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ABSTRACT
We study network capacity limits and optimal routing al-
gorithms for regular sensor networks, namely, square and
torus grid sensor networks, in both, the static case (no node
failures) and the dynamic case (node failures). For static
networks, we derive upper bounds on the network capacity
and then we characterize and provide optimal routing algo-
rithms whose rate per node is equal to this upper bound,
thus, obtaining the exact analytical expression for the net-
work capacity. For dynamic networks, the unreliability of
the network is modeled in two ways: a Markovian node fail-
ure and an energy based node failure. Depending on the
probability of node failure that is present in the network,
we propose to use a particular combination of two routing
algorithms, the first one being optimal when there are no
node failures at all and the second one being appropriate
when the probability of node failure is high. The combi-
nation of these two routing algorithms defines a family of
randomized routing algorithms, each of them being suitable
for a given probability of node failure.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Store and forward networks; C.2.2
[Computer-Communication Networks]: Network Pro-
tocols—Routing protocols; G.2.2 [Discrete Mathematics]:
Graph Theory—Network problems
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1. INTRODUCTION
Sensor networks have attracted many research efforts over

the past few years [19, 11]. These networks are composed
of inexpensive devices with sensoring and processing capa-
bilities, allowing the deployment of a large quantity of them
in the field. The individual nodes that compose these net-
works present a high degree of unreliability that gives rise to
frequent temporary failures. These temporary failures are
typically caused by the fact that nodes run with local bat-
teries which may get exhausted or alternatively, by a mal-
function in the node. After a temporary failure, the sensors
become operational again after a ”recovery period” due to
a battery recharge (e.g. manually or by a renewal source)
or due simply to a node replacement.

In this paper, we consider grid based sensor networks and
in particular, our focus is on finding network capacity lim-
its and the design of optimal routing algorithms for these
networks, investigating also the effect of the size and the
unreliability on the routing problem.

Routing in networks with a large number of nodes is not
a simple problem mainly because traditional routing algo-
rithms, developed usually for smaller size networks, become
prohibitively complex in terms of both communication and
computational complexity. If in addition, we have some de-
gree of unreliability in the network, the routing problem
becomes even harder since any route can break down due
to node failures. Therefore, the set of available routes be-
tween any two nodes changes randomly due to the (usually)
random node failures.

Multipath routing techniques have been found to be a
good strategy under unreliable conditions to increase the
robustness against failures [2, 20]. The principle of these al-
gorithms consists in flowing data simultaneously along mul-
tiple routes.

We consider the class of randomized multipath routing al-
gorithms [16, 20]. The essence of randomized routing algo-
rithms is based on the concept “think globally, act locally”,
that is, the aim is to derive the local rules at node level
in order to achieve a desired large scale overall behavior in
the network. In this way, routing decisions are taken based
only on local information (distributed processing), allow-



ing us to overcome the computational and communication
complexity inherent to large unreliable networks. Routing is
accomplished without performing explicit route discovery or
repair computations and without maintaining explicit state
information about available routes at each of the nodes [20].

We assume that either the sensor network is wired (e.g.
CMOS circuits) or if it is wireless, we assume contention is
solved by the MAC layer. We abstract the wireless case as a
graph with point-to-point links and transform the problem
into a graph with nearest neighbor connectivity.

We analyze the square grid and torus grid based networks.
We choose these simple structures because they allow for a
theoretical analysis while still being useful enough to in-
corporate all the important elements, such as connectivity,
scalability with respect to the size of the network and mod-
eling of node failures (unreliability). We establish the funda-
mental limits of transmission capacity in these networks for
the static case, that is, where no node failures are present,
and characterize and provide optimal routing algorithms for
which the rate per node is equal to the network capacity.
These optimal routing algorithms satisfy the property of be-
ing space-invariant, i.e. the routing algorithm that is used
to route the packets between any two nodes depends only on
the relative position between them, not their absolute posi-
tions. In the case of dynamic networks where node failures
are present, we model the node failures in two ways, using
a Markovian rule and an energy based rule. We propose
to use a family of randomized routing algorithms which are
obtained as a convex linear combination of two fixed routing
algorithms, namely, Row-First and Spreading. Row-First is
optimal for the case when there are no node failures while
Spreading has been designed for the case when the num-
ber of failures is high (unreliable networks). Thus, for a
given node failure rate, a specific convex linear combination
achieves the best maximum rate per node. In our work, we
do not treat the problem of delay in the network directly,
but we restrict ourselves to shortest path routing algorithms,
which ensure an upper bound on the delay.

The rest of the paper is structured as follows. In Sec-
tion 2, we introduce the network model and the network
capacity definition we use in our work. In Section 3, we first
obtain an upper bound for the network capacity in square
grid and torus grid networks for the static case, and we
give capacity-achieving routing algorithms for both types of
static networks. Then, in Section 4, we consider the dy-
namic case where temporary failures occur and we propose
a set of randomized routing algorithms and in Section 5 we
show experimentally that, for a given failure rate, one of the
routing algorithms in this family achieves the best rate per
node. Finally, conclusions and future work are discussed in
Section 6.

1.1 Related Work
Leighton [13] analyzed the performance of the greedy rout-

ing algorithm for square grid and torus networks. Based on
probabilistic reasoning, he provided bounds on the tail of
the delay and queue size distributions. This analysis requires
that the queue policy is “further first” instead of first-in first-
out. Harchol-Balter and Black [10] considered the problem
of determining the distribution on the queue sizes induced
by the greedy routing algorithm in square grid and torus
networks. They assumed that the time it takes for a packet
to move through and edge is exponentially distributed. This

hypothesis allows to reduce the problem into a product-
form Jackson queue network and analyze it using standard
queueing theory techniques. Although the exponential ser-
vice time hypothesis is not realistic, they conjectured that
it can be considered as an upper-bound for constant service
time networks. This was confirmed by Mitzenmacher in [15].
Mitzenmacher approximated the system by an equivalent
Jackson network with constant service time queues. He pro-
vided bounds on the average delay and the average number
of packets for square grids for constant service times. For
an overview of packet routing in lattice networks, the reader
is referred to [21, 7].

Routing in mesh networks has been thoroughly studied in
the context of distributed parallel computation [6, 22], where
the system performance strongly depends on the routing
algorithm.

The capacity of the wrapped square grid has been investi-
gated in the analysis of deflection routing algorithms [14,
5]. In deflection routing, packets are forwarded to their
preferred route and when there is no storage available for
a packet on the path to its destination, the packet is de-
flected to another path. These routing techniques are espe-
cially suitable for ultra fast networks since packet buffering
is avoided.

Upadhayay et al. observed that a balanced distribution
of traffic has a greater impact on system performance than
the adaptivity or efficiency of the algorithm [22]. They pre-
sented a minimal fully adaptive routing algorithm that cre-
ates a balanced and symmetric traffic load in the network.
Hajeck studied the problem of load distribution [9].

The routing problem has also been studied for energy bal-
ance purposes. Jain et al. consider in [12] that nodes operate
on a non-replaceable battery and assume the network life to
be the time at which the first node in the networks is de-
pleted of its energy. Therefore, the aim of the routing policy
is to equalize as much as possible nodes energy in the entire
network to maximize network life.

Multipath routing algorithms have already been consid-
ered in the context of mobile ad-hoc networks [18, 17]. In [20],
Servetto and Barrenechea presented a multipath routing al-
gorithm based on constrained random walks that distributes
the load as uniformly as possible.

Regarding capacity, Gupta and Kumar studied the trans-
port capacity in wireless networks [8] and conclude that for
a uniform traffic distribution the total end-to-end capacity
is roughly O (

√
n) where n is the number of nodes.

2. NETWORK MODEL AND CAPACITY
DEFINITION

We consider two possible models which describe the struc-
ture of regular static networks, that is, networks where there
are no node failures. These two models consist of two graphs
with a very regular structure: the square grid (Fig. 1(a)),
represented by a fixed graph Gs(V, Es), and the wrapped
square grid or torus grid (Fig. 1(b)), represented by another
fixed graph Gt(V, Et). A torus grid network is obtained from
a square grid network by adding some supplementary links
between opposite nodes at the border grid. Nodes in the
graph represent communication devices that generate infor-
mation packets (traffic), with routing capabilities and the
undirected arcs or edges to represent simplex communica-
tion links between the nodes.
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Figure 1: Network model. (a) N ×N square grid for
N = 5. (b) N ×N wrapped square grid or torus for
N = 5.

The length of a path is defined as the number of arcs in
that path. Moreover, we denote by s(i, j) the length of the
shortest path between nodes i and j. We define the shortest
path region of a pair of nodes {i, j} as the set of nodes that
belong to any shortest path between i and j. For instance,
the shortest path region of a pair of nodes {i, j} in the square
grid is a rectangle with the corner vertices being i and j.

Given a set X, let |X| denote the cardinality of the set X.
The N ×N square grid Gs(V, Es) contains |V | = N2 nodes,
|Es| = 2N(N − 1) arcs. The N × N torus grid contains
|V | = N2 nodes and |Et| = 2N2 arcs. For the sake of
simplicity, we will always use n to denote the number of
nodes and m to denote the number of arcs and it will be
clear from the context whether we refer to square grid or
the torus grid.

We assume a fixed bandwidth for any arc (i, j) and it is
denoted by uij

1. This bandwidth represents the maximum
flow that can pass through that arc. Without loss of general-
ity we can consider for simplicity that each arc has a unitary
bandwidth of 1 packet per time slot, that is, uij = 1 ∀ i, j.

Every node in the network can be the source or the des-
tination of a communication, as well as a relay for commu-
nications between any other pair of nodes. We assume that
nodes generate information at a constant average rate of R
packets per time slot. We also assume that each node can
transmit and receive several packets (at most four packets
due to the connectivity model we consider) at the same time.

We consider a uniform traffic distribution, i.e. the prob-
ability of any node communicating to any other node in
the network is constant and equal to 1

n−1
. We assume that

nodes are equipped with buffer capabilities for the temporal
storage of packets that have to be transmitted. When pack-
ets arrive at a particular node or are generated by the node
itself, they are placed in the buffer until the node has the
opportunity to transmit them through an available arc. Al-
though we do not assume a bound on the size of the queues
in our work, as our results show in Section 5, good rout-
ing algorithms can be designed which work efficiently with
finite queues2. Therefore, losses are only incurred due to

1For the sake of clarity we keep the subscripts i, j in our
subsequent proofs.
2The complete treatment of finite queues is one of the ob-
jectives of our current research.
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Figure 2: A Markov chain model for the transi-
tions between on and off states of each node over
time. We assume that transitions are independent
spatially across nodes.

overloaded nodes in the queueing theory sense. When the
arrival rate is higher than the departure rate the queue be-
comes unstable and the expected delay unbounded.

As explained in Section 1, the nodes that constitute these
sensor networks are usually simple devices with very limited
power and processing capabilities (though buffer and routing
capabilities are assumed) and consequently, present a high
degree of unreliability. Temporary failures are commonly
present with a certain “recovery” period after which, nodes
start working again. In order to model the temporary failure
behavior we consider two models that take into account node
time variations. In the first model we assume that nodes
switch between on and off states over time, independently
from each node, following a Markov rule as illustrated in
Fig. 2. The stationary probability of a node being off, and
thus its associated arcs, is given by Prob(on) = q

p+q
, where

p =Prob(off/on) is the transition probability from on to off,
and q = Prob(on/off) is the transition probability from off
to on. This model tries to capture node failures due to any
malfunction in the node.

The second model assumes that a node failure depends
on how frequently it is used for routing. For this purpose
we initially assign to each node a given energy and assume
that energy consumption in a node is proportional to the
number of packets transmitted by it. Assuming that nodes
are powered by a renewable source of energy, once the en-
ergy of a node is exhausted, it is refueled after a “recovery”
period. This “recovery” period is a random variable with a
geometric distribution.

We assume that nodes are not aware of their absolute
position in the network and so we consider only the class
of routing algorithms that deals only with relative position
between nodes.

Shortest path routing algorithms are those where packets
transmitted between any two nodes i, j can only be routed
inside the shortest path region of the pair {i, j}. We restrict
ourselves to this class because it is a natural and simple
choice in terms of upper bounding the transmission delay 3.

Definition 1. Network capacity CN is the maximum aver-
age number of information packets that can be transmitted
reliably per node and per time slot, i.e. the maximum pos-
sible average throughput.

Notice that this capacity is clearly bounded. For static
networks, there is a fundamental limit due to the limited
amount of connectivity in our network model. For dynamic

3This class of routing algorithm does not necessarily lead to
the best possible solution in terms of minimizing the delay.
The consideration of more general routing algorithms is a
subject of our current research.



networks, the capacity is bounded for two reasons, namely,
limited connectivity and node failures, which yields to packet
losses.

The target of routing protocols is to transport packets
from any source i to any destination j using shortest paths
in such a way as to maximize network capacity. We study
how to maximize this network capacity in both the static
and the dynamic scenarios. All our subsequent results are
based on these two models, namely, static and dynamic net-
works, represented by (square or torus grid) fixed and ran-
dom graphs, respectively.

3. ROUTING IN STATIC NETWORKS
In this section we first analyze the network capacity of

static square and torus grid networks. Then, we show that
this network capacity is indeed achievable by certain routing
strategies that we characterize.

3.1 Analysis of Network Capacity
In the next proposition we establish an upper bound for

the network capacity in static networks. Beyond this limit,
the network becomes congested and unstable, with an un-
bounded growth of queues, meaning that packets can not
arrive within a finite delay.

Proposition 1. The network capacity CN for the model
considered is upper bounded as follows:

For the square grid:

C
s
N =

�
2
N � 1− 1

N2 � , N even
2
N

, N odd.
(1)

For the torus grid:

C
t
N =

�
4
N � 1− 1

N2 � , N even
4
N

, N odd.
(2)

Proof. Leighton derived in [13] an upper bound for the
square grid based on bisection arguments. We can apply
the same arguments to both square grid and torus network
with the bisections shown in Fig. 3 and obtain both equa-
tions 1 and 2. The capacity of the torus grid is increased
by a factor of 2 with respect to the square grid network.
This stems clearly from the fact that the number of arcs
is increased while the traffic that flows across the bisection
remains equal.

Note from (1) and (2) that, in both cases, the network ca-
pacity decreases with the square root of the number of nodes
n, i.e. with N . This decreasing behavior is also present in
other kind of networks such as those presented in [8]. No-
tice also that these upper bounds are fundamental limits for
the network capacity CN , that is, no routing algorithm can
beat these bounds. As we will see in next section, this upper
bound is actually tight and can be achieved.

3.2 Optimal Capacity Achieving Routing
Algorithms

In this section, we show that the upper bounds given in
Proposition 1 are indeed achievable by using an appropriate
routing algorithm.

2

N

bisection

N

(a)

bisection

N+1

2

N
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Figure 3: Bisections for a N×N square grid network.
(a) N even. (b) N odd.

Definition 2. A routing policy Π(i, j) is defined by the
set of forwarding probabilities between any pair of neighbor
nodes which belong to the shortest path region defined by
the nodes i and j.

Fig. 4(a) illustrates an example of a shortest path region
and a routing policy Π(i, j), where each arrow contains a
forwarding probability.

Definition 3. A routing algorithm Π consists of the whole
set of routing policies
{Π(i, j), 1 ≤ i ≤ N, 1 ≤ j ≤ N}.

We denote byRΠ the maximum average rate per node achiev-
able for a given routing algorithm Π. Obviously RΠ ≤ CN .

We assume that routing algorithms are time invariant,
that is, forwarding probabilities do not change over time.

In the scenario we consider, nodes are not required to
know their absolute positions in the network. Consequently,
a very intuitive condition to impose in any routing algorithm
is that the traffic routing between two nodes does not depend
on the exact geometric position of the nodes.

Definition 4. We say that a routing algorithm Π is space
invariant if routing policies between any pair of nodes de-
pend only on the relative position of the two nodes.

3.2.1 Torus Grid
First we analyze the optimal routing algorithms for a torus

grid network. For any pair of nodes {i, j} in the torus, we
can view the grid as a Euclidean plane map and consider j to
be displaced from i along X-Y Cartesian coordinates, being
x and y the actual relative displacements. Because of the
particular existing symmetry in the torus grid, given two
nodes {i, j}, there are several possible displacements that
can be defined. We consider the one with smallest Euclidean
norm as the least displacement. In a torus grid, the least
displacement for any two nodes {i, j} denoted by δ(i, j), is
given by δ(i, j) = [x0, y0] where x0 = min(|x|, (N−|x|)) and
y0 = min(|y|, (N − |y|)). Accordingly, a routing algorithm
Π is space invariant if:

∀ {i, j}, {k.l} : δ(i, j) = δ(k, l) → Π(i, j) = Π(k, l).

This condition is depicted in Fig. 4(b).
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Figure 4: (a) Shortest path region and a routing pol-
icy Π(i, j), where each arrow represents a forward-
ing probability. (b) Two identical least displacement
pairs.

Proposition 2. For a static torus grid network, for any
space invariant routing algorithm, the maximum achievable
average rate per node R is equal to the upper bound on ca-
pacity Ct

N , which implies that the network capacity Ct
N of a

static torus grid network is actually equal to the upper bound
given by (2).

Proof. Consider a particular node k of the torus grid.
Let FΠ(i, j, k) be the fraction of the traffic generated at node
i with destination node j that flows through node k accord-
ing to a particular routing algorithm Π. Since all nodes
generate packets with a constant average rate R, the total
packet arrival rate λΠ

k to node k can be computed as:

λ
Π
k = R

N2�
i=1

N2�
j=1,j 6=i

T (i, j)FΠ(i, j, k). (3)

Note that if Π is space invariant, given the structural
perioricity of the torus, for every source-destination pair
{i, j} generating traffic that flows accross any particular
node, there exists always another source-destination pair
with the same least displacement as {i, j} that generates
exactly the same traffic flowing across any other node in the
network (Fig. 5(a)). As a consequence of this, the average
arrival rate to any node in the network is constant; that is,
λΠ

k = λN ∀k ∈ [1, . . . , n], ∀ space invariant Π. Therefore,

N2�
k=1

λ
Π
k = N

2
λN . (4)

Combining (3) and (4) and reordering summations:

N
2
λN = R

N2�
i=1

N2�
j=1,j 6=i

T (i, j)
N2�
k=1

FΠ(i, j, k). (5)

Note that � N2

k=1 FΠ(i, j, k) is the fraction of the traffic gen-
erated at node i with destination node j that flows through
any node in the torus grid network. Note also that any set
of nodes located in the shortest path region at a distance l

from node i, where 1 ≤ l ≤ s(i, j), has to route the entire
traffic between i and j (see Fig. 5(b)). Given that there are
s(i, j) of these sets:

N2�
k=1

FΠ(i, j, k) = s(i, j). (6)

i1
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j2

x2

x1i2

(a)

j

i
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l=3

l=4

   =5
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Figure 5: (a) The source-destination {i1, j1} gener-
ates traffic that flows across a x1 according to Π.
For any node in the network we can find a source-
destination pair that generates exactly the same
traffic flowing across this node. For instance {i2, j2}
for x2. (b) The set of nodes situated at a distance l

from node i has to route the entire traffic between
i and j. These sets can be composed by a different
number of nodes. Note that we have s(i, j) of these
sets.

Let L be the average distance between a source and a desti-
nation for a given communication distribution described by
T (i, j). The value of L is given by:

L =
1

N2

N2�
i=1

N2�
j=1

T (i, j)s(i, j). (7)

For a uniform communication distribution, the average dis-
tance is given by:

L =
1

N2 − 1

N2�
j=1,j 6=i

s(i, j) ∀i ∈ [1, . . . , n]. (8)

Combining now (5), (6) and (8):

λN = RL. (9)

Note that (9) gives the total arrival rate λN at any node
for any space invariant routing algorithm Π. The average
distance between any source node and any destination node
in a N × N torus grid under uniform traffic distribution is
given by [3]:

L = � N3

2(N2−1)
if N is even

1
2
N if N is odd.

(10)

Note that each node in the torus network is connected to
four links. In the case of simplex communication channels,
assuming that two neighbor nodes have the same probabil-
ity of capturing a link for a transmission, the mean service
time per node is µN = 2 packets per time slot. In the case of
duplex communication channels, µN = 4. For stability con-
dition ρ = λN

µN

< 1. In the limit, as ρ → 1, the maximum

achievable rate per node λΠ is given by:

λΠ =
2

L
, (11)

which is equal to the upper bound in (2).

Given the structural homogeneity of the torus, the use of
space invariant routing algorithms ensures a uniform traffic
distribution in the network, reaching the maximum average
rate per node.



3.2.2 Square Grid
Next, we analyze the optimal routing algorithms for a

square grid network. Due to space constraints and for the
sake of simplicity, we restrict our analysis to the case of odd
N . The analysis for even N is similar but more cumbersome.
Notice also that since we are interested in large networks
(large N), this is not a limiting restriction.

Given the topology of a square grid, as a node is located
closer to the geographic center of the grid, it belongs to the
shortest path region of higher number of source-destination
node pairs. In the case of shortest path routing policies, this
can be directly translated into a higher traffic load for nodes
placed close to the center of the grid.

Proposition 3. For any space invariant routing algo-
rithm Π, the total average traffic that flows through the cen-
ter node dm is lower bounded by:�

i∈V−dm

�
j∈V−dm

FΠ(i, j, dm) ≥ (N − 1)2(N + 1), (12)

where FΠ(i, j, dx) denotes the fraction of the traffic generated
at node i with destination node j that flows through the node
dx according to a particular routing algorithm Π.

Proof. The proof of this theorem can be found in [4].

Proposition 4. A shortest path space invariant routing
algorithm reaches capacity under uniform traffic distribution
only if the total average traffic that flows through the center
node dm of the grid is greater or equal than the total average
traffic flowing through any other node. That is:�

i∈V−dm

�
j∈V−dm

FΠ(i, j, dm) ≥�
i∈V−dx

�
j∈V−dx

FΠ(i, j, dx) ∀dx ∈ V − dm.

Proof. The proof of this theorem can be found in [4].

Propositions 4 and 3 implies that the center node is the
one that limits the maximum average rate per node R that
can be achieved by any space invariant routing algorithm.
As a consequence of Proposition 4, we have the following
Lemma.

Lemma 1. The average rate per node RΠ achieved by any
shortest path space invariant routing algorithm Π under uni-
form traffic distribution is upper bounded by:

RΠ ≤ 2

1 + 1
n−1

�
i∈V−dm

�
j∈V−dm

FΠ(i, j, dm)
. (13)

Proof. By Proposition 4 we know that dx is the node
with the higher arrival rate. The total arrival rate at node
dx, λdx

, is given by the addition of traffic with destination
dx and the traffic routed through it. That is,

λdx
= R

��
1 +

1

n − 1

�
i∈V−dm

�
j∈V−dm

FΠ(i, j, dm) �� .

Imposing stability conditions, i.e. ρ =
λdx

µ
< 1, we obtain

(13).

i

j

Figure 6: Row-First(Column-First) routing algo-
rithm. Nodes route packets using the most external
paths.

Lemma 1 says that the factor which really limits the max-
imum achievable rate in the network is the traffic routed
through the center node.

Note that Proposition 3 combined with Lemma 1 provides
an upper bound for the maximum achievable rate for any
shortest path space invariant routing algorithm. Now we
look into the achievability of this bound.

Intuitively, in order to have a routing algorithm that max-
imizes the rate per node R, the routing policy has to avoid
routing packets through the grid center and promote the dis-
tribution of traffic toward the borders of the grid. This way
we compensate the higher number of paths passing through
the center of the grid with a lower traffic per path. Con-
sider the following routing strategy: Nodes always route
packets along the same row (or column) toward the des-
tination node until they reach the destination column (or
row). Packets are then sent along the same column (row)
until they reach the destination node. In other words, in
order to route packets between any pair of nodes {i, j}, only
the most external paths of the shortest path region are al-
lowed (see Fig. 6). We denote this routing strategy by Row-
First(Column-First) [13]. Note that actually this routing
algorithm always avoids routing packets through the center
of the network by sending messages to the most external
paths. This policy is an effort to equalize the load in the
network as much as possible.

Proposition 5. For a static square grid network, the
maximum average rate per node Rr-f achieved by the Row-

First (Column First) routing algorithm is the maximum pos-
sible rate, i.e. Rr-f = Cs

N , which implies that the network
capacity Cs

N of a static square grid network is actually equal
to the upper bound given by (1).

Proof. The total average traffic that flows through the
center node dm when the routing policy is Row-First can be
easily computed:�

i∈V−dm

�
j∈V−dm

Fr-f(i, j, dm) = (N − 1)2(N + 1).

Note that it corresponds to the lower bound given in Propo-
sition 3. The maximum average rate per node is given by
Lemma 1:

Rr-f =
2

N
,

which is equal to the upper bound given in (1).



Proposition 5 says that, for the square grid network and
the uniform communication model under the infinite buffer
assumption, Row-First routing policy is optimal in the sense
that it achieves capacity.

Definition 5. For a given routing algorithm Π, the overall
traffic distribution QΠ

grid over the set of nodes V in the grid

is given by:

Qgrid(k) =
�

{i,j}∈V×V

FΠ(i, j, k) ∀ k ∈ [1, . . . , n]. (14)

Note that, among the shortest path space invariant routing
algorithms for the square grid, Row-First (Column-First)
routing algorithm achieves the most uniform possible overall
traffic distribution.

4. ROUTING IN DYNAMIC NETWORKS
In this section, we turn our attention to the problem of

routing in dynamic networks where nodes are subject to
temporary failures. It is very important to note that in
dynamic networks the capacity depends on two factors: the
limited connectivity, which determines the static network
capacity, and the packet losses due to node failures.

We proposed a distributed randomized routing algorithm
in [20] for achieving robustness against failures and maxi-
mum path diversity with very low computational complex-
ity and minimal state information. This routing algorithm
is based on the idea that when nodes in the network can fail
at any moment and sources have no state information about
the network, the best one can do is to distribute the traffic
as uniformly as possible among all the nodes in the shortest
path region. The balance in the traffic load that this algo-
rithm induces for any pair of source-destination nodes {i, j}
is such that two nodes in the shortest path region which
are located at the same distance from the source i carry
the same traffic load. We denote this routing algorithm by
Spreading.

Note that Spreading algorithm is proposed based on the
intuition that under failures, distributed communication are
more robust. However, unlike in the previous sections, we
have at this point no proof of optimality. Moreover, the
experimental results indicate a very good behavior.

Definition 6. For a given routing algorithm Π and a given
pair of nodes {i, j}, the node-to-node traffic distribution
QΠ

node(i, j) over the set of nodes that compose the shortest
path region of {i, j} gives the fraction of the traffic gener-
ated at node i with destination node j that flows through
each of them.

First we deal with the problem of routing in dynamic
square grid networks. On the one hand, it can be checked
using Lemma 1 that Spreading is not optimal in terms of
maximum achievable rate when failures are not present at
all, in which case, Row-First achieves capacity. On the other
hand, Row-First routing is obviously not a good strategy
when failures are present in the network. It routes packets
using only the two most external paths of the entire shortest
path region, thus not taking advantage of the full diversity
in the network, and consequently it is very vulnerable to
failures.

Furthermore, while Row-First achieves the best possible
overall network distribution of the traffic load, the node-to-
node traffic load is distributed over very few nodes. On the
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Figure 7: Load distributions for a 50 × 50 square
grid network: (a) Normalized Overall Row-First dis-
tribution. (b) Normalized Overall Spreading dis-
tribution. (c) Node-to-node Row-First distribution
for nodes {[1, 1], [50, 50]}. (d) Node-to-node Spreading

distribution for nodes {[1, 1], [50, 50]}. Notice that (a)
achieves a more uniform load distribution than (b)
while (d) is more distributed than (c).

contrary, the Spreading algorithm achieves the most uni-
form node-to-node traffic load distribution while the overall
load distribution is not optimal. Fig. 7 shows the overall
and node-to-node distributions induced by Row-First and
Spreading routing algorithms. Note that the overall traf-
fic load distribution generated by Row-First (7(a)) is more
uniformly distributed than the one generated by Spreading
(7(b)). Observe also that the node-to-node traffic load dis-
tribution induced by Spreading (7(d)) is as uniform as pos-
sible, while the one generated by Row-First (7(c)) is con-
centrated only in very few nodes.

Based on these arguments, in this section we propose a
method to achieve a good trade-off between these two ap-
proaches for a given node failure rate. Clearly, if the failures
in the network are nonexistent or very rare, the best solu-
tion is to use a routing algorithm that generates the most
uniform overall network distribution (Row-First), maximiz-
ing in this way the rate per node. However, as the failure
rate of the network increases and the network becomes more
unreliable, we should uniformly distribute the node-to-node
traffic load in order to avoid inoperative nodes and overcome
the network unpredictability (Spreading). This will cause a
reduction in packets losses due to node failures, which will
also contribute to increase the rate per node. However, at
the same time, this will reduce the rate per node for the
static case.

This observation suggests that for a given failure rate,
there is an optimal combination of Row-First and Spread-
ing that yields the highest rate per node. Depending on
the failure rate of the network, we propose to use a routing



algorithm Πα
cs that we call Constraint Spreading defined as

follows:

Πα
cs = (1 − α)Πr.f. + αΠspr, (15)

where α determines the trade-off between the node-to-node
distribution and the overall network distribution. If α = 0,
we have a Row-First routing. As we increase α, the rout-
ing algorithm starts using more paths than Row-First and
the node-to-node distribution becomes more uniformly dis-
tributed while the overall distribution is degraded. On the
other extreme, when α = 1, we have Spreading routing.
Notice that Constraint Spreading Πα

cs is a space invariant
routing algorithms ∀ α given that it is defined by a convex
linear combination of two space invariant algorithms. Note
also that (15) readily gives the forwarding probabilities by
a simple convex linear combination.

Clearly, as the failure rate increases, we will use a higher
value for α. Our simulation results show in fact this behav-
ior.

Definition 7. Given a N ×N grid network, let iN ,jN be
the two most distant nodes. The efficiency of a routing
algorithm Π, denoted by η(Π), is defined as:

η(Π) =
1

1 + 1
N

� �
QΠ

node
(iN , jN )−Quniform

node
(iN , jN ) � 2

,

(16)

where Quniform
node is the uniform node-to-node traffic distribu-

tion4.

The efficiency is a measure of how uniform the node-to-
node distribution is. Notice that η(Πspr) = 1.

In the case of the torus grid network, note that Spreading
routing is space invariant, thus it achieves capacity when
there are no node failures in the network (Proposition 2).
Both Spreading and Row-First equalize the load uniformly
among all nodes in the network (Proposition 2). There-
fore, the equivalent of Constraint Spreading is just Spreading
routing.

5. SIMULATION RESULTS
In this section we present some simulation results in or-

der to compare several routing algorithms for static and
dynamic networks. We compare the different routing al-
gorithms Πα

cs obtained by taking different values for α in
(15). For completeness, we analyze also the maximum rate
achieved by other shortest path space invariant routing poli-
cies that can be used in square grid networks: Diagonal
and Bernoulli routing algorithms. Diagonal routing [1] is a
probabilistic routing strategy which states that propagation
of messages toward the diagonal should be afforded prefer-
ence where possible, where diagonal denotes the set of nodes
that are an equal number of rows and columns away from
the destination node. Bernoulli routing [20] consists of flip-
ping a fair coin to decide which of the two feasible neighbors
on a next hop to pick at each node.

Fig. 8 shows the trade-off between maximum achievable
average rate per node and efficiency (16) for Bernoulli, Di-
agonal and Constraint Spreading routing algorithms for dif-
ferent values of α in a 961 nodes square grid network with a
4Other definitions are also possible as, for instance, the
Kullback-Leibler distance between node-to-node distribu-
tions. However we do not treat them here.
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Figure 8: Maximum rate per node - efficiency trade-
off for a 961 nodes square grid network. X axis de-
note Efficiency and y axis the product rate per node
square root of nodes. We represent both quantities
for different values of α, from 0 to 1 with 0.1 interval
size.

buffer capability of 100 packets per node, where α takes val-
ues in the interval [0, 1] with a step size of 0.1. Notice that
Constraint Spreading routing algorithms clearly outperform
both, Bernoulli and Diagonal, in efficiency and maximum
rate per node achieved. Observe also that when α = 0, that
is, we have a pure Row-First routing, we achieve the maxi-
mum rate per node, however the efficiency is very low. On
the other hand, for α = 1, we have a Spreading routing al-
gorithm and consequently efficiency is maximized while the
rate per node is decreased importantly. Between these two
extremes, we obtain intermediate results for different values
of α.

We analyze now the two dynamic networks models we
described in Section 2. First we consider the case of dy-
namic networks based on the Markov failure model. We fix
the transition probability Prob(on/off)=0.01 and make the
transition probability Prob(off/on) take values in the inter-
val [1, 0.01] such that the stationary probability of a node be-
ing on Prob(on) varies linearly in the interval [0.75, 1]. Note
that, as Prob(off/on) decreases, the network becomes more
unreliable, given that the “recovery” period of nodes is in-
creased and, consequently, the number of unavailable nodes
is also increased. Fig. 9 shows the rate per node achieved
by different Constraint Spreading routing algorithms char-
acterized by different values of α. The experiments are done
for a 1024 nodes square grid network, where nodes present
a buffer capability of 100 packets. The simulation time
was 600,000 time slots. Fig. 9(a) shows the rate per node
achieved by different routing algorithms under different net-
work conditions characterized by the probability of failure
(failure rate) Prob(failure)=1-Prob(on). Fig. 9(b) shows the
rate per node relative to the best rate achieved by any of
the considered routing algorithms for each given value of
Prob(failure).

If the network is static, that is, Prob(failure)=0, the best
strategy is to choose α = 0 (Row-First routing). However,
as the network becomes more unreliable, its performance
degrades rapidly. For very unreliable networks, values of



0 0.05 0.1 0.15 0.2 0.25

0.6

0.8

1

1.2

1.4

1.6

1.8

2

P(failure)

R
at

e 
pe

r 
N

od
e 

x 
N

α=0
α=0.5
α=0.75
α=1

(a)

0 0.05 0.1 0.15 0.2 0.25
0.88

0.9

0.92

0.94

0.96

0.98

1

P(failure)

R
el

at
iv

e 
R

at
e 

pe
r 

N
od

e

α=0
α=0.5
α=0.75
α=1

(b)

Figure 9: Performance of Constraint Spreading for
different values of α under the Markov failure model
in a 1024 nodes square grid. (a) Absolute achieved
values. (b) Relative performance.

Prob(failure) close to 0.15 or above, the best routing algo-
rithm consists in choosing α = 1, that is, Spreading. We
observe also, that depending on the values of Prob(failure),
the best values for α is different.

We repeated the same experiment considering the energy
based failure model. We consider that the energy of a node is
depleted after sending 500 information packets. Then, after
a “refueling” period, nodes become active again. The results
are presented in Fig. 10. In this case, the Prob(off/on) is
going to determine the “refueling” period. As the “refuel-
ing” period increases, the network becomes more unreliable,
given that more nodes would be inoperative waiting for more
energy supply. Fig. 10(a) shows the rate per node achieved
by different routing algorithms under different network con-
ditions and Fig. 10(b) shows the relative rate per node.

Observe that the behavior of the routing algorithms un-
der both failure models is very similar. In the energy based
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Figure 10: Performance of Constraint Spreading for
different values of α under the energy failure model
in a 1024 nodes square grid. (a) Absolute achieved
values. (b) Relative performance

model, however the rate per node decreases more rapidly.
This is due to the fact that in the square grid network
nodes situated in the center of the network have to deal
with a higher traffic load (see Fig. 7(a)). Therefore, their
energy is depleted more rapidly than any other node, re-
sulting in more frequent temporary failures. However, the
relative performance of Constraint Spreading routing algo-
rithms remains quite similar. We see again that for very
short “refueling” periods, low values for α achieve better re-
sults, while large “refueling” periods calls for large values
for α.

6. CONCLUSIONS AND FUTURE WORK

6.1 Summary
In this paper, we studied network capacity limits and op-

timal shortest path routing algorithms for regular networks,



namely square and torus grid networks. We analyzed the
static case (no node failures) and the dynamic case (node
failures) under two different failure modes: a Markovian
model that reproduces failures due to malfunction in the
nodes, and an energy driven model. First we analyzed the
network capacity of square and torus grid networks, and
showed that these capacities were indeed achievable by an
appropriate routing algorithm. For the case of dynamic net-
works we proposed to use a particular combination of two
routing algorithm called Row-First and Spreading, where
Row-First is the routing algorithm that achieves capacity
in the static case, and Spreading is the most robust algo-
rithm against failures. Depending on the unreliability of
the network we proposed a family of randomized routing al-
gorithms. All the routing algorithms that we propose have
the common property of being space-invariant.

6.2 Future Work
In this work we do not assume a bound on the size of

the queues. Although our results show that a good perfor-
mance can be achieved even with finite and relative small
queues, the complete treatment of finite queues is one of
the objectives of our current research. We also restricted
the possible routing algorithms to the class of shortest path
routing, i.e. messages transmitted between any two nodes
can only be routed following a shortest path. However, this
class of routing algorithms does not necessarily lead to the
best possible solution in terms of minimizing the delay.

Finally we want to investigate the interaction of the source
coding mechanism and the transport mechanism for real
time data packet transmission over dense networks. The
idea is to combine the multipath diversity generated by the
structure of the network and the routing algorithm with spe-
cific coding techniques such as multiple description coding.
Initial results presented in [3] are encouraging.
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