

CAMBIOS DE ESTADO DE SUSTANCIAS PURAS

Tema 4

ÍNDICE

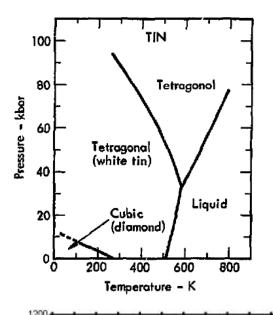
- 4.1 Conceptos básicos: Fases y transiciones de fases.
- 4.2 Equilibrios de fases en sistemas de un componente. Estudio termodinámico.
- 4.3 Diagramas presión/temperatura.

- Estudiaremos el equilibrio material que tiene lugar en sistemas donde se produce un cambio de fase.
- Una **fase** es una porción de materia homogénea esto es con composición definida y propiedades uniformes en todos sus puntos.
- Un sistema homogéneo está formado por una sola fase

Una fase un componente: sustancia pura

Una fase varios componentes: disolución

• Un sistema heterogéneo está formado por varias fases



Varias fases un componente

Varias fases varios componentes

• Cambio o transición de fase: Proceso por el que una fase cambia a otra.

Liquid

1000-

800

600

400

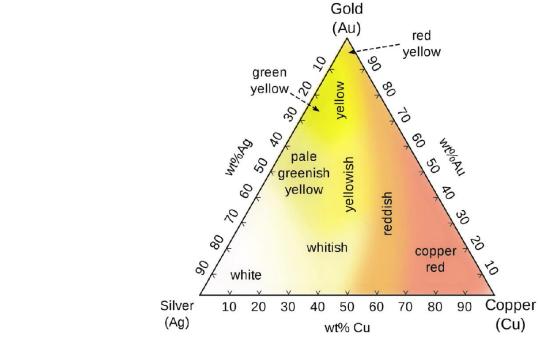
200

Sn

- (Sn)

T (°C)

Una transición de fase o estado puede producirse al cambiar las condiciones de temperatura y presión o la composición.

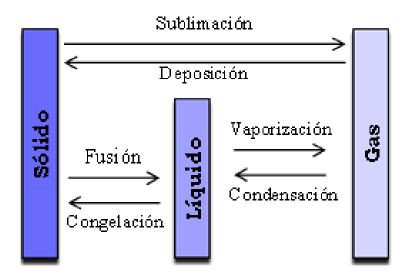


Sn(blanco, β)

$$\rightleftarrows$$
 Sn(gris, α)

 $\Delta H_{cf}^{o} = -2.09 \text{ kJ/mol}$

Bronce


Mass % Cu

Oro joyería

- Cambio de estado: cambio de fase entre estados de agregación de la materia:
 - Gas: fuerzas intermoleculares muy débiles. Movimiento libre, ocupan todo el espacio, la densidad es baja y pueden comprimirse.
 - **Líquido**: mayores fuerzas intermoleculares, movimiento restringido pero pueden fluir y se adaptan a la forma del recipiente, difíciles de comprimir.
 - **Sólido**: fuerzas de cohesión grandes, movimiento de vibración, formas definidas, fluidez muy baja o nula, prácticamente incompresibles

Gas	Densidad (25 C)	Líquido	Densidad	Sólido	Densidad
He	0.00002	Etanol	0.79	Hielo	0.917
Metano	0.00007	Aire líquido	0.87	Cuarzo	2.67
Aire	0.00012	Agua	1.0	Diamante	3.52
SF ₆	0.00061	Mercurio	13.53	Oro	19.1

• Cambio de estado: cambio de fase entre estados de la materia

Estudiaremos los cambios de P y T

• Cambio de estado: en el equilibrio

$$H_2O_{(s)} \rightleftharpoons H_2O_{(l)}$$
 $\Delta H_{fus}^o = 6.02 \text{ kJ/mol}$
 $H_2O_{(l)} \rightleftarrows H_2O_{(g)}$ $\Delta H_{vap}^o = 44.0 \text{ kJ/mol}$
 $H_2O_{(s)} \rightleftarrows H_2O_{(g)}$ $\Delta H_{subl}^o = 50.02 \frac{\text{kJ}}{\text{mol}} = \Delta H_{fus}^o + \Delta H_{vap}^o$

A (1)
$$\rightleftharpoons$$
 A (2)

Tetragonal (white tin)

Cubic (diamond)

Liquid

Temperature - K

En el equilibrio $G_1 = G_2$ $T_1 = T_2$ $P_1 = P_2$

$$\frac{dP}{dT} = \frac{S_2 - S_1}{V_2 - V_1} = \frac{\Delta S}{\Delta V} = \frac{\Delta H_{cf}}{T\Delta V}$$

Ecuación de Clapeyron

Pendiente línea de equilibrio entre fases

Sn(gris,
$$\alpha$$
) \rightleftarrows Sn(blanco, β) $\Delta H_{gris \rightarrow blanco}^{o} = 2.09 \frac{kJ}{mol}$ $\Delta V_{gris \rightarrow blanco} = -4.3 \text{ mL}$

1. A 0 °C la entalpia de transición del estaño gris a blanco es de 2196 J/mol y los volúmenes molares de ambas formas alotrópicas son 20.64 y 16.31 mL respectivamente. Estimar la pendiente de la curva de transición de estaño gris a blanco.

Sn(gris, α)
$$\rightleftarrows$$
 Sn(blanco, β) $\Delta H_{gris \rightarrow blanco}^{o} = 2196 \text{ J a } 0 \text{ }^{\circ}\text{C}$

$$\frac{dP}{dT} = \frac{\Delta H_{cf}}{T(v_l - v_s)} = \frac{2196 \text{ J}}{273.15 \text{ K} \times (16.31 - 20.64) \text{mL} \times 10^{-6} \text{ m}^3/\text{m L}}$$

$$\frac{dP}{dT} = -1.86 \times 10^6 \frac{Pa}{K} = -18.6 \frac{bar}{K}$$

$$\frac{dP}{dT} = \frac{\Delta H_{cf}}{T(v_l - v_s)} = \frac{2196 \text{ J}}{273.15 \text{ K} \times (16.31 - 20.64) L \times 10^{-3} \frac{L}{mL} \times 100 \text{ J/barL}}$$

Equilibrio líquido-vapor

Evaporación
$$H_2O_{(l)} \rightarrow H_2O_{(g)}$$
 $\Delta H_v > 0$ Condensación $H_2O_{(g)} \rightarrow H_2O_{(l)}$ $\Delta H_c = -\Delta H_v < 0$

Sustancia	T ebullición °C	$\Delta \mathrm{H_v}$
Metano	-161.6	8.2
Propano	-42	15.7
Butano	-1	21.0
Acetona	56.3	32.0
Metanol	64.7	35.3
Etanol	78.4	39.2
H ₂ O	100	40.7

100

4.2 Equilibrio de fases: un componente

Equilibrio líquido-vapor

$$A_{(l)} \rightleftarrows A_{(g)} \qquad K_{v} = P_{A}$$

$$\Delta G(\xi_{eq}) = \mu_{A,g}(\xi_{eq}) - \mu_{A,l}(\xi_{eq}) = 0$$

$$\Delta G(\xi_{eq}) = \mu_{A,g}^{o} + RT \ln \frac{P_{A}}{P^{o}} - \mu_{A,l}^{o} = 0$$

$$\Delta G^{o} = \mu_{A,g}^{o} - \mu_{A,l}^{o} = -RT \ln \left(\frac{P_{A}}{P^{o}}\right) = -RT \ln(K_{v})$$

$$K_{v}(T) = P_{A}(T)$$

El equilibrio líquido-vapor esta caracterizado por una presión fija para cada T

М

4.2 Equilibrio de fases: un componente

• Equilibrio líquido-vapor

$$A_{(l)} \rightleftharpoons A_{(g)}$$
 $K_v = P_A$

El equilibrio líquido-vapor esta caracterizado por una temperatura fija para cada T, por ejemplo, a 25 °C

Sustancia	P _{vapor} (atm)	T_{eb} (°C)	Carácter
Éter dietílico	0.7	34.6	Volátil
Acetona	0.3	56.3	Volátil
Acetonitrilo	0.12	82.0	Moderadamente volátil
Etanol	0.08	78.4	Moderadamente volátil
H_2O	0.03	100	Poco volátil
Octano	0.02	125.6	Poco volátil
Hg	2×10^{-6}	357	No volátil

100

4.2 Equilibrio de fases: un componente

• Equilibrio líquido-vapor

$$A_{(l)} \rightleftarrows A_{(g)} \qquad K_{v} = P_{A}$$

$$\Delta G(\xi_{eq}) = \mu_{A,g}(\xi_{eq}) - \mu_{A,l}(\xi_{eq}) = 0$$

$$\Delta G(\xi_{eq}) = \mu_{A,g}^{o} + RT \ln \frac{P_{A}}{P^{o}} - \mu_{A,g}^{o} = 0$$

$$\Delta G^{o} = \mu_{A,g}^{o} - \mu_{A,l}^{o} = -RT \ln \left(\frac{P_{A}}{P^{o}}\right) = -RT \ln(K_{v})$$

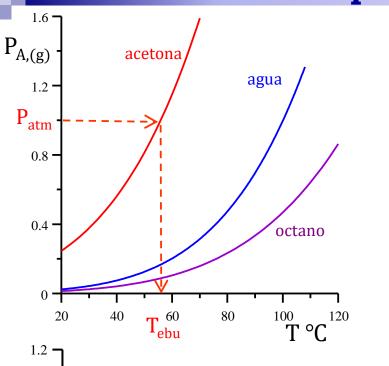
$$K_{v}(T) = P_{A}(T)$$

El equilibrio líquido-vapor esta caracterizado por una temperatura fija para cada T

100

4.2 Equilibrio de fases: un componente

Equilibrio líquido-vapor

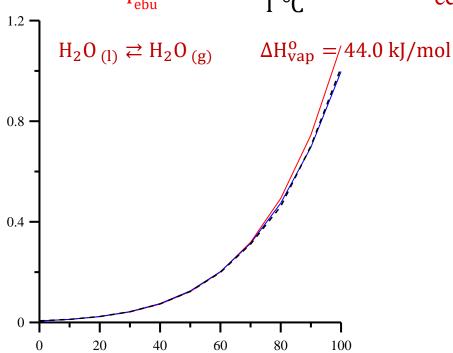

$$A_{(l)} \rightleftharpoons A_{(g)}$$
 $K_v = P_A$

La presión de vapor de equilibrio aumenta con la T

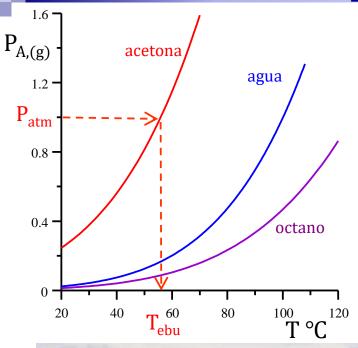
$$\begin{split} \frac{dP}{dT} &= \frac{\Delta H_{v}}{T(v_{g} - v_{l})} \cong \frac{\Delta H_{v}}{Tv_{g}} \\ & \qquad \qquad \bigvee v_{g} = R\,T/P \\ & \frac{dP}{P\,dT} = \frac{\Delta H_{v}}{RT^{2}} \\ & \qquad \qquad \bigvee \Delta H_{v}\,constante\,con\,T \end{split}$$

$$\ln \frac{P_2}{P_1} = -\frac{\Delta H_v}{R} \left(\frac{1}{T_2} - \frac{1}{T_1} \right)$$

$$\Delta H_s = \Delta H_f + \Delta H_v$$



ecuación de Clausius-Clapeyron


$$\ln \frac{P_2}{P_1} = -\frac{\Delta H_v}{R} \left(\frac{1}{T_2} - \frac{1}{T_1} \right)$$

$$\ln P = A - \frac{B}{T}$$

ecuación de Antoine

$$\ln P = A - \frac{B}{T + C}$$

La T de ebullición depende de la P exterior

T_{ebu} agua 100 °C nivel del mar Aneto 3400 m, 0,66 atm 88 °C Everest 8800 m 0, 33 atm, 72 °C

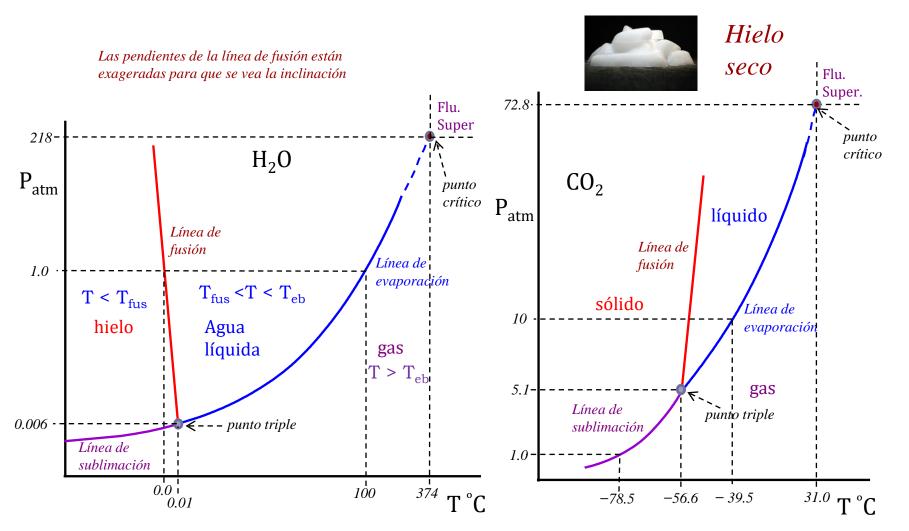
Olla rápida 1.5-2.0 atm 110-120 °C

2. Estimar la presión atmosférica en lo alto de una montaña si el agua hierve a 90°C. Se sabe que el punto de ebullición normal del agua es de 100 °C y que a 50 °C la presión de vapor del agua es de 0.1112 atm.

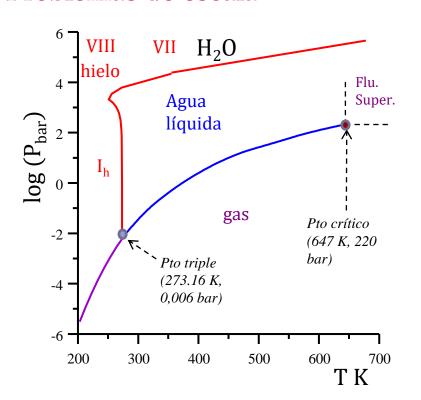
$$H_2O_{(l)} \rightleftharpoons H_2O_{(g)}$$
 $\Delta H_{vap}^o = 44.0 \text{ kJ/mol}$

$$\ln 1 = A - \frac{B}{373.15}$$

$$\ln 0.1112 = A - \frac{B}{323.15}$$


$$A = 14.195 \text{ y B} = 5297.0$$

$$\Delta H_v = B \times R = 5297 \times 8.314 = 44039 \equiv 44.0 \text{ kJ/m ol}$$


$$\ln P = 14.195 - \frac{5297}{273.15 + 90} = -0.3913$$
 $P = 0.676$ atm

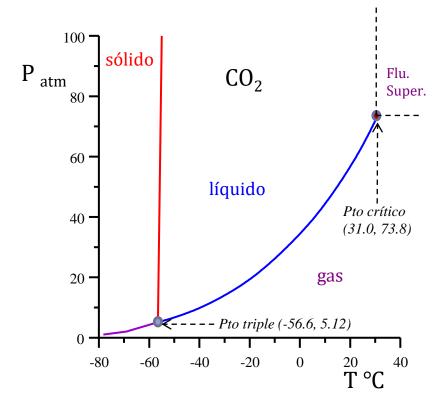
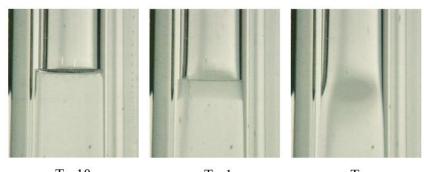

(la presión real es de 0.690 atm)

Diagrama de fases: Un diagrama de presión/temperatura o diagrama de fases muestra las zonas predominio de cada fase en función de la presión y la temperatura de un sistema cerrado. La curva de presión de vapor también indica las presiones externas donde se produce la ebullición del líquido, esto es, el cambio de fase.

Problemas de escala


Liofilización, secado a bajas presiones y temperaturas (-50 °C):

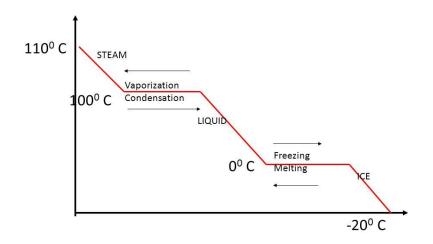
- 1) Evita el secado por calentamiento (pérdida del sabor y aroma)
- 2) Aumenta la estabilidad del producto (evita formación de bacterias)

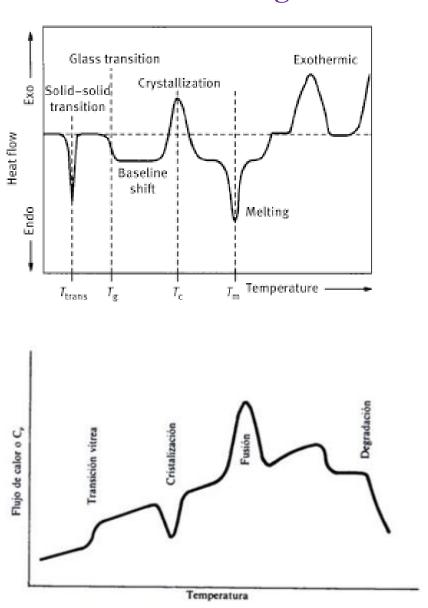
Puntos triple y crítico

Sustancia	Tt(°C)	Pt (bar)	T c (°C)	Pc (bar)
Metano	-182.47	0.117	-82.3	46.4
CO_2	-56.57	5.19	31.03	73.8
Argon	-189.34	0.689	-122.4	48.7
Etanol	-123	4.3×10^{-9}	241	63.0
Benceno	5.35	0.047	288.9	48.9
H ₂ O	0.01	0.00612	373.95	217.7
Iodo	113.5	0.1207	545.9	117
SF ₆	-49.43	2.31	45.5	24.9
Nitrogeno	-210	0.126	-146.9	33.9

 $T_c - 10$

 $T_c - 1$


 T_{c}


M

4.3 Diagramas presión/temperatura

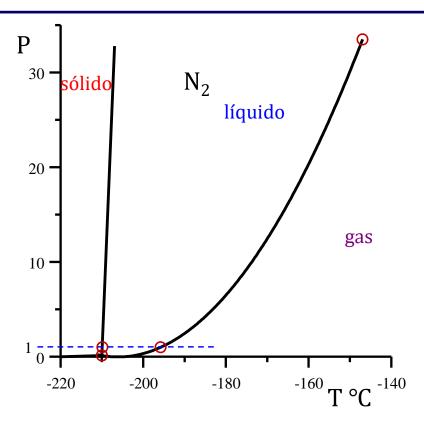
• En los cambios de fase la T permanece constante: termogramas

3. El punto triple del benceno es 278.5 K y 0.047 atm y su temperatura de ebullición normal 353.3 K. Estimar la temperatura de ebullición si la presión externa se reduce a 400 mmHg..

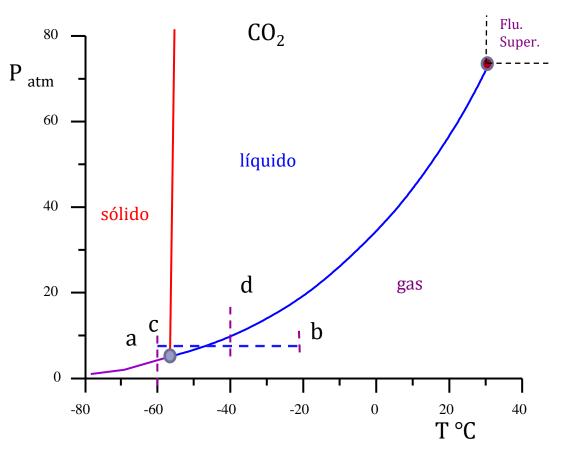
$$\ln 0.047 = A - \frac{B}{278.5}$$

$$\ln 1 = A - \frac{B}{353.3}$$

$$A = 11.384 \text{ y B} = 4022.1$$


$$\Delta H_v = B \times R = 4022.064 \times 8.314 = 33439 \equiv 33.4 \text{ kJ/mol}$$

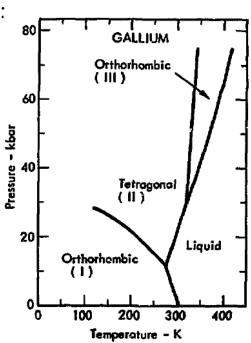
$$P = \frac{400}{760} = 0.5263$$
 atm $\ln 0.5263 = 11.384 - \frac{4022.1}{T}$


$$T = 334.5 \text{ K} \equiv 61.4 \text{ °C}$$
 (el valor tabulado es de 333.8 K)

(un valor más exacto es 333.8 K)

4.Los puntos de fusión y de ebullición normales del N_2 son -209.92 °C y -195.79 °C, respectivamente. Su punto triple está a -210.00 °C y 96 mm Hg, mientras que su punto crítico está a -146.94 °C y 33.5 atm. a) Dibujar esquemáticamente el diagrama de fases del N_2 , mostrando los cuatro puntos indicados antes, señalando dónde serían más estables las distintas fases y dónde estarían en equilibrio unas fases con otras, indicando cuáles. b) Al calentar N_2 sólido a la presión de 1 atm, ¿sublima o funde?

- **6.** Construye el diagrama de fases del CO_2 (punto triple: -56.6 °C, 5.12 atm, punto crítico: 31.0 °C y 73.8 atm) y describe los cambios que se producen cuando:
- a) CO₂ a 7.5 atm y -60°C se calienta hasta -20°C a P cte.
- b) La presión de una muestra de CO₂ a -20°C se incrementa de 5 a 10 atm.
- c) La presión de una muestra de CO₂ a -60°C se incrementa de 1 a 10 atm.
- b) La presión de una muestra de CO₂ a −40°C se incrementa de 5 a 15 atm.


- sólida pues la T es inferior a la del punto tríple y la P superior. Al calentar pasará a líquido al estar presión por encima de la del punto triple y finalmente a gas.
- b) No habrá transformación de fase y el
 CO₂ permanecerá en fase gas.
- c) Pasará de gas a sólido pues la T es inferior a la del punto triple y la presión también.
- d) Transformación de gas en líquido.

- **A3.** El punto de ebullición normal del amoniaco es -33 °C y el punto de fusión normal -77 °C. El punto triple está a -78 °C y 0,06 atm y su punto crítico a 132 °C y 111 atm.
- a) Dibuja esquemáticamente el diagrama de fases del NH3, indicando los puntos antes mencionados, dónde es más estable cada fase y dónde están dos o más fases en equilibrio.
- b) Indica si se puede realizar la sublimación del amoniaco a P=0.5 atm a alguna temperatura.
- c) Indica los cambios de fase que se producen si a P= 1 atm y T= -80 °C se aumenta la temperatura progresivamente.
- d) A -50 °C y 0.1 atm comentar los cambios de fases que se producen si se aumenta la presión progresivamente.

w

4.3 Diagramas presión/temperatura

A7. El diagrama de fase del galio se muestra a continuación:

- a) Indicar si será mayor el volumen molar del galio líquido o el del galio sólido a 1 bar.
- b) La temperatura de fusión normal del galio es de 29.8 °C. Si a 300 K pasamos de 1 bar a 20 kbar, explicar las transformaciones que podrían tener lugar.