED pattern

• The LEED pattern is (nearly) a square but there is only one mirror line.

Spin-orbit splitting of surface states

time reversal symmetry:

$$\epsilon(\vec{k},\uparrow) = \epsilon(-\vec{k},\downarrow)$$

inversion symmetry:

$$\epsilon(\vec{k},\uparrow) = \epsilon(-\vec{k},\uparrow)$$

S. LaShell, B.A. McDougall and E. Jensen, PRL 77, 3419 (1996) (actual data from SGM-3 at ASTRID in Aarhus)

bulk: time reversal plus inversion symmetry: every state two fold degenerate (two spin directions)

surface: time reversal symmetry only: this degeneracy is lifted.

