Optical Differential Reflectance Spectroscopy of Ultrathin Epitaxial Organic Films

Torsten Fritz and Roman Forker

Friedrich-Schiller-Universität Jena, Institute of Solid State Physics

WS10-ETOLDs, Valencia

June 2, 2010

www.www.organics.uni-jena.de

- 1. Motivation
- 2. Differential Reflectance Spectroscopy (DRS)
- 3. Case I: From Single Molecule to Crystal
- 4. Case II: Function Follows Form
- 5. Case III: Charged Molecules on Metals
- 6. Summary

Motivation

Advantages of *in situ* optical spectroscopy on molecular films:

- Organic molecules have large absorption coefficient: $\alpha \approx 10^7$ cm⁻¹ (cmp.: Si: $\alpha \approx 10^3$ cm⁻¹)
- Extremely sensitive, down to ~0.1 ML of aromatic molecules

 \Rightarrow Substrate-film-interface can be probed

Motivation

Advantages of *in situ* optical spectroscopy on molecular films:

- Organic molecules have large absorption coefficient: $\alpha \approx 10^7$ cm⁻¹ (cmp.: Si: $\alpha \approx 10^3$ cm⁻¹)
- Extremely sensitive, down to ~0.1 ML of aromatic molecules
 - ⇒ Substrate-film-interface can be probed
- Optical properties depend sensitively on molecular arrangement:

- Lateral vs. vertical packing (anisotropy)

$$\Delta E = \frac{2|\vec{\mu}|^2}{r^3} \left(\cos(\alpha) - 3\cos^2(\vartheta) \right)$$

 ΔE = exciton splitting energy

- Effects of physical "chain length" (exciton delocalization and confinement)
- Charge transfer (molecular ions)

[M. Kasha et al., Pure Appl. Chem. 11, 371 (1965).]

Motivation

Advantages of *in situ* optical spectroscopy on molecular films:

- Organic molecules have large absorption coefficient: $\alpha \approx 10^7$ cm⁻¹ (cmp.: Si: $\alpha \approx 10^3$ cm⁻¹)
- Extremely sensitive, down to ~0.1 ML of aromatic molecules
 - ⇒ Substrate-film-interface can be probed
- Optical properties depend sensitively on molecular arrangement:

- Lateral vs. vertical packing (anisotropy)

$$\Delta E = \frac{2|\vec{\mu}|^2}{r^3} \left(\cos(\alpha) - 3\cos^2(\vartheta) \right)$$

 ΔE = exciton splitting energy

- Effects of physical "chain length" (exciton delocalization and confinement)
- Charge transfer (molecular ions)
- \Rightarrow Structural information can be deduced
- Non-destructive

[M. Kasha et al., Pure Appl. Chem. <u>11</u>, 371 (1965).]

$$\mathsf{DRS}(E,d) = \frac{R(E,d) - R(E,0)}{R(E,0)}$$

d = film thickness (sub-ML to several MLs)

Growth of molecular films:

- Base pressure ≈ mid 10⁻¹⁰ mbar
- Deposition in UHV at ≈ 300 .. 500 ℃
- Rate: 0.1 .. 1 ML/min
- Substrates at room temperature

[H. Proehl et al., *Phys. Rev. B* <u>71</u>, 165207 (2005).] [R. Forker et al., *PCCP* <u>11</u>, 2142 (2009).]

Optical properties of molecules shall be described by energy-dependent dielectric function:

$$\hat{\varepsilon}_{\text{film}}(E) = \varepsilon'_{\text{film}}(E) - i \cdot \varepsilon''_{\text{film}}(E)$$

[A. B. Djurišić et al., Opt. Commun. 183, 123 (2000).]

Optical properties of molecules shall be described by energy-dependent dielectric function:

$$\hat{\varepsilon}_{\text{film}}(E) = \varepsilon'_{\text{film}}(E) - i \cdot \varepsilon''_{\text{film}}(E)$$

How are DRS and dielectric function related???

[A. B. Djurišić et al., Opt. Commun. 183, 123 (2000).]

$$\mathsf{DRS}(E,d) = \frac{R(E,d) - R(E,0)}{R(E,0)}$$

McIntyre-approximation for ultrathin films ($d \ll \lambda$):

$$\mathsf{DRS} \approx -\frac{8\pi d}{\lambda} \cdot \left[\mathbf{A} \cdot \boldsymbol{\varepsilon}_{\textit{film}}'' + \mathbf{B} \cdot \left(\boldsymbol{\varepsilon}_{\textit{film}}' - 1 \right) \right] \quad \Rightarrow \quad \boldsymbol{\varepsilon}_{\textit{film}}'' \approx -\frac{\lambda}{8\pi d} \cdot \frac{\mathsf{DRS}}{\mathsf{A}} - \frac{\mathsf{B}}{\mathsf{A}} \cdot \left(\boldsymbol{\varepsilon}_{\textit{film}}' - 1 \right)$$

- A and B depend solely on substrate's properties

$$\mathsf{DRS}(E,d) = \frac{R(E,d) - R(E,0)}{R(E,0)}$$

McIntyre-approximation for ultrathin films ($d \ll \lambda$):

$$\mathsf{DRS} \approx -\frac{8\pi d}{\lambda} \cdot \left[\mathbf{A} \cdot \boldsymbol{\varepsilon}_{\textit{film}}'' + \mathbf{B} \cdot \left(\boldsymbol{\varepsilon}_{\textit{film}}' - 1 \right) \right] \quad \Rightarrow \quad \boldsymbol{\varepsilon}_{\textit{film}}'' \approx -\frac{\lambda}{8\pi d} \cdot \frac{\mathsf{DRS}}{A} - \frac{\mathbf{B}}{\mathbf{A}} \cdot \left(\boldsymbol{\varepsilon}_{\textit{film}}' - 1 \right)$$

- A and B depend solely on substrate's properties

$$\mathsf{DRS}(E,d) = \frac{R(E,d) - R(E,0)}{R(E,0)}$$

McIntyre-approximation for ultrathin films ($d \ll \lambda$):

$$\mathsf{DRS} \approx -\frac{8\pi d}{\lambda} \cdot \left[\mathbf{A} \cdot \boldsymbol{\varepsilon}_{\textit{film}}'' + \mathbf{B} \cdot \left(\boldsymbol{\varepsilon}_{\textit{film}}' - 1 \right) \right] \quad \Rightarrow \quad \boldsymbol{\varepsilon}_{\textit{film}}'' \approx -\frac{\lambda}{8\pi d} \cdot \frac{\mathsf{DRS}}{\mathsf{A}} - \frac{\mathbf{B}}{\mathbf{A}} \cdot \left(\boldsymbol{\varepsilon}_{\textit{film}}' - 1 \right)$$

- A and B depend solely on substrate's properties

[J.D.E. McIntyre et al., Surf. Sci. 24, 417 (1971).]

$$\mathsf{DRS}(E,d) = \frac{R(E,d) - R(E,0)}{R(E,0)}$$

Approximation for ultrathin films ($d \ll \lambda$):

$$\mathsf{DRS} \approx -\frac{8\pi d}{\lambda} \cdot \left[\mathbf{A} \cdot \boldsymbol{\varepsilon}_{\textit{film}}'' + \mathbf{B} \cdot \left(\boldsymbol{\varepsilon}_{\textit{film}}' - 1 \right) \right] \quad \Rightarrow \quad \boldsymbol{\varepsilon}_{\textit{film}}'' \approx -\frac{\lambda}{8\pi d} \cdot \frac{\mathsf{DRS}}{\mathsf{A}} - \frac{\mathsf{B}}{\mathsf{A}} \cdot \left(\boldsymbol{\varepsilon}_{\textit{film}}' - 1 \right)$$

 \rightarrow

- A and B depend solely on substrate's properties
- on **transparent substrates** and some metals (low *E*) : *B* ≈ 0

$$\varepsilon_{\rm film}'' \approx -\frac{\lambda}{8\pi d} \cdot \frac{\rm DRS}{\rm A}$$

$$\mathsf{DRS}(E,d) = \frac{R(E,d) - R(E,0)}{R(E,0)}$$

Approximation for ultrathin films ($d \ll \lambda$):

$$\mathsf{DRS} \approx -\frac{8\pi d}{\lambda} \cdot \left[\mathbf{A} \cdot \boldsymbol{\varepsilon}_{\textit{film}}'' + \mathbf{B} \cdot \left(\boldsymbol{\varepsilon}_{\textit{film}}' - 1 \right) \right] \quad \Rightarrow \quad \boldsymbol{\varepsilon}_{\textit{film}}'' \approx -\frac{\lambda}{8\pi d} \cdot \frac{\mathsf{DRS}}{\mathsf{A}} - \frac{\mathsf{B}}{\mathsf{A}} \cdot \left(\boldsymbol{\varepsilon}_{\textit{film}}' - 1 \right)$$

- A and B depend solely on substrate's properties
- on **transparent substrates** and some metals (low *E*) : *B* ≈ 0 →

$$\varepsilon_{\text{film}}'' \approx -\frac{\lambda}{8\pi d} \cdot \frac{\text{DRS}}{A}$$

- on **non-transparent substrates**: numerical calculation required! →

DRS
$$\xrightarrow{\text{numerical}} \varepsilon'_{\text{film}}$$
 and $\varepsilon''_{\text{film}}$

- model-free Kramers-Kronig consistent algorithm
- no approximations made in thin film equations
- generally valid for all kinds of substrates

Further Details: Review-Article

Roman Forker und Torsten Fritz, Phys. Chem. Chem. Phys. 11, 2142-2155 (2009).

spectroscopy of ultrathin epitaxial organic films

electrocatalysis in polymeric iron oxyhydroxide films

3. Case I: From Single Molecule to Crystal

PTCDA on Mica

+

What is the Problem to be Solved?

What is the Problem to be Solved?

PTCDA is a quasi-1-dimensional Material

Why would one expect thickness depending properties?

Crystal Structure of PTCDA:

Two different dimers exist: A and B, but interaction in B very strong and in A very weak

- \Rightarrow 3D-crystals behave like 1D-crystals, and:
- ⇒ Monomer should become visible for $d \rightarrow 1$ ML !

[H. Pröhl, R. Nitsche, T. Dienel and TF, PRL <u>93</u>, 097403 (2004).]

[H. Pröhl, R. Nitsche, T. Dienel and TF, PRL <u>93</u>, 097403 (2004).]

[H. Pröhl, R. Nitsche, T. Dienel and TF, PRL <u>93</u>, 097403 (2004).]

[H. Pröhl, R. Nitsche, T. Dienel and TF, PRL <u>93</u>, 097403 (2004).]

[H. Pröhl, R. Nitsche, T. Dienel and TF, PRL <u>93</u>, 097403 (2004).]

[H. Pröhl, R. Nitsche, T. Dienel and TF, PRL <u>93</u>, 097403 (2004).]

[H. Pröhl, R. Nitsche, T. Dienel and TF, PRL <u>93</u>, 097403 (2004).]

[H. Pröhl, R. Nitsche, T. Dienel and TF, PRL <u>93</u>, 097403 (2004).]

Monomer-Dimer-Transition

[H. Pröhl, R. Nitsche, T. Dienel and TF, PRL <u>93</u>, 097403 (2004).]

Monomer-Oligomer-Transition

[H. Pröhl, R. Nitsche, T. Dienel and TF, PRL <u>93</u>, 097403 (2004).]

4. Case II: Function Follows Form

PTCDA on KCI(100)

+

• Monomer spectra for *d* < 1ML

[T. Dienel, C. Loppacher, S. Mannsfeld, R. Forker and TF, Adv. Mat. 20, 959 (2008).]

DRS

PTCDA

Absorption

- Monomer spectra for d < 1ML
- Extremely narrow bands in comparison to solution and on mica

Strongly reduced inhomogeneous broadening Hints towards special layer structure

AFM

Low temperature NC-AFM (Chr. Loppacher):

PTCDA on KCI(100)

Model

- Commensurate structure causes similar environment on atomic level for every molecule
- Reason why inhomogeneous broadening is strongly reduced

Increasing coverage to more than 1 ML renders structure instable:

- Spectra become very broad
- Further ageing leads to spectrum similar to pc 3D-crystals
 - ➔ Spectroscopy tells us: recrystallization!

AFM

Low temperature NC-AFM (Chr. Loppacher):

2.5 ML PTCDA on KCI(100)

- As the substrate's influence is already lost in the 2nd layer, layer has recrystallized into bulk structure
- Optical properties depend strongly on physical layer structure

Potential Energy Calculation

Recrystallization can be fully understood by potential energy calculations:

Calculated potential energy as function of layer number for PTCDA on KCI(100) Values are given per molecule						
Phase	Layer number	E _{inter} (kcal/mol)	E _{intra} (kcal/mol)	E _{total} (kcal/mol)		
SQ	1.	-37.17	-4.62	-41.79		
SQ	2.	-32.30	-4.62	-36.92		
HB	1.	-22.74	-11.74	-34.48		
HB	2.	-38.70	-11.74	-50.44		
HB	3.	-40.26	-11.74	-52.00		

Potential Energy Calculation

Recrystallization can be fully understood by potential energy calculations:

Calculated potential energy as function of layer number for PTCDA on KCI(100) Values are given per molecule							
Phase	Layer number	E _{inter} (kcal/mol)	E _{intra} (kcal/mol)	E _{total} (kcal/mol)			
SQ	1.	-37.17	-4.62	-41.79			
SQ	2.	-32.30	-4.62	-36.92			
HB	1.	-22.74	-11.74	-34.48			
HB	2.	-38.70	-11.74	-50.44			
HB	3.	-40.26	-11.74	-52.00			

- 1st layer: square-phase (SQ) energetically superior to herringbonephase (HB)

Potential Energy Calculation

Recrystallization can be fully understood by potential energy calculations:

Calculated potential energy as function of layer number for PTCDA on KCI(100) Values are given per molecule							
Phase	Layer number	E _{inter} (kcal/mol)	E _{intra} (kcal/mol)	E _{total} (kcal/mol)			
SQ	1.	-37.17	-4.62	-41.79			
SQ	2.	-32.30	-4.62	-36.92			
HB	1.	-22.74	-11.74	-34.48			
HB	2.	-38.70	-11.74	-50.44			
HB	3.	-40.26	-11.74	-52.00			

Structures in organic-inorganic heteroepitaxie are determined by a delicate balance between substratemolecule-interaction and molecule-molecule-interaction

5. Case III: Charged Molecules on Metals

PTCDA on Au(111) & pc-Al

+

Distinct spectral development observed:

- 1st ML: Very broad spectra → coupling to Au!
- 2nd ML: Two peaks resolvable
- **3rd ML** and thicker: Double-feature diminishes

[R. Forker, C. Golnik, G. Pizzi, T. Dienel and TF, Org. Electr. <u>10</u>, 1448 (2009).]

DRS

[R. Forker, C. Golnik, G. Pizzi, T. Dienel and TF, Org. Electr. <u>10</u>, 1448 (2009).]

 \rightarrow Clear monomeric signature for E > 2.2 eV (neutral PTCDA)

- → No physical dimerization with the 1st ML of PTCDA !!!
- \rightarrow Decoupling of 2nd ML is justification of 2-layer-approach

[R. Forker, C. Golnik, G. Pizzi, T. Dienel and TF, Org. Electr. 10, 1448 (2009).]

 \rightarrow Clear monomeric signature for E > 2.2 eV (neutral PTCDA)

- → No physical dimerization with the 1st ML of PTCDA !!!
- \rightarrow Decoupling of 2nd ML is justification of 2-layer-approach

\rightarrow New feature @ 2.05 eV which is <u>no</u> aggregation effect

→ Assignment to PTCDA radical cations (PTCDA•+)

[R. Forker, C. Golnik, G. Pizzi, T. Dienel and TF, Org. Electr. <u>10</u>, 1448 (2009).]

cmp. to solvent spectra

[R. Forker, C. Golnik, G. Pizzi, T. Dienel and TF, Org. Electr. 10, 1448 (2009).]

cmp. to solvent spectra

[[]R. Forker, C. Golnik, G. Pizzi, T. Dienel and TF, Org. Electr. 10, 1448 (2009).]

cmp. to solvent spectra

[R. Forker, C. Golnik, G. Pizzi, T. Dienel and TF, Org. Electr. 10, 1448 (2009).]

PTCDA on *pc*-Al

cmp. to solvent spectra

6. Summary

- By DRS the optical properties of ultrathin films can be measured reliably and with an excellent SNR
- DRS reflects directly changes in the physical structure of ultra thin films
- On inert substrates (i.e. mica): molecules show monomeric behavior
- On metals: first layer hybridizes with the metal; no distinct spectral features in 1st ML
- Depending on the sign of the surface dipole, charging may be observed

Acknowledgment

Co-workers:

Dr. Roman Forker Dr. Stefan Mannsfeld Dr. Holger Pröhl Dr. Thomas Dienel Dr. Robert Nitsche Dr. Michael Törker

Christian Wagner Rainer Jacob Andreas Krause Giovanni Pizzi

TU Dresden, IAPP (head: Prof. Dr. Karl Leo)

\$\$\$:

DFG, DAAD, Leibniz-Price Karl Leo

THE END

