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Non-informative priors do not exist 
A dialogue with Jose M. Bernardo 1 

Preamble 

Professor Jose Bernardo,  who is the originator  and. with James Berger, a driving 
force behind the use of what  are known as 'reference priors', shared a ride with Telba 

I rony and Nozer  Singapurwalla from Pittsburgh, PA. to Washington,  DC, sometime 

during the latter part  of 1995. After the usual gossip, which statisticians of all 
persuasions tend to relish, the discussion turned to the topic of 'd ishones t  priors', and 

their increasing encroachment  on the Empire of Chance. The discussion evolved in 

a Socratic tradition, with Jose playing the role of Socrates (albeit answering the 
questions in this part icular dialog), and his driving partners, the pupils; fortunately 

Jose was not driving. This question and answer format of discussion turned to be very 

fruitful, and even more  enjoyable than gossip, because Jose's knowledge of the topic 

and its historic evolution, not  to mention his passion for statistics (among other  
things), provided a useful perspective on a topic of much controversy. Jose was then 

asked to write up his perspective as a contr ibut ion for the Discussion Forum of JSPI,  

to which his suggestion was that we reproduce the dialogue and write it up as such. We 

thought  that this suggestion was a great idea and so, when Jose visited Washington 
DC in May 1996, the dialogue was reconstructed. Given below is an account  of this 

reconstruction; we feel that  those of us who are not cognoscenti  about  dishonest 

priors may benefit from this conversat ional  overview. 

Telba Z. Irony 
Nozer  D. Singpurwalla 

Question I. It is often said that non-i@)rmative priors do not exist and yet under this 

label, plus many  others, such as conventional, default, fiat,formal, neutral, non-sub/co- 
tic< oh/ective and reference priors, they do get used. Does this imply that the users of 
non-informative priors are really not honest Bayesians? 

Answer. I would not say that they are dishonest but, too often, they are not precisely 
aware of the implications of  their use. By definition, 'non-subjective' prior distributions, 
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are not intended to describe personal beliefs, and in most cases, they are not even 
proper probability distributions in that they often do not integrate one. Technically, 
they are only positive functions to be formally used in Bayes theorem to obtain 
'non-subjective posteriors' which, for a 9iven model, are supposed to describe whatever 
the data 'have to say' about some particular quantity of interest, either a function of the 
parameters in the model, or a function of future observations. Whether or not they 
achieve this goal or, indeed, whether or not this goal is at all achievable, is often 
a matter of debate. 

Question 2. Are non-subjective posteriors always proper? 

Answer. They should be! Indeed, a proper posterior for any minimum-size sample 
should be the first property required from any method of deriving non-subjective 
priors. But you should realize that a naive use of 's tandard'  non-subjective priors may 
lead to improper posteriors. Casella (1996) describes how, in a components of variance 
problem, this has lead to unaware users of Gibbs sampling to obtaining nice pictures 
of posterior distributions that do not exist! Actually, Dennis Lindley told me that he 
knew of this components of variance example since the 1950s, and it is mentioned in 
Berger (1985, p. 187), but people seem to take for granted a crucial property - the 
propriety of the posterior which must however be carefully checked whenever an 
improper prior is used. 

Question 3. Are there any non-subjective priors that are proper? 

Answer. There are indeed. The simplest example is the Beta distribution Be (0[~,I ~),i 
widely regarded as the appropriate non-subjective prior to make inferences about the 
parameter 0 of a binomial model. In fact, proper non-subjective priors are usually 
found whenever the parameter space is bounded, although this is not a general rule; 
the non-subjective prior typically recommended for the parameter 0 of a negative 
binomial model is ~(0) = 0-1 (1 - 0)-1/2, which is improper although the parameter 
space is bounded, while a sensible non-subjective prior to make inferences about the 
ratio of two multinomial parameters, turns out to be proper even though the 
parameter space ]0, ~ [ is not bounded. Actually, one could always work with proper 
non-subjective priors if the parameter spaces were taken to be appropriately chosen 
bounded sets. For  example, the standard non-subjective prior for a real location 
parameter is uniform on 9t, which is improper; however, if given some experimental 
measures, inferences are made on the true value of some physical quantity a more 
realistic parameter space would be [0, c], for some context-dependent constant c, and 
the presumably appropriate non-subjective prior, a uniform on [0, c], would indeed be 
proper. Similarly, in the negative binomial setting where the probability of success 
must be strictly positive, a parameter space of the form [e, 1], for some e, > 0 would 
lead to a proper non-subjective prior. 
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Question 4. How do you interpret probability? 

Answer. Naturally, as a measure of personal belief. Of  course, this does not mean that 
I would systematically be prepared to bet in terms of non-subjectivc posterior 
distributions, because my personal beliefs may well be not closely approximated by 
any particular non-subjective prior. 

Question 5. 1 agree that betting quotients may not reflect true belief, but do you 
subscribe to the axioms of probability? 

Answer. Yes, l do. I am a strong believer in foundational arguments: the intellectual 
strength of the Bayesian argument comes directly from the fact that mathematical 
logic requires one to express all uncertainties by means of probability measures. In 
fact, there are two independent arguments to support  this claim: 

(i) Coherent decision theory: If you try to guarantee that your decision making 
criteria are sensible -- in that they meet some intuitively appealing axioms 
o1 if you want to avoid 'inadmissible' decisions, then you must express all 
your uncertainties by probabilities. For specific details, you can look at Saw~ge 
11954), Fishburn (1981, 1986), or Bernardo and Smith (1994. Ch. 2), and references 
therein. 

(ii) Representation theorems: If you accept a probabilistic description of the behav- 
iour of observables as all statisticians presumably do and you want to describe 

mathematically the idea that some observations are ~similar' in some sense and 
hence some type of prediction is possible then the general representation 
theorem tells you that these 'exchangeable'  observations are a random sample 
from some underlying model, indexed by some parameter  defined as the limit ot ~ 
some function of the observations, and there exists a prior probability distribution 
over such a parameter. Key references are de Finetti (1937), Hewitt and Savage 
(1955)~ Smith (1981) and Diaconis (1988); you can get an overview from Bernardo 
and Smith (1994, Ch. 4), and references therein. 

These are proven existence results; they imply that the common sentence 'a prior 
does not exist' is a mathematicalfidlacy: for mathematical  consistency one mttst bc 
a Bayesian. However, these are only existence results; they leave open the question ot 
speci/ivin:l a particular prior in each problem. 

Question 6. Don' t  the axioms imply that the probability of a tautology should b~ 
1 and, thus, that priors have to be proper? 

Answer. The natural axioms do not: they only lead to finite additivity, which is 
compatible with improper  measures: however, the further sensible assumption of 
con,qlomerability leads to a-additivity and, hence, to proper measures; some signposts 
to this debate are Renyi (1962), Heath and Sudderth (1978, 1989), Hartigan (1983), 
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Cifarelli and Regazzini (1987), Consonni and Veronese (1989) and Lindley (1996). 
Nevertheless, it must be stressed that what really matters is the posterior of the 
quantity of interest - which under o--additivity must certainly be proper - ,  because 
this is what you have to use either in inference or in decision making. 

Question 7. But those proper non-subjective posteriors are often derived from im- 
proper priors; how should one interpret the improper priors? 

Answer. One should not interpret any non-subjective prior as a probability distribu- 
tion. Non-subjective priors are merely positive fractions which serve to produce non- 
subjective posteriors by formal use of Bayes theorem, and 'sensible' non-subjective 
posteriors are always proper. 

Question 8. What do you mean by a 'sensible' non-subjective posterior? 

Answer. One that - after careful scrutiny of its properties you would be prepared to 
use for scientific communication. Of course, there is no way to give a formal definition 
for this; indeed, an important part of the discussion on methods for deriving non- 
subjective priors is based on the analysis of the statistical properties of the posteriors 
they produce in specific, 'test case' examples. 

Question 9. If the prior to posterior conversion describes the change in one's 
betting behaviour (and this is a debatable issue), should that prior also not be 
proper? 

Answer. Non-subjective priors are limits. Any sensible non-subjective prior may 
be seen as some appropriately defined limit of a sequence of proper priors. In fact, 
as I have mentioned before, they are only improper because of the use of conve- 
nient, typically unbounded parameter spaces. If we tried to be more realistic, 
and worked with appropriately chosen bounded parameter spaces, non-subjective 
priors would always be proper; if one prefers to work with conventional parameter 
spaces, increasing sequences of bounded approximations to those parameter spaces 
may be used to provide sequences of proper priors which converge to the corres- 
ponding improper non-subjective priors in the precise sense that, for any data set, 
the sequence of posteriors thus produced converges to the corresponding non- 
subjective posterior. 

Question 10. Why then have improper priors entered our lives? Can we not do away 
with them by concentrating only on compact spaces? 

Answer. We could indeed, but this would probably be mathematically inconvenient. 
But, again, the main question is not whether non-subjective priors are proper or 
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improper,  but whether or not they lead to sensible non-subjective posteriors. Actually. 
if an improper  prior leads to a posterior with undesirable properties, the posterior 
which would result from a proper approximation to that prior (like that obtained 
by truncation), will typically have the same undesirable properties: for instance 
the posterior of the sum of the squares of normal means 4~ :: X ~L~ based on ~t 
joint uniform prior on the means 7r(p~ . . . . .  l~k) '~ 1 is extremely unsatisfactory 
as a non-subjective posterior for q5 (Stein, 1959), but so is that based on the 
proper multinormal prior ~(~1 . . . . .  tlk) 3C [I~N(l~10, cr), for large a. Proper or 
improper, we need non-subjective priors which appropriately represent a lack o1" 
relevant prior knowledge about the quantity of interest relative lo that provided b~ 
the data. 

Question 11. What  do you mean bv a prior describing a lack of knowledge? 

Answer. The contribution of the data in constructing the posterior of interest should 
be 'dominant ' .  Note that this does not mean that a non-subjective prior is a mathemat-  
ical description of 'ignorance'. Any prior reflects some form of knowledge. Non- 
subjective priors try to make precise the type of prior knowledge which, for a ,qi, en 
model and for a particular inJerence problem within this model, would make data 
dominant. They may also be seen as a contribution to robust Bayesian methods 
(Berger, 1994). 

Question 12. We now see your point: namely, that non-subjective priors are those for 
which the contribution of the data are posterior dominant  for the quantity of interest. 
This is sensible, but to construct non-subjective priors does one need to consider data? 

Answer. Non-subjective priors do not typically depend on the data, but on the 
probabilistic model which is assumed to have produced them: as one would ex- 
pect, the prior which makes the data posterior dominant for the quantity of interest 
usually depends both on the model assumed for the data and on the quantity of 

interest. 

Question 13. It appears that, in using the prior as a mere technical device in a formal 
use of Bayes' law, and with the aim of making the posterior data dominant, one is 
proposing a paradigm for inference which is not in the spirit of Bayes (and Laplace) 
nor is it in the spirit of Fisher, or Neyman Pearson Wald. If so, may one conclude 
that a non-subjective Bayesian is a sensible pseudo-Bayesian? 

Answer. No, I think he is totally Bayesian. Non-subjective Bayesian analysis is just 
a part -- an important  part, I believe - of a healthy sensitivity analysis to the prior 
choice: it provides an answer to a very important question in scientific communication, 
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namely, what could one conclude from the data f prior beliefs were such that the 
posterior distribution of the quantity of interest were dominated by the data. 

Question 14. What are the historical precedents of non-subjective priors? 

Answer. The pioneers were Bayes (1763), who considered a uniform prior in a bi- 
nomial setting, and Laplace (1812), who used an improper uniform prior in the normal 
case. Nobody considered using priors that were different from the uniform in those 
days when, by the way, a large part of statistical inference was based on inverse 
probability calculations. 

Question 15. So Laplace did use uniform priors that were improper? 

Answer. Yes, although he seemed to be aware that this was only a sensible approxi- 
mation to using a proper uniform prior in the bounded parameter space which would 
more closely reflect the underlying physical problem. 

Question 16. How does this connect with Laplace's 'principle of insufficient reason'? 

Answer. The 'rationale' for using a uniform prior was that any other prior would 
reflect specific knowledge. Of course, as I stated before, any prior reflects some 

knowledge; what happens here is that in any location problem, the uniform prior is 
precisely that which makes the data posterior dominant. 

Question 17. When did problems with uniform priors surface? 

Answer. By the early 1920s it was widely realized that the universal use of a uniform 
prior did not make sense. Since most statisticians were not prepared to use personal 
priors in scientific work, alternative 'objective' methods of statistical inference were 
produced, which only depended on the assumed probability model; this gave rise to 
both fiducial and frequentist inference. It was not until the 1940s that Jeffreys (1946) 
produced an alternative to using the uniform as a non-subjective prior; however, 
Jeffreys was a physicist, barely integrated in the world of academic statistics, and his 
work did not achieve the impact is deserved. 

Question 18. What did Jeffreys do? 

Answer. He was motivated by invariance requirements and suggested, using differen- 
tial geometry arguments, a solution which provides a non-subjective prior known as 
Jeffreys' prior. He then proceeded to a detailed investigation of the consequences of 
such an approach (Jeffreys, 1961). 
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Question 19. What are these invariance requirements? Are they really crucial'? 

Answer. They are invariance under one-to-one transformations, and invariance under 
sufficient statistics. I certainly believe that those properties are crucial for "sensible' 
non-subjective distributions, to the point that one should not seriously consider 
a proposal for non-subjective Bayesian inference which does not satisfy them: 

(i) lnvariance under one-to-one tran,s'~)rmations. If 0 = 0(~h) is a one-to-one function 
of qY, then r~(q~lx ) is logically equit~alent to =(OIx} = 7z(~lx)ld~/~/dO]: hence, the 
non-subjective posterior for q5 directly obtained from p(xl ~b) and the non-subjec- 
tive posterior for 0 obtained from the same model reparametrized in terms of 
0 must be related by that equation. 

{ii) lm~ariance under suO~cient statistics. If t is su[licient statistic for the model rr{~/~ I .\~- 
then the non-subjective posterior 7r(qYlx ) obtained from model p(xle/~t must be the 
same as the non-subjective posterior ~z(qYlt) obtained from p(tlqY). 

Some pointers to the literature on the role of invariance in the selection of non- 
subjective priors are Hartigan (19641, Jaynes (1968), Dawid (19831 and Yang (1995t. 

Question 20. Can you give an intuitive explanation of Jeffreys' prior? 

Answer. His invariance requirements are easy to understand, but he did not offer an 
intutively convincing explanation for his particular choice; however, a modern de- 
scription by Kass (1989) offers a heuristic explanation based on the idea that 'natural" 
volume elements, defined in terms of Fisher's matrix, should have equal prior prob- 
ability. Moreover, when applicable (continuity and appropriate regularity conditions), 
the one-dimensional version of Jeffrey's prior has been justified from many different 
viewpoints: these include Perks (1947), Lindley (1961), Welch and Peers (1963}, 
Hartigan (1965), Good (1969), Kashyap (1971), Box and Tiao (1973, Section 1.3j, 
Bernardo (1979), Kass (1990}, Wasserman (1991) and Clarke and Barton (1994t. The 
derivation of the one-dimensional Jeffreys' prior by Welch and Peers (1963), as that 
prior for which the coverage probabilities of one-sided posterior credible intervals are 
asymptotically as close as possible to their posterior probabilities, may be specially 
appealing to frequentist trained statisticians: this means that under ,leffrcvs" one 
parameter prior, and for large sample sizes, an interval with posterior probability 
1 - : z  may be approximately be interpreted as a confidence interwd, in the 
Neyman Pearson sense, with significant level ~. 

Question 21. You have just mentioned that, from a technical point of view. ,leffrcys 
prior is related to Fisher's information matrix. Is Fishers' information matrix related 
to the notion of 'lack of information"? 

Answer, Not directly. The conneclion comes from the role of Fisher's matrix in 
asymptotics. By the way, this should be simply called 'Fisher's matrix', not 'Fisher's 
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information matrix': it is only directly related to general information measures under 
normal assumptions or in regular asymptotic conditions. 

Question 22. Is Jeffreys' prior a flat prior? 

Answer. I guess you mean 'nearly uniform'. Then no, generally it is not, unless the 
parameter is a location parameter. I will use your question to stress that 'flat' priors 

typically uniform or log-uniform - which are too often used as being synonymous 
with 'non-informative' priors, may be very informative on non-location parameters. 
For  instance, as I have mentioned before, a 'flat' prior on the means of a multivariate 
normal implies strong knowledge about their sum of squares, thus producing Stein's 
(1959) paradox. 

Question 23. Then in what sense is Jeffreys' prior neutral, i.e., reflects a lack of 
knowledge? 

Answer. It does not reflect 'lack of knowledge', but it may be argued that - with one 
parameter and under regularity conditions Jeffreys' prior describes the type of prior 
knowledge which would make the data as posterior-dominant as possible. Thus, the 
corresponding posterior distribution may be argued to provide a benchmark, a 'refer- 
ence', for the class of the posterior distributions which may be obtained from other, 
possibly subjective, priors. 

Question 24. What is the problem with Jeffreys' prior and in which cases is it 
appropriate? 

Answer. Jeffreys himself realized that his proposal only works, and then under 
regularity conditions, in one-parameter continuous problems. He suggested a collec- 
tion of ad hoc rules to deal with multiparameter problems, with mixed results. 
Moreover, he seemed to be convinced that a unique appropriate non-subjective prior 
could be defined for any given model, whatever the quantity of interest. This was later 
seen to be not true. 

Question 25. What are the developments after Jeffreys'? 

Answer. For  a while, it was thought that clever analysis of multiparameter problems 
using some combination of Jeffreys' proposals would produce appropriate non- 
subjective priors for any problem. Lindley's (1965) book was an explicit attempt is this 
sense, and it does prove that most standard 'textbook' inference problems have 
a non-subjective Bayesian solution within his framework, and one which produces 
credible intervals which are often numerically either identical or very close to their 
frequentist counterparts. But then, in the early 1970s, the marginalization paradoxes 
emerged. 



Journal (~l" Statistical Planning and Mji, rence 65 (1997) 159 189 167 

Question 26. What  are the marginalization paradoxes? 

Answer. They may collectively be seen as a proof that the original idea of a 
unique non-subjective prior for each model is untenable: we may only agree 
on a unique non-subjective prior for each quantity of interest within a model. A simple 
example of marginalization paradox is provided by the standardized mean (h - ll/cr 
of a normal distribution: Stone and Dawid (1972) showed that the posterior distribu- 
tion of 4) only depends on the data through some statistics t, whose sampling 
distribution only depends on q~. Hence, one would expect that inferences derivcd 
from the model p(tl(~) would match those derived from the full model N(xl/2, a), 
but they proved that this is not possible if one uses the 's tandard'  non-subjective 
prior rc(/2, a) = l/or, which everybody agrees is the appropriate  non-subjective prior 
to make inferences about  either/2 or or. It was immediately seen (Dawid et al. 1973) 
that marginalization paradoxes are ubiquitous in multiparameter problems: any 
future development of non-subjective Bayesian analysis would have to come to terms 
with them. 

Question 27. Was your own work on re[erence distributions a reaction to this'? 

Answer. It was not a direct reaction, but I was certainly influenced by these results. In 
the mid 1970s, as a part  of my Ph.D. work on Bayesian design of experiments. 
I become interested in non-subjective 'non-informative'  priors. The marginalization 
paradoxes made obvious to me that some new work in that area was necessary: 
reference analysis was the result. 

Question 28. Can you explain what do you mean by reference analysis'? 

Answer. Reference analysis may be described as a method to derive model-based, 
non-subjective posteriors, based on information-theoretical ideas, and intended 
to describe the inferential content of the data for scientific communication. It is, to 
the best of my knowledge, the only general method available which has the re.- 
quired invariance properties and successfully deals with the marginalization para- 
doxes. 

Question 29. This is a very convincing statement in favour of your paradigm, but 
what do you mean by the inferential content of the data? How many this be 
quantified? 

Answer. In the sense, each possible answer to that pair of related questions may be the 
basis for a method to derive non-subjective posteriors. 1 personally believe that the 
inferential content of the data is appropriately measured by the amount ofinlbrmatim~ 
they provide on the quantity of interesL where the word ' information'  is used in the 
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technical sense of Shannon (1948) and Lindley (1956). This was the starting point for 
the definition of a reference posterior (Bernardo, 1979). 

Question 30. Can you be more explicit on the relationship between reference distribu- 
tions and information-theoretical ideas? 

Answer. The amount of information to be expected from the data is naturally 
a function of the prior knowledge, as described by the prior distribution: the 
more prior information available, the less information may one expect from the data. 
With only one real-valued parameter, one may unambiguously define a limit func- 
tional which measures, in terms of the prior distribution, the amount of missin 9 
information about the parameter which data from a given model could possibly be 
expected to provide; the reference prior is that which maximizes the missing informa- 
tion. The multiparameter case is handled by recursively using the one-parameter 
solution. 

Question 31. How do reference priors differ from other proposals? In particular, how 
do they differ from Jeffreys' priors? 

Answer. The reference prior approach is totally general and, as far as I am aware, 
it includes within a single framework all generally accepted non-subjective solu- 
tions to specific cases. In one-parameter problems, the reference prior reduces to 
Jaynes (1968) maximum entropy prior if the parameter space has a finite number of 
points, and it reduces Jeffreys' prior in the continuous regular case. In regular 
continuous multiparameter problems, one often obtains the solutions which Jeffreys 
suggested using ad hoc arguments rather than his general multivariate rule. More- 
over, reference analysis can deal with non-regular cases which cause problems for 
other methods. 

Question 32. Can you give some examples of reference priors in the one-parameter 
continuous case? 

Answer. As I have just mentioned, under regularity conditions to guarantee asymp- 
totic normality, the reference prior is simply Jeffreys' prior, namely 

( [ d2 7"~ 1/2 
Ex,0 - 01ogp(x,0tj) , 

but I will give you a couple of non-regular examples: 

(i) Uniform distribution on [ 0 -  a, 0 + a]. The reference prior is then uniform on 
9t, and the reference posterior is uniform over the set of 0 values which 
remain feasible after the data have been observed (Bernardo and Smith, 1994, 
p. 311). 
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(ii) Un!l'orm distribution on [0,0]. The reference prior is then =(0) < 0 t and the 
reference posterior is a Pareto distribution (Bernardo and Smith, 1994, p. 438~. 

Question 33. You have sketched the derivation of reference posteriors associated to 
models with only one real-valued parameter,  and stated that those are invariant under 
reparametrization, but how do you deal with nuisance parameters? 

Answer (Recursively). The idea is very simple, although there are delicate technical 
issues involved. Consider the simplest case; suppose that you are interested in the 
reference posterior distribution rr(4)lXl . . . .  , x , )  of some quantity 4) given a random 
sample fi-om a model p(xl~b, fJ, which contains one real-valued nuisance parameter 
),e A c 9¢. Working conditionally on qS, this is a one-parameter  problem, and hence 
the one-parameter  solution may be used to provide a conditional reference prior 
=(';-I qS). If this is proper, then it may be used to integrate out the nuisance paramete~ 
2 and obtain a model with one real-valued parameter  plxl~b) to which the one- 
parameter  solution is applied again to derive the mar qinal reference prior 7r(471: the 
desired reference posterior is then simply 

rc(4,1x, . . . . .  x,,) ~: r~(4,)~ I1~=, {ptx;14,,;,)l 7r().14,)d2. 
d I 

If ~(,).lq)) is not proper, the procedure is performed within an increasing sequence o1" 
bounded approximations {Ai, j = 1,2 . . . .  ] to the nuisance parameter  space A, 
chosen such that ~(2]q5) is integrable within each of them; the reference posterior is 
then the limit of the resulting sequence {r~j(qSIx~ . . . . .  x,,), j = 1.2 . . . .  ~j of posterior 
distributions (Berger and Bernardo. 1989, 1992b). 

Question 34. Does this mean that, within a single model, you may have as man 5, 
reference priors as possible parameters of interest.'? 

Answer. It does indeed, Given a model, say p(xlO~,02), the reference algorithm 
provides a reference posterior distribution for each parameter  of interest 
qS: (/)(0~,02), and those may well correspond to different priors, because beliefs 
which maximize the missing information about qb = 0(01,02) will generally differ 
from those which maximize the missing information about ;l = ~1(01.02), unless 
;/ happens to be a one-to-one function of ~b. 

Note also that, as I mentioned before, using different priors for different parameters 
of interest is the only way to have non-subjective priors which avoid the marginaliz- 
ation paradoxes. For instance, in a normal model, N(x, ltt, o-), the reference posterior 
for tl is the Student distribution St(/~12,(n - -  1 )  l " 2 s ,  n - 1 ) ,  obtained from the 'con- 
ventional'  improper  prior Tc(allt)~z(10 = a 1, while the reference posterior for 4) = It.'a 
is obtained from ~z(alq~)rc(qb) = (2 + 4)2)-1/2or ~ a d!~lerent improper prior, prodt,- 

cing a reference posterior for q5 which avoids the marginalization paradox that you 
would get if you used again the conventional prior (Bernardo, 1979). 
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Question 35. We now see how to deal with a single nuisance parameter, but how do 
you proceed when there are more than one? 

Answer. The algorithm I have just described may easily be extended to any number 
{)01 . . . .  ,2m} of ordered nuisance parameters: get the one-parameter conditional 
reference prior ~(,'~.rnlq~,,'~q . . . . .  /~m 1) and use this to integrate out 2,,; get 
n(2m-limb, 21 . . . .  ,)'m-2) and use this to integrate out 2m_ 1; continue until you get 
n(q~); then use 

~ ( / ~ m [ ( ~ , ' ~ l , - . .  ,~-m 1)~( '~m- l [qS , '~1  . . . . .  /~m-2)  X "'" XT"g('~I[(/~)Tg((]~) 

in Bayes theorem, and marginalize to obtain the desired reference posterior 
rc(q~(x, . . . . .  x . ) .  

The result might  possibly depend on the order in which the nuisance parameters are 
considered which, in that case, should reflect their order of importance in the problem 
analysed, the least important being integrated out first. We have found however that 
this is usually not the case: in most problems, the reference posterior of the quantity of 
interest is independent of the order in which the nuisance parameters are considered. 

Question 36. Can you give some examples of this? 

Answer. In a multinomial model, Mu(rl  . . . .  , rm [01, ... , Ore, n), the reference poste- 
rior for, say, 01, is the Beta distribution Be(01 [rl + 1, n - rl + 1) and this is indepen- 
dent of the order in which the other 0i's are considered (Berger and Bernardo, 1992a). 
Note, by the way, that this does not depend on the irrelevant number of categories 
m as the posterior from Jeffreys' multivariate prior does; thus, the reference algorithm 
avoids this type of agglomeration paradox  typically present in other proposals. 
Similarly, within the same model, the reference posterior for q~ = 0~/02 is the Beta 
distribution of the second kind 

(~rl 1/2 
n(c~lrl . . . .  ,rm, n) oc 

(1 + ep) r ' + ' ~ + '  ' 

(which, again, does not depend on m, but corresponds to a different prior), and this is 
independent of the order in which the nuisance parameters are considered (Bernardo 
and Rambn, 1996). Many more examples are referenced in Yang and Berger (1996). 

Question 37. What has now happened to the invariance properties on which you 
insisted before? 

Answer. They are still there. The reference posterior of any quantity of interest q5 does 
not depend on whether one uses the full model or the joint sampling distribution of 
a set of sufficient statistics. Moreover, for any model p(xlch,).l  . . . .  ,2m), the reference 
posterior n(q3fx) does not depend on the particular parametrization chosen for each of 
the nuisance parameters and, besides, if 0 = 0(qS) is a one-to-one transformation of ~, 
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then 7z(OIx) = ~r(~blx)l d~b/d0l. Datta and Ghosh (1996) have recently shown that these 
invariance properties are often not shared by other proposed methods to derive 
non-subjective posteriors. 

Question 38. How do you compute, in practice, reference distributions? 

Answer. Reference priors only depend on the model through its asymptotic behav- 
iour; essentially, if you know the asymptotics of your model, then you may easily find 
its associated reference priors. Under regularity conditions for asymptotic normality, 
any reference prior may be obtained from a relatively simple algorithm in terms of 
Fisher's matrix (Berger and Bernardo, 1992b). However, the derivation of reference 
priors in non-regular or complex models may be a difficult mathematical problem. 

Of course, once you have obtained the appropriate reference prior for some 
quantity of interest, you simply use Bayes theorem and marginalize to derive the 
required reference posterior. It turns out that, within the exponential family, reference 
priors often correspond to some limiting form of the corresponding natural conjugate 
family and, in that case, the corresponding reference posteriors may often be obtained 
in closed form. When this is not the case, numerical reference posteriors may be 
efficiently obtained using MCMC sampling ,resampling techniques, as described by 
Stephens and Smith (1992). 

Question 39. We now have a procedure to derive reference posterior distribu- 
tions when no prior information is available about the parameter of interest; however. 
even for scientific communication, one may sometimes want to use some partial' 
information (possibly intersubjectively agreed). Can reference analysis deal with this 
situation'? 

Answer. It surely can; you define the reference prior under partial information as that 
which maximizes the missing information subject to whatever constraints are imposed 
by the information assumed. If the restrictions take the form of expected values, then 
explicit forms for the corresponding restricted reference priors are readily obtained 
(Bernardo and Smith, 1994, pp, 316 320). Note that restricted reference analysis 
typically leads to proper priors; for instance, in a location model, the reference prior 
which corresponds to the partial information provided by the first two moments of the 
unknown parameter is the normal distribution with those moments. 

Question 40. Please, talk about the new developments on reference priors, 

Answer. I can see several directions in which further research is needed: 
(i) Bounded approximations: I have mentioned before that to implement the refer- 

ence algorithm in multiparameter problems when the conditional reference priors 
are not proper, a bounded approximation to the parameter space in which the 
conditional reference priors are integrable is required. It may be seen (Berger and 
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Bernardo, 1989) that the result may depend on the bounded approximation 
chosen. Although in a specific model it is usually clear what the 'natural' bounded 
approximation is - and this should be the same for all parameters of interest 
within the same model a general definition of the appropriate bounded approxi- 
mation is needed. 

(ii) Grouping: With many parameters, one may apply the reference prior algorithm 
by lumping the parameters in just two groups (parameters of interest and 
nuisance parameters), or one may lump them into any number groups and 
proceed sequentially (Berger and Bernardo, 1992a~c). There is evidence to sug- 
gest, however, that one should not group the parameters but proceed recursively 
using the one-parameter solution as I have described to you before; this seems to 
guarantee both admissible coverage properties and the absence of marginaliz- 
ation paradoxes, but further research is needed to substantiate this point. 

(iii) Prediction and hierarchical models: A reference prior is technically defined for an 
ordered parametrization suggested by the problem of interest. What are the 
appropriate ordered parametrizations to use in prediction and hierarchical model 
problems? Again, although some answers are available in specific cases, the 
general strategy is not clear. 

(iv) Model choice: Reference distributions are not directly applicable to model choice 
between models of different dimensionalities: indeed, reference distributions are 
typically only defined up to proportionality constant, and those constants 
become relevant in this case. Nice results are available however (Bernardo, 
1996) by posing the question as a decision problem, and working with the 
reference posterior of the quantity of interest implied by the corresponding utility 
function. 

(v) Numerical reference analysis: The derivation of reference priors may sometimes 
be a difficult mathematical problem, but numerical reference posteriors may be 
obtained, in principle, by simulation methods. This is easily done in one or two 
parameters, but the general problem is not trivial (Efstathiou, 1996, Ch. 5), as 
computational explosion has to be avoided in higher dimensions. 

Question 41. Is there anything to be said about the long-term frequentist properties of 
non-subjective posteriors? I realize that good Bayesians should not be raising this 
type of a question but, politically speaking, it may be wise to raise the issue. 

Answer. Politics aside, this is a very interesting issue, and one that is central to 
discussions on comparative statistical inference. Interest on the frequentist coverage 
probabilities of credible intervals derived from non-subjective posteriors has a long 
history; key references include the pioneering work by Welch and Peers (1963) that 
I have already mentioned, Peers (1965). Hartigan (1966), Tibshirani (1989), Ghosh and 
Mukerjee (1992), Mukerjee and Dey (1963), Nicolau (1993), and Datta and Ghosh 
(1995). The coverage probabilities of credible regions has often been an important 
element in arguing among competing non-subjective posteriors, as in Berger and 
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Bernardo (1989) or Ye and Berger (1991) and, indeed, discussions on the coverage 
properties of non-subjective priors have now become common. Reference posteriors 
have consistently been found to have attractive coverage properties what may be 
seen as a form of calibration - but, as far as I am aware, no general results have been 
established. 

Question 42. Is there any other issue on comparative inference over which non- 
subjective priors may have a bearing? 

Answer. A very important one is the procedure used to eliminate nuisance para-- 
meters. The marginalization paradox examples may be used to demonstrate tha~ 
non-Bayesian methods to eliminate nuisance parameters (plug-in estimates, profile 
likelihood, naive integrated likelihood and the like) are often inconsistent within theiJ" 

own paradi~lms in that the resulting 'marginal' likelihood may differ from the simplified 
likelihood. For example, the sampling distribution of the sample coefficient of correla- 
tion r in a bivariate normal model depends only on the population coefficient of 
correlation/~, so that non-Bayesian statisticians would presumably consider ptr[/7) to 
be an "exact' 'marginal' likelihood from which inferences about p could be made. Yel. 
the more sophisticated non-Bayesian techniques to eliminate nuisance parameters fail 
to derive t)(r[p) (Efron, 1993), while integration of the nuisance parameters with the 
conditional reference priors (taken in any order) easily produces the "exact" marginal 
likelihood (Bayarri, 1981; Lindley, 1965, pp. 215 219; Bernardo and Smith, 1994, 
pp. 363 364). 

Question 43. What about admissibility? 

Answer. Non-subjective priors are sometimes criticized on the grounds that, since 
they are often improper, they may lead, for instance, to inadmissible estimates. Wc 
have seen, however, that sensible non-subjective priors are, in an appropriate sense, 
limits of proper priors; regarded as a 'baseline' for admissible inferences, non-subjec- 
tive posteriors need not be themselves admissible, but only arbitrarily close lo 
admissible posteriors. That said, admissibility is not really the relevant concept: 
truncating the parameter space may lead to technically admissible but very unsatisfac- 
tory posteriors, as in the sum of squares of normal means example I described before. 
Besides, admissibility crucially depends on the loss function; thus, if one is really 
interested in estimation, one should explicitly work in terms of the corresponding 
decision problem, with an appropriate, context dependent, loss function. To deal with 
those problems, reference analysis may be extended to define reference decisions, as 

those optimal under the prior which maximizes the missing utility (Bernardo, 1981; 
Bernardo and Smith, 1994, Section 5.4.1). This is, by the way, another very promising 
area for future research, 
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Question 44. Could you talk about general criticisms to non-subjective priors? 

Answer. The major criticism usually comes from subjectivist Bayesians: the prior 
should be an honest expression of the analyst's prior knowledge, not a function of 
the model, specially if this involves integration over the sample space and hence 
violates the likelihood principle. I believe there are two complementary answers 
to this: 
(i) Foundational: A non-subjective posterior is the answer to a what if question, 

namely what could be said about the quantity of interest given the data, if one's 
prior knowledge was dominated by the data; if the experiment is changed, or 
a different quantity of interest is considered, the non-subjective prior may be 
expected to change correspondingly. If subjective prior information is specified, 
the corresponding subjective posterior could be compared with the non-subjective 
posterior in order to assess the relative importance on the initial opinions in the 
final inference. 

(ii) Pragmatic: In the complex multiparameter models which are now systematically 
used as a consequence of the availability of numerical MCMC methods, there is 
little hope for a detailed assessment of a huge personal multivariate prior; the 
naive use of some 'tractable' prior may then hide important unwarranted assump- 
tions which may easily dominate the analysis (see e.g., Casella, 1996, and refer- 
ences therein). Careful, responsible choice of a non-subjective prior is possibly the 
best available alternative. 

Question 45. Could we end with some signpoints for those interested in pursuing this 
discussion at a more technical level? 

Answer. The classic books by Jeffreys (1961), Lindley (1965) and Box and Tiao (1973) 
are a must for anyone interested in non-subjective Bayesian inference; other relevant 
books are Zellner (1971) and Geisser (1993). 

The construction of non-subjective priors has a very interesting history, which dates 
back to Laplace (1812), and includes Jeffreys (1946, 1961), Perks (1947), Lindley (1961), 
Geisser and Cornfield (1963), Welch and Peers (1963), Hartigan (1964, 1965). Novick 
and Hall (1965), Jaynes (1968, 1971), Good (1969), Villegas (1971, 1977), Box and Tiao 
(1973~ Section 1.3), Zellner (1977, 1986), Bernardo (1979), Rissanen (1983), Tibshirani 
(1989) and Berger and Bernardo (1989, 1992e) as some of the more influential 
contributions. 

For a general overview of the subject, see Bernardo and Smith (1994, Section 5.6.2), 
Kass and Wasserman (1996), and references therein. Yang and Berger (1996) is 
a problem-specific (partial) catalog of the many non-subjective priors which have been 
proposed in the literature. 

For some one specifically interested in reference priors, the original paper, Ber- 
nardo (1979) is easily read and it is followed by a very lively discussion; Berger and 
Bernardo (1989, 1992b) contain crucial extensions; Bernardo and Smith (1994, Section 
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5.4) provide a description of reference analysis at a textbook level: Bernardo and 
Ram6n (1996) offer a modern elementary introduction. 
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Comments  on paper by J.M. Bernardo 

D.R. Cox 
Department q[ Stalistics and Nu[held College, O.Tlord 

It is very helpful  to h a v e  P ro fes so r  B e r n a r d o ' s  a c c o u n t  of  his i m p o r t a n t  w o r k  o n  

reference  pr iors ,  T h e  u n u s u a l  f o r m a t  helps  clar ify the key issues invo lved .  

1 have one  small  historical  commen t ,  a ma jo r  poin t  of d isagreement ,  and two questions.  

T h e  h i s to r i ca l  p o i n t  is t ha t  the answer  to q u e s t i o n  17 migh t  lead to an under -  

e s t i m a t i o n  of  the effect of  Jeffreys 's  work .  H e  was  wr i t ing  on  these top ics  f rom before  

1930 and  had  an i m p o r t a n t  bu t  re la t ive ly  a m i c a b l e  p u b l i s h e d  d i s a g r e e m e n t  wi th  R.A. 

F i she r  in the 1930s. In  the  p e r i o d  of  in tense  in teres t  in f o u n d a t i o n a l  q u e s t i o n s  in the 

1950s I k n o w  f r o m  f i r s t -hand  expe r i ence  tha t  such inf luent ia l  N o r t h  A m e r i c a n  

w o r k e r s  as A. B i r n b a u m ,  D.A.S.  Fraser ,  L.J. Savage ,  and  J .W. T u k e y  were  all fami l ia r  

wi th  Jeffreys 's  ideas;  a lso  the  i m p o r t a n t  w o r k  on Bayes i an  e c o n o m e t r i c s  by Ze l lne r  

bui lds  on Jeffreys's ideas, I believe. It is of  course  t rue tha t  Jeffreys's work  on  probabi l i ty  

and  inference was only  a small  p r o p o r t i o n  of  his to ta l  scientific con t r ibu t ions .  
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The main point of disagreement is with the answer to question 5, about the role of 
the axioms of personalistic probability. I do not at all agree that these show that one 
m u s t  follow the stated route. It can be very interesting to explore the consequences of 
simple axioms but there comes a point where what is revealed throws more light on 
the axioms than on the final conclusions. In particular, in the present case, the 
assumption that all probabilities are comparable is central. This may be reasonable in 
some or perhaps many contexts, but certainly not in all. As soon as it is admitted that 
there are different kinds of uncertainty, the argument breaks down. The arguments 
connected with coherent decision theory, moreover, depend upon the idea that the 
simple games contemplated in that theory are a reasonable representation of real-life 
problems, whether in science, technology or in public affairs. These are in many cases 
but highly idealized models of what is involved. Professor Bernardo's second line of 
argument is more compelling but even here seems to be tied to problems with 
independent and identically distributed structure and rather few of the applications 
I come across are of this kind. This is not at all to dismiss the interest of these 
arguments, rather to stress that they are considerably less compelling than Professor 
Bernardo's answer suggests. 

My general attitude to these issues is eclectic; if more or less the same answer can be 
obtained from a number  of different approaches this is reassuring. If very different 
answers are obtained, then clarification for the reasons for the differences can be very 
enlightening. From this point of view, one of the values of work on reference priors 
hinges on clarifying the link between the Bayesian and conditional confidence interval 
approach as summarized in the answer to question 20. 

I think it would be very helpful if Professor Bernardo amplifies his answer to 
question 29. The assumption that information is measured in the way stated seems 
crucial, and from some points of view these definitions are connected with asymptotic 
theory; clearly Professor Bernardo has one of the stronger interpretations in mind, 
but is it really reasonable to suppose that the amount  of information in a distribution 
can be captured in one number? Finally, do reference priors throw any light on the 
data-dependent priors used by G.E.P. Box and me in our work on transformations? 

C o m m e n t s  on "Non-informative priors do not exist" 

A.P .  D a w i d  

Department of Statistical Science, University" College, London 

There is no doubt that 'reference', and other 'non-subjective', priors have played an 
important  r61e in motivating young researchers to take a stronger interest in the 
Bayesian approach to Statistics. The idea of an 'objective' analysis, which somehow 
lets the data speak for themselves, and allows some approchement between Bayesian 
and non-Bayesian answers, has long had great appeal. From the pragmatic viewpoint, 
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it is clearly impossible to introspect deeply about  every routine problem one meets, 

and so I sympathize with the desire to have a 'default' prior specification incorporated 
into Bayesian software, for example. If this idea could be put on a proper theoretical 
foundation, so much the better. I must therefore admit to great personal disappoint- 
ment that (notwithstanding the strenuous and admirable efforts of such pioneers as 
Jeffreys and Bernardo) it has become clear over the years that this ideal is unattain- 
able: no theory which incorporates non-subjective priors can truly be called Bayesian, 
and no amount  of wishful thinking can alter this reality. 

Professor Josh Bernardo claims to be a strong believer in foundational arguments, 
so l am surprised he is satisfied with a methodology which is at odds with them. For 
exainple, any way of specifying a default prior which depends (as all do) on the model 
under consideration must violate the likelihood principle (see e.g. Berger and Wolpert, 
1984), a mainstay of Bayesianism. Professor Bernardo's own reference priors depend 
further on the parameter  function being considered. This means that the associated 
'posteriors'  do not even obey the normal rules of probability. For the model X~ 
N(t~i, 1) independently, the reference posterior distribution for qS: = ~tt 2 cannol be 
found by marginalization from the joint reference posterior for the vector #: = lt~iJ. 
Should calculation of this margin be outlawed? If so, why? How should we calculate 
the posterior probability of an event of the form "',ueA", when A = '~,u: Vt~ ~ ~ k}? We 
get different answers depending on whether we use the reference prior for t~ or that for 

i~ 2 (and, presumably, yet another answer if we use that for the indicator function of 
A - at any rate, this cannot agree with both the other answers). What if we perturb the 
boundary of A very slightly so that it is no longer determined by the value of ~ #~'? Can 
we countenance a discontinuous jump in the probability of A? What is the use of a 
distribution for #, anyway, if we cannot use it to assign probabilities to arbitrary events'? 

Professor Bernardo suggests that the 'marginalization paradox'  (MP) can always bc 
avoided by the use of his reference prior for the parameter  of interest. This has not 
been demonstrated, in general. Section 3 of Dawid et al. t1973) exhibits cases where, 
for suitable functions z of the data and { of the parameter, with the density ptz]~) of 
z depending only on ~, priors may be found for which the marginal posterior for 

depends only on z, but for no such prior can this posterior have p(z]~l as a factor, 
which would be required to evade MP. It is still possible to evade MP by using an 
arbitrary proper prior, but this operates by a different mechanism: it is then impossible 
that the marginal posterior of ~ depend on z alone, so the possibility of MP does 
not even arise. The reference analysis would have to behave similarly if Professor 
Bernardo's conjecture is valid. Would this behaviour be acceptable'? 

Professor Bernardo makes several references to the idea of an improper  prior as an 
approximation to a proper one. However, such arguments are delicate and prone to 
fatal pitfalls: see, e.g., Stone (19821. A recent account of logical issues and difficulties 
associated with MP and approximability may be found in Dawid et al. (19961. 

In summary,  the idea of a 'default prior'  is here to stay, for very good pragmatic 
reasons: but there can never be a fully consistent theory of such priors, so they must be 
treated with great caution. I fully agree with the title of the article under discussion. 
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Non- in format ive  priors do not  exist - discuss ion 
of  a discuss ion 

J .K.  G h o s h  

Indian Statistical Institute and Purdue University 

What a honest but witty and civilized discussion of topics that many of us regards 
as important and most of us concede as controversial. Professor Bernardo, as 
Socrates, may not have convinced his sceptical pupils completely but he has certainly 
put up a strong case for doing what goes under the name of default or automatic or 
non-subjective Bayesian analysis. Few of us would disagree either with his description 
of its limited aims of supplementing rather than replacing subjective Bayesian analysis 
or his concern with useful non-subjective posteriors instead of noninformative priors. 
However, difficulties remain even if one gives up noninformative priors in favour of 
data-dominated posteriors. To keep my discussion simple, I will focus on this and 
certain technical questions arising from this. I will then discuss briefly the question of 
truncating the improper priors. 

By data-dominant posteriors Professor Bernardo clearly means the posteriors that 
arise by maximizing the Lindley information measure which is an average of the 
Kullback Leibler divergence of the prior and the posterior. This procedure was 
introduced in Professor Bernardo's seminal paper of 1979 and a somewhat modified 
and very clear algorithm was provided in Berger and Bernardo (1989, 1992b). It is true 
that the proposed criterion is elegant and general and all the applications have 
produced posteriors that seem to be satisfactory. Unfortunately, we still donot 
understand fully why this should be so. Let me explore briefly internal validation 
through coherence, avoidance of the marginalization paradox and proper posterior 
and external validation through frequentist considerations over repetitions as in 
Berger and Bernardo (1989). 

In problems which are invariant under an amenable group of transformations, it is 
known that inference based on the right-invariant Haar measure as the prior is both 
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coherent and free of the marginalization paradox: see Heath and Sudderth tl 978) and 
Dawid et al. (1973). We have shown, Datta  and Ghosh (1995), that in all the common 

problems the one parameter  at a time reference prior is the right-invariant Haar  
measure and so has desirable properties but we do not known if this always the case. 
The Jeffreys' prior is the left-invariant Haar  measure and so is known to give rise to 
incoherence and marginalization paradox. The reference prior based o11 parameters 
taken in groups suffers from the same problems. 

We also show' that if the maximal-invariant parameter  is one-dimensional, then 
a suitable reference prior with the maximal invariant as the parameter  of interest is 
always probability matching for this parameter. In all examples the one parameter  al 
a time reference prior is this suitable reference prior. 

In the absence of invariance under a group, a reference prior need not be probabil-. 
ity matchings; see, for example, Ghosh and Mukherjee (1992) or Ghosh t1994). 

In all examples the reference posteriors have been found to be proper, But m, 
general result is known. Here is a simple counterexample. Suppose X: 's  'are i.i.d, and 
X~ = 0 with probability half and N(0, 1 ) with probability half. Here the Jefl'reys' and 
reference prior are same and constant. The posterior is improper if X ~ ,  X ,  . . . . . .  \',, 'arc 

all equal to zero. We have used such models in a geological mapping problem recent b. 
I understand it very general sufficient condition for the posterior to be proper is now 
known for the Jeffreys' prior. 

I have also two comments on the Professor Bernardo's (1979) innovative procedure. 
The tirst is about the functional and its asymptotic maximization. Asymptotically, the 
posterior is nearly degenerate. So the idea of comparing it with the prior is somewhat 
odd to adapt a phrase o lD.  Basu in a different context, it is like comparing a mouse 
and an elephant (relative to the mouse), lnspite of this, the asymptotics gives scnsible 
results because of certain mathematical properties of the functional used. Asymp- 
totically, it breaks into a large constant term free of the prior and a sensible 
Kullback Leibler term free of n - for details see Ghosh and M ukerjee (1992) or Ghosh 
(1994). If we ignore the large constant term, we are effectively comparing the prior of 

0 with the posterior for v/n(0 - 0) (in the regular case). This seems odd because, to 
carry on with our metaphor,  we are inflating the mouse to make it comparable with an 

elephant. 
Professor Bernardo had two very innovative ideas in his 1979 paper. The lirst w~ts 

the introduction of the Lindley functional as a function of priors (rather than 
experiments as Lindley had intended). ] 'he second is the grouping of parameters and 
the construction of prior step by step. My second comment concerns the second idea. 
To tix ideas, suppose we have two one-dimensional parameters {Ill, t~2 t, arranged in 
order of importance. With usual notations about Fisher information, the Berger Bcr- 
nardo algorithm for the regular case essentially takes a geometric mean of I \  ~i* 
with respect to a measure with density ,/122, It is shown in Ghosh and Mukeriee 
(1992) and Ghosh (1994) that if, we take Bernardo's idea of taking parameters m 
groups but instead of maximizing his functional match posterior and frequentist 
probability, then one of the probability matching options is to choose a harmol~ic 
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mean of I / ` / ~  -r with respect to ,/12 z. This second idea of Professor Bernardo coupled 
with a new method of getting non-informative priors via limit of uniform distributions 
over finite approximating sieves in Ghosal, et al. (1996) leads to an arithmetic mean of 
l , / ~ - r~  with respect to -~//~22. Computat ion by all three methods give rise to the same 
prior for the group models of Dat ta  and Ghosh (1996) where Dat ta  and I could carry 

out the calculations. I checked they are also identical for a multinomial with three 
classes. It would he interesting to know which of Professor Bernardo's two ideas is 
more important  for the success of the reference posteriors. 

To sum up, the basic criterion remains somewhat mysterious and, even though all 
- I repeat all applications are so attractive, we still do not have general results on 
internal or external validation (except the invariance under reparameterization). More 
work remains to be done to settle these issues. In addition, there are challenging 
problems for studying reference priors and posteriors when the number  of parameters 
is large or depends on n as in Neyman Scott problems. 

I finally turn to the entirely different issue of truncating an improper prior to 
a suitably large compact  set. As Professor Bernardo says, one reason why this is not 
done is that analytic computat ions will then become impossible. However, if the 
posterior without truncation is improper  should one truncate to get a proper poste- 
rior? The answer would seem to depend on a subjective but constructive assessment of 
how large the effective parameter  space might be and stability of the inference with 
respect to perturbations of it. For  example, for a real-valued parameter  0i suppose we 
knew 40[ ~< 4 and the posterior does not change much if we truncate the improper  
prior to [01 <~ k where k ~ 4. Then truncation seems all right. However, if these 
conditions are not met, truncation would seem to be inappropriate. 

A d d i t i o n a l  r e f e r e n c e s  
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Some comments  on "Non-informative priors do not exist" 

Dennis Lindley 
Minehead, Somerset, England 

Most statistical situations begin with a question, and data that hear on that 
question. Is the drug effective, and the results of a comparative trial. What  is the extent 
of the effect, and an experiment to measure it. The usual approach is to model the 
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set-up by adding to the data x a model which specifies a class of probability 
distributions for the data, ordinarily dependent on parameters 0 and 5.. p(xlO. 2}. 
Here 0 is related to the question, for example, a measure of the effect, and ) 
is a nuisance parameter introduced to simplify the probability structure of the: 
model. The Bayesian solution is to introduce a probability distribution that re-- 
flects one's knowledge of the parameters before the data were at hand, the so-called 
prior distribution, p(O, 2), and then to calculate p(O I x) using the rules for the probabil.- 
ity calculus, p(O] x) expresses our opinion of the parameter of interest in the light of 
the data, the posterior distribution. This paragraph has attempted to describe the 
Bayesian standpoint, formulating a prior, incorporating a likelihood and passing to 
a posterior. 

In order to perform the calculation that produces the posterior, it is necessary to 
introduce techniques that are often quite elaborate. As a result, it has become 
common to develop classes of models for which the techniques have been worked oul. 
Thus we have linear models, hierarchical models, and so on. The statistician, when 
faced with the original question and the data, will usually select the model from one of 
these classes. All this is part of Bayesian techniques. The distinction between stand- 
point and technique has been emphasized by de Finetti (1974). In particular, he has 
noted the separation that often occurs between the two ideas, with unfortunate 
consequences. 

This separation leads to many statisticians concentrating on the technique and 
ignoring the standpoint. The likelihood part of the model and its analysis becomes the 
centre of activity because of the complexity of the ideas that are required to provide 
the solution. This concentration was first observed amongst statisticians of the 
classical school. It has unfortunately spread to the Bayesians who have found it hard 
to shrug off the indiscretions of the frequentists. Once Bayesians do this, they have 
trouble producing the prior. That should come from the question and the knowledge 
about it possessed before the data are at hand, i.e., from the standpoint. It is not part 
of the model, at least as understood by frequentists, and not part of the technique. 
What has happened is that, desperate to stay within the model, statisticians have tried 
to produce the prior from the model. Jeffreys was the first to make real progress here 
and reference priors, as so admirably expounded in this paper, are the latest, and most 
successful, attempt to achieve the aim of keeping it all within the likelihood part of the 
model. 

My basic objection to default priors is that they are developed from the model and 
not from the knowledge possessed before the data are at hand. They ignore the 
practicalities of the situation, concentrating on technique, at the expense of the 
standpoint. For example, suppose that two statisticians are interested in the same 
question, expressed through knowledge of the same parameter 0, but that they /rove 
different data sets leading to different models pi(xilO, 2i ) ,  (i = 1, 2}. Since the default 
prior is developed from the model distribution, the two statisticians will typically use 
different priors. And this, despite the fact that they initially had the same knowledge, 
only differing in the data available to extend it. 
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The effect of this is, to my mind, serious. The resolution of the statistics there- 
by forgets completely the reality of the problem. 0 is treated, as de Fineitti said, 
as a Greek letter and its meaning ignored. Positive binomial trials have their de- 
fault prior, no matter whether we are dealing with sex or the fall of coins. This 
prior differs from that of the negative binomial, thereby violating the likelihood 
principle which is central to the Bayesian approach, though illogically ignored by 
frequentists. 

The resolution of the difficulty is clear; go back to the standpoint, recognize the 
reality of the Greek letter and think about things. The standpoint teaches us that data 
does not 'speak for itself'. It only speaks in relation to what we already know. Suppose 
John comes across a map that gives directions for getting to his house. It 'speaks' little 
to him, but to Jean, who wishes to visit John, it 'speaks' a lot. This has long been 
recognized with information, but not with data analysis. 

There is much discussion in the literature about models. My own view, and ! think 
that of de Finetti, is that the model is your description of the uncertainty present in 
you perception of the situation, the uncertainty being expressed in terms of probabil- 
ity. Thus, the prior is as much part of the model as is the likelihood. Once the model is 
settled in this complete form, technique is able to take over; but not until then. 
Technique cannot produce an opinion concerning the parameters, out of an opinion 
about the data. 

Another objection to the default prior is the impropriety that often occurs. No 
one has ever held an opinion about something that is improper. A further objection 
is that an important feature of science is repeatability. Scientists reach their firm 
conclusions by repeating experiments. That is, they enter an experiment with the 
knowledge of the previous experiments. They put all the information together. Default 
priors deny this. 

There is one defence of the reference approach which stands up. At least it 
produces a prior that is free from many objections; certainly from those possessed 
by the Jeffreys' prior. Within the Bayesian standpoint, it is necessary to determine 
a distribution p(0,2). For  all but the simplest models, this is a formidable 
task especially since we do not have good procedures for assessing multivariate 
densities. Remember that the dimensionality of 2 may be very high. Also it often 
does not have a simple, practical interpretation that is easy to think about. Reference 
priors may therefore be a sensible substitute until the necessary multivariate methods 
have been developed. But only until then. If I were a grant-giving body, I would 
prefer to give money for research into multivariate assessment, rather than into 
default concepts. 

Reference 
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Rejoinder 

JOSI~ M. BERNARDO 
Uni~2ermtat dc ~di'ncia, Spain 

This is a fine set of discussions, and I am very grateful to their authors for their 
illuminating contributions to our understanding of a very polemic topic. Predictably. 
' t ruth'  is partially perceived by some discussants from a different perspective than 
mine, but their refreshingly sincere attitude is bound to help to clarify some of the 
more relevant issues. I will try to answer individually the queries which have been 
raised. 

Reply to Pr(~[essor Cox 

I totally agree with Professor Cox on the importance of Jeffreys" work: not only did 
he pioneer a successful use of non-subjective prior distributions, but he produccd 
a rule which, in the regular one-parameter  case the only case for which he strongly 
recommended its use it is still regarded as ~the' appropriate solution. A scholarl} 
account of his developments previous to his 1946 famous paper would certainly be 
very welcome by the statistical community.  

It would have been a surprise if Professor Cox gave a foundational arguments the 
considerable weight Bayesians believe they deserve and, although the topic is clearly 

too deep to be adequately dealt with here, 1 welcome the opportunity he gives me to 
expand on it: (i) I fail to see the need for different types of uncertainty: indeed, I see as 
one of the strengths of the Bayesian approach that its notion of probability en- 
compasses its semantic use, as well as those related to symmetries or to replications: 
(ii) it is certainly true the axiomatics of rational behaviour typically included a clearly' 
idealized assumption of the comparabili ty of probabilities, but then no physicist 
would claim the ability to measure with infinite precision, and yet physical mcasurc- 
ments are assumed to be real numbers: I believe in the usefulness of a normatil~e theory 
which assumes precise probabilities taken with a large pinch of salt and a great deal 
of sensitivity analysis (iii) the representation theorems are mathematical facts which 
only depend on the exchangeability assumption and do not depend on the particular 
view one might have on probability; although it is true that not all problems may be 
represented within this structure, all statistical analysis which assume a random samp:e 

from one model or a n o t h e r -  and pragmatically those are an overwhelming majorily 
are a particular case o f  the exchangeabili ty structure and, hence, they require a prior 

distribution for its logically correct analysis. 
As Professor Cox remarks, 1 regarded as crucial the role played by the logarithmic 

concept of information in statistics: not only may it be used to define non-subjective 
priors, but much more generally, it provides a foundational basis to encompass 
statistical inference within decision theory (Bernardo, 1979), and a natural definiti~n 
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of the goodness of a probabilistic approximation in the very many instances where 
such a concept is required in statistics (Bernardo, 1987). 

Finally, I would like to thank Professor Cox for drawing my attention to the 
problem posed by Box and Cox (1964) transformation families; this is indeed a very 
interesting problem and I am including the derivation of the corresponding reference 
posteriors within my 'to do' file. 

Reply to Professor Dawid 

Professor Dawid's main criticism to the use of reference priors is foundational: since 
the reference priors depend on the parameter of interest, focusing on different aspects 
of the problem would lead to different priors and, hence, to inconsistent results. The 
argument would indeed be devastating if reference priors were supposed to describe 
unique, personal, possibly 'diffuse' beliefs, but there are not! Reference analysis must be 
regarded as part of sensitivity analysis to the choice of the prior. Reference analysis 
clearly establishes that you cannot simultaneously have a prior which is minimally 
informative with respect to, say the #i's ofa multinormal model and with respect to the 
sum of its squares, ~/~{, hence the title of this paper. Consequently, a reference 
posterior must be regarded as the answer to a precise question on sensitivity: /f 
I wanted to use a prior minimally informative with respect to ~b, then lr(qS[z) would 
encapsulate my inferences about qS. In a decision situation, where a unique prior must 
indeed be used, a class of reference priors for several parameters of interest may 
usefully be considered to help to understand the implications of the particular prior 
one is going to use, by precisely making explicit the possibly important judgements 
which such a prior implies about specific functions of the parameters. 

Professor Dawid is certainly right when he mentions that it has not been proven that 
reference analysis always avoids the marginalization paradoxes; the problem is that 
the marginalization paradoxes are described by a set of examples, with no unifying 
theory on the general conditions which may produce them. The fact remains, however, 
that 25 years after they were discovered, no marginalization paradox has ever been 
encountered using reference priors, and that reference analysis is the only method to 
derive nonsubjective priors which successfully avoids the paradoxes. 

Finally, I appreciated Professor Dawid's warning on the delicate aspects in- 
volved in the approximation of improper priors by a sequence of proper priors. 
This is precisely the reason behind the apparently involved definition of a refer- 
ence posterior as the limit, in the logarithmic divergence sense, of the sequence 
of posterior distributions obtained using Bayes theorem on a sequence of proper 
priors - rather than attempting a direct definition in terms of a limit of the priors 
themselves. 

Reply to Professor Ghosh 

As Professor Ghosh mentions, references priors in multiparameter settings may 
formally be defined with respect to any ordered set of parameter subgroups, but it is 
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only by sequentially using the one-parameter  solution - the 'one-at-a-time' reference 
prior - that satisfactory results are obtained. This could be expected both from the 
analysis of the two-parameter  problems and from information-theoretical arguments. 
and has been precisely argued in Dat ta  and Ghosh (1995) in problems which are 
invariant under an amenable group of transformations. This is why in mult iparameter  
situations, I refer, to the one-at-a-time reference prior as ' the' reference prior (see, e.g., 
the answer to question 35). 

The question of the conditions under which an improper prior leads to a 
proper posterior has not yet found a general answer. As Professor Ghosh mentions, 
in all examples reference posteriors, given a minimum size sample, have been found 
to be proper. It may reasonably be expected that general results could be estab.- 
lished from the general definition of reference posteriors as limits of poste- 
riors obtained from proper priors which 1 have just mentioned above, but I am 
not aware of any. In the example he mentions, the minimum size sample is clearly 
one non-zero observation, for zeros do not provide any information about (i: 
hence, as one would expect, the reference posterior of 0 will not be proper 
until such a non-zero observation has been obtained, precisely indicating that 
there is nothing to be said about 0 solely based on those data and the assumed 
model. 

I very much welcome Professor Ghosh 's  insightful comments on the mathematics 
which, in the regular case, operate behind the maximization of the missing informa- 
tion required by the definition of a reference prior. However, I would like to stress that 
such a maximization may also be performed in non-regular cases where Fisher's 
matrix may not even be defined and that, even in regular cases, i! is often simpler as 
in the example above to derive directly the form of the asymptotic posterior 
distribution from first principles, that it is to check the regularity conditions and 
obtain its form from Fisher's matrix. 

The frequentist validation of reference posterior statements is important  both 
theoretically to guarantee that no inconsistencies may ex i s t -  and pragmatically to 
establish bridges with non-Bayesian statisticians. As he mentions, more work remain 
to be done: I would specially like to draw attention to the need for further work with 
small samples; indeed available results only explain the good coverage properties of 
reference posterior regions in asymptotic conditions and, yet, simulations repeatedly 
suggest that, with continuous parameters, very good coverage properties are indeed 
obtained with any sample size. 

Finally, the necessary approximation of open parameter  spaces by convergent 
compact sequences in order to derive the reference distributions certainly requires 
further work. I believe one should always consider a probability model endowed wi,,h 
an appropriate compact approximation to its parameter  space, which should then be 
keptfixed, via the appropriate transformations, for all inference problems considered 
within that model. A good candidate for such 'canonical '  compact endowment could 
be the natural uniform approximation in the corresponding variance-stabilizing 
transformations (Bernardo, 1997). 
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Reply to Professor Lindley 

Professor Lindley stresses the basic foundational arguments of Bayesian decision 
theory to argue that a prior is an expression of someone's beliefs and should therefore 
be independent of the model used. I certainly accept the formal argument, and I agree 
that in a decision-making situation, assessing a prior reflecting his or her knowledge is 
precisely what any decision-maker should try to do. However, a reliable direct 
probabilistic description of complex multivariate information is next to impossible, so 
that, when data may be expected to dominate the prior, one may be prepared to 
approximately describe one's prior information as minimally informative with respect 
to some specific aspects of the problem, if only as an insurance policy against 
a multivariate prior unsuspectedly overwhelming the information from the data in 
specific directions of interest. In that case, mathematics the reference algorithm 

could be used to transform this prior statement into a prior distribution (and the 
procedure could presumably be included within a project on multivariate assessment 
funded under Professor Lindley's guidance!). Moreover, as we move away from 
personal decision making and concentrate on scientific reporting, it is obvious to me 
that one is forced to perform some form of sensitivity analysis with respect to changes 
in the prior, with special emphasis in minimally informative prior situations, as I have 
tried to describe in my reply to Professor Dawid's comments; I believe that reference 
analysis does provide an appropriate mechanism for this type of work. 

Professor Lindley further insists on the physical, real-world meaning of the para- 
meters. I believe that the existence of such a meaning is the exception, not the rule; 
what is the physical meaning of, say, the many parameters with appear in a complex 
hierarchical log-linear model? The representation theorems guarantee that exchange- 
able observations may be regarded as a random sample from some probability model, 
whose parameters are defined as a limit of observables, and hence, unobservable 
themselves; direct assessment a probability distribution on an unobservable quantity 
cannot be made operational and, hence, a programme on subjective probability 
assessment about the parameters of a model is fraught with difficulties. 

Professor Lindley also stresses the required propriety of the prior; as I have argued 
above, the whole theory of reference distributions is actually based on proper priors; it 
is only in the last step that limits are taken for mathematical tractability. It is a fact, 
however, that if the reference analysis is kept proper by working within the appropri- 
ate compact subsets and performing by simulation the required integrations, the 
results are numerically indistinguishable from those analytically available using the 
limiting form. 

I can only agree with Professor Lindley's request for scientific repeatibility, but 
I disagree with his conclusions: the coverage probabilities of reference posterior 
regions have the kind of repeating properties that scientists often require, and this is 
something you cannot possibly obtain from subjective priors. With respect to sequen- 
tial experimentation, it is less than obvious to me that one would always want to use 
as a prior the posterior from the last experiment; indeed, there is here a problem of 



Journal o/ Statistical PlanninL, and h{li, rence 65 (1997) 159 1~'9 189 

temporal coherence: too many things would have typically changed between experi- 
ments for the same 'small world' contemplated by Bayes theorem to remain valid. 
Again, I would prefer an analysis of the present experiment from a 'what if', sensitivity 
analysis perspective, within which, exploring the consequences of assuming minimal 
information about the main quantity of interest may well provided the more useful 
results. 

I would like to close by thanking again all the discussants for their thought 
provoking comments, and by thanking Dr. Irony and Professor Singpurwatla for 
providing so many questions and offering me this opportunity for a simulating debate. 
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