Daniel Errandonea

Profesor Titular de Universidad - ICMUV - Departamento de Fisica Aplicada

Integrante del Proyecto Materiales Avanzados para el uso Eficiente de la Energía (EFIMAT) Financiado por la Generalitat Valenciana (Prometeo/2018/123)

EFIMAT WORKSHOP 2019 – 28/29 Octubre 2019 – Parque Científico Universidad de Valencia

EFIMAT WORKSHOP 2018 – 29/30 Noviembre 2018 – Parque Científico Universidad de Valencia

Miembro del Proyecto Consolider Ingenio 2010 MALTA

Member of AIRAPT Executive Committee

Investigación financiada por el proyecto OXIDOS Y METALES BAJO CONDICIONES EXTREMAS, PID2019-106383GB-41

[supported by the Spanish Ministerio de Economia y Competitividad (MINECO), the Spanish Research Agency (AEI) and the European Fund for Regional Development (FEDER)]

    Edificio de Investigación, Planta Baja 0.16 

    Departamento de Física Aplicada - ICMUV - Universitat de Valencia   

    c/ Doctor Moliner 50 
    46100 BURJASSOT (VALENCIA), Spain    


Tel.: (+34) 96 3544475

Fax: (+34) 96 3543146

E-mail: daniel.errandonea@uv.es

Web: www.uv.es/~dae

ORCID ID: 0000-0003-0189-4221, Research ID: J-7695-2016


Research Highlights

 Experimental and theoretical confirmation of an orthorhombic phase transition in niobium at high pressure and temperature, Nature Communications Materials 1, 60 (2020)

Tuning the photoresponse of nano-heterojunction: Pressure-induced inverse photoconductance in functionals WO3 nanocuboids, Advanced Science 2019, 1901132

Mechanocaloric effects in superionic thin films from atomistic simulations, NATURE COMMUNICATIONS 8, 963 (2017)

Giant barocaloric effects over a wide temperature range in superionic conductor AgI, NATURE COMMUNICATIONS 8, 1851 (2017)

Materials under pressure: Interview at JPhys+


Research Seminars

Síntesis de nanomateriales a base de tungstatos y molibdatos ys sus aplicaciones, M. Bomio (Universidad Federal de Rio Grande del Norte) 29/5/2019

Polimorfismo y sus variables naturales: temperatura y presión, J. L Tamarit (Univ. Politecnica de Cataluña) 25/5/2017

Vacancies job in oxide perovskite thin films, C. Cazorla (UNSW Sydney) 5/3/2017


Research interests

High-Pressure Physics

*      Mechanocaloric materials, Giant mechanocaloric effect.

*      Photocatalytic materials: BiVO4, InVO4, and LaVO4, etc.

*      Behavior of soft-materials under HP, iodates, Fe(IO3)3, Zn(IO3)2, etc.

*      High-pressure superconductivity, charge-density-waves, TiSe2, HfSe2, etc.

*      High-pressure behavior of fast-ion conductors, behavior of fluorides under HP.

*      Synchrotron studies, Laser-heating technique, Melting properties of metals, Diamond-Anvil Cell, Large Volume Press, P-V-T phase diagrams, Solid-liquid and Solid-solid transitions, Chemical reactions.

*      Semiconductors under high pressure.

o    Optical properties (absorption edge and reflectivity)

o    Transport properties (Hall effect, resistivity, and thermopower)

o    Structural phase transitions

o    Lattice dynamics (Raman and IR spectroscopy)

o    Pressure-induced metallization

*      Melting and structural properties of transition metals (Mo, Ta, W, Ni, Pd, Pt, V, Nb, Ir, etc.) under extreme pressure and temperature conditions.

*      High-pressure studies of rare-gas solids and its alloys.

*      Super-hard materials.

o    Nitrides synthesis, search of new superhard materials

o    Uncompressible interstitial nitrides

o    Study of pressure-induced structural transformations.

o    Characterization of the optical, electronic and dielectric properties of different nitrides of technological relevance.

*      Pressure effects on the optical and structural properties of technological materials.

o    Scheetile-type tungstates and molybdates: CaWO4, SrWO4, BaWO4, PbWO4, EuWO4, SrMoO4, EuMoO4, etc..

o    Wolframite-type tungstates: ZnWO4, CdWO4, MgWO4, MnWO4, CoWO4, etc..

o    Multiferroic tungstates and chromates.  

o    Zircon-type oxides: Germanates, Vanadates, Silicates, Phosphates, Arsenates, Sulphates, Selenates, Niobates, Tantalates, etc..

o    Complex vanadates, pyrovanadates, orthovanadates, metavanadates, Zn3V2O8, Zn2V2O7, ZnV2O6, etc..

o    Spinels and other ternary compounds: ZnGa2O4, BaSO4, SrCrO4, PbCrO4, ZnGa2Se4, CdIn2S4, MgIn2S4, SrCrO4, etc..

o    Pressure-induced phase transformations and amorphization.

o    Pressure-effects in nanocrystalline oxides.

o    Zeolites, pyrochlores, and Melilites.

o    Carbon rich compounds

Academic Awards 

*      Van Valkenburg Award (at Gordon Conference in Research at High Pressure 2004): in recognition of the contribution to high pressure science.

*      Alexander von Humboldt Fellowship

*      Idea Prize 2007: Sponsored by Fundación de la Ciudad de las Artes y las Ciencias de Valencia.

*      Journal of Physics: Condensed Matter Reviewer of 2016, 2017 and 2018

Scientific Publications

More than 275 articles published in International Peer Reviewed Journals

h-index = 50

1.    Selected Articles

Structural and vibrational study of Zn(IO3)2 combining high-pressure experiments and density-functional theory, A. Liang, C. Popescu, F. J. Manjon, P. Rodriguez-Hernandez, A. Muñoz, Z. Hebboul, and D. Errandonea, Phys. Rev. B 103, 054102 (2021).

Precise Characterization of the Rich Structural Landscape Induced by Pressure in Multifunctional FeVO4, Gonzalez-Platas, Javier; Lopez-Moreno, Sinhue; Bandiello, Enrico; et al, Inorg. Chem. 59, 6623 (2020).

First-Order Isostructural Phase Transition Induced by High Pressure in Fe(IO3)3, A. Liang, S. Rahman, H. Saqib, et al, J. Phys. Chem. C 124, 8669 (2020).

High pressure crystal structures of orthovanadates and their properties, Daniel Errandonea, JOURNAL OF APPLIED PHYSICS 128, 040903 (2020).

Putting the Squeeze on Lead Chromate Nanorods, Hongsheng Yuan, Placida Rodriguez-Hernandez, Alfonso Muñoz, and Daniel Errandonea, J. Phys. Chem. Lett. 10, 4744 (2019).

High-pressure single-crystal X-ray diffraction of lead chromate: Structural determination and reiinterpretation of electronic and vibrational properties, J. Gonzalez-Platas, A. Muñoz. P. Rodriguez-Hernandez, D. Errandonea, Inorg. Chem. 58, 5966 (2019). https://pubs.acs.org/articlesonrequest/AOR-xPR4xxJP9qqdKDWmwDYr

Phase diagram of calcium at High Pressure and High Temperature, S. Anzellini, D. Errandonea, S.G. MacLeod, et al, Phys. Rev. Materials 2, 083608 (2018).

Melting curve and phase diagram of vanadium under high-pressure and high-temperature conditions, D. Errandonea, S. G. MacLeod, L. Burakovsky, D. Santamaria-Perez, J. E. Proctor, H. Cynn, and M. Mezouar, Phys. Rev. B 100, 094111 (2019).

Effect of High Pressure on the Crystal Structure and Vibrational Properties of Olivine-type LiNiPO4, E. Bandiello, D. Errandonea, J. Pellicer-Porres, et al, Inorg. Chem. 57, 10265 (2018).

Recent progress on the  characterization of the high-pressure behaviour of AVO4 ortovanadates, D. Errandonea and A. B. Garg, PROGRESS IN MATERIALS SCIENCE  97, 123 (2018).

Stability of FeVO4 under pressure: An X-ray diffraction and first-principle study,  S. Lopez-Moreno, Sinhue;  D. Errandonea, J. Pellicer-Porres, et al, Inorg. Chem. 57, 7860 (2018).

Pressure Impact on the Stability and Distortion of the Crystal Structure of CeScO3, D. Errandonea, D. Santamaria-Perez, et al., Inorg. Chem. (2017); DOI: 10.1021/acs.inorgchem.7b01042

2.    Pressure-Driven Isostructural Phase Transition in InNbO4: In Situ Experimental and Theoretical Investigations, A. B. Garg, D. Errandonea, et al., Inorg. Chem. 56, 5420 (2017); DOI: 10.1021/acs.inorgchem.7b00437

3.    New pressure-induced polymorphic transitions of anhydrous magnesium sulfate, A. Benmakhlouf, D. Errandonea, et al., Dalton Transactions 46, 5058 (2017); DOI: 10.1039/C7DT00539C

4.    High-pressure phase transitions and properties of MTO4 compounds with the monazite-type structure, D. Errandonea, Phys. Status Sol. B 254, 1700016 (2017), DOI: 10.1002/pssb.201700016

5.    Pressure-induced structural evaluation and insulator-metal transition in the mixed spinel ferrite Zn0.2Mg0.8Fe2O4, S. Rahman, S. Samanta, D. Errandonea, et al., Phys. Rev. B 95, 024107 (2017); DOI: 10.1103/PhysRevB.95.024107

6.    Monazite-type SrCrO4 under compression, J. Gleissner, D. Errandonea, et al., Phys. Rev. B 94, 134108 (2016).

7.    Thallium under extreme compression, C. Cazorla, S. G. MacLeod, D. Errandonea et al., J. Phys.: Condens. Matter 28, 445401 (2016). Science Highlight at ALBA synchrotron

8.    Phase Stability of Lanthanum Orthovanadate at High Pressure, D. Errandonea, J. Pellicer-Porres, D. Martinez-Garcia, et al., J. Phys. Chem. C 120, 13749 (2016).

9.    Giant Mechanocaloric Effects in Fluorite-Structured Superionic Materials, C. Cazorla and D. Errandonea, NANO LETTERS 16, 3124 (2016). Press Release

10.  High-Pressure Crystal Structure, Lattice Vibrations, and Band Structure of BiSbO4, D. Errandonea, A. Muñoz, et al., Inorg. Chem. 55, 4958 (2016).

11.  Pressure-induced phase transition and band-gap collapse in the wide-band-gap semiconductor InTaO4, D. Errandonea, C. Popescu, A.B. Garg, et al., Phys. Rev. B 93, 035204 (2016).

12.  Theoretical and Experimental Study of the Crystal Structures, Lattice Vibrations, and Band Structures of Monazite-Type PbCrO4, PbSeO4, SrCrO4, and SrSeO4, D. Errandonea, A. Munoz, P. Rodriguez-Hernandez, et al., Inorg. Chem. 54, 7524 (2015).

13.  Superionicity and Polymorphism in Calcium Fluoride at High Pressure, C. Cazorla and D. Errandonea, Phys. Rev. Letters 113, 235902 ( 2014).

14.  High-pressure structural behaviour of HoVO4: combined XRD experiments and ab initio calculations, A.B. Garg, D. Errandonea, and P. Rodriguez-Hernandez, et al., J. Phys.: Cond. Matter 26, 265402 (2014). Labtalk at IOP

15.  New Polymorph of InVO4: A High-Pressure Structure with Six-Coordinated Vanadium, D. Errandonea, O. Gomis, B. Garcia-Domene, Braulio, et al. Inorg. Chem. 52, 12790 (2013).

16.  High-pressure melting curves of the transition metals Cu, Ni, Pd, and Pt, D. Errandonea, Phys. Rev. B 87, 054108 (2013).

17.  Synthesis of a Novel Zeolite through a Pressure-Induced Reconstructive Phase Transition Process, J.L. Jorda, F. Rey, G. Sastre, et al., ANGEWANDTE CHEMIE-INTERNATIONAL EDITION 52, 10458 (2013).

18.  Anomalous High-Pressure Jahn-Teller Behavior in CuWO4, J. Ruiz-Fuertes, A. Segura, F. Rodriguez, D. Errandonea, and M. N. Sanz-Ortiz, Phys. Rev. Letters 108, 166402 (2012).

19.  Compressibility and structural stability of ultra-incompressible bimetallic interstitial carbides and nitrides, D. Errandonea, J. Ruiz-Fuertes, J. A. Sans, et al., Phys. Rev. B 85, 144103 (2012).

20.  Effects of high-pressure on the structural, vibrational, and electronic properties of monazite-type PbCrO4, E. Bandiello, D. Errandonea, D. Martinez-Garcia, et al., Phys. Rev. B 85, 024108 (2012).

21.  In situ high-pressure synchrotron x-ray diffraction study of CeVO4 and TbVO4 up to 50 GPa, D. Errandonea, R. S. Kumar, S. N. Achary, et al., Phys. Rev. B 84, 224121 (2011).

22.  High-pressure study of substrate material ScAlMgO4, D. Errandonea, R. S. Kumar, J. Ruiz-Fuertes, J.; et al., Phys. Rev. B 83, 144104 (2011).

23.  High-pressure x-ray diffraction and ab initio study of Ni2Mo3N, Pd2Mo3N, Pt2Mo3N, Co3Mo3N, and Fe3Mo3N: Two families of ultra-incompressible bimetallic interstitial nitrides, D. Errandonea, C. Ferrer-Roca, D. Martinez-Garcia, et al., Phys. Rev. B 82, 174105 (2010).

24.  The melting curve of ten metals up to 12 GPa and 1600 K, D. Errandonea, Journal of Applied Physics 108, 033517 (2010).

25.  High-pressure stability and compressibility of APO4 (A = La, Nd, Eu, Gd, Er, and Y) orthophosphates: An x-ray diffraction study using synchrotron radiation, R. Lacomba-Perales, D. Errandonea, Y. Meng Y, et al., Phys. Rev. B 81, 064113 (2010).

26.  High-pressure phases, vibrational properties, and electronic structure of Ne(He)2 and Ar(He)2: A first-principles study, C. Cazorla, D. Errandonea, and E. Sola, Phys. Rev. B 80, 064105 (2009).

27.  High-pressure structural investigation of several zircon-type orthovanadates, D. Errandonea, R. Lacomba-Perales, J. Ruiz-Fuertes, et al., Phys. Rev. B 79, 184104 (2009). Science Highlight at Diamond Synchrotron

28.  X-ray diffraction measurements of Mo melting to 119 GPa and the high pressure phase diagram, D. Santamaria-Perez, M. Ross, D. Errandonea, et al., J. Chem. Phys. 130, 124509 (2009).

29.  Transition Metals: Can metals be a liquid glass? D. Errandonea, Nature Materials 8, 170 (2009).

30.  Post-spinel transformations and equation of state in ZnGa2O4: Determination at high pressure by in situ x-ray diffraction, D. Errandonea, R. S. Kumar, F.J. Manjon, et al., Phys. Rev. B 79, 024103 (2009).

31.  Structural stability of Fe5Si3 and Ni2Si studied by high-pressure x-ray diffraction and ab initio total-energy calculations, D. Errandonea, D. Santamaria-Perez, A. Vegas, J. Nuss, M. Jansen, P. Rodriguez-Hernandez, and A. Muñoz, Phys. Rev. B 76, 094113 (2008).

32.  Pressure effects on the structural and electronic properties of ABX4 scintillating crystals, D. Errandonea and F.J. Manjon, Progress in Materials Science 53, 711 (2008).

33.  Structural studies of gadolinium at high pressure and temperature, D. Errandonea, R. Boehler, B. Schwager, and M. Mezouar, Phys. Rev. B 75, 014103 (2007).

34.  Structural transformation of compressed solid Ar: An x-ray diffraction study to 114 GPa, D. Errandonea, R. Boehler, S. Japel, M. Mezouar, and L. R. Benedetti, Phys. Rev. B 73, 092106 (2006).

35.  High-pressure structural study of the scheelite tungstates CaWO4 and SrWO4, D. Errandonea, J. Pellicer-Porres, F. J. Manjon, et al., Phys. Rev. B 72, 174106 (2005).

36.  Pressure induced alpha-omega transition in titanium metal: A systematic study of the effects of uniaxial stress, D. Errandonea , Y. Meng, M. Somayazulu, and D. Hausermann, Physica B 355, 116 (2005).

37.   Melting of tantalum at high pressure determined by angle dispersive x-ray diffraction in a double-sided laser-heated diamond-anvil cell, D. Errandonea , M. Somayazulu, D. Hausermann, and H. K. Mao, Journal of Physics: Condensed Matter 15, 7635 (2003).

38.  Melting of the alkaline earth metals to 80 GPa, D. Errandonea , R. Boehler, and M. Ross, Phys.Rev.B 65, 012108 (2002).  

39.  Systematics of transition-metal melting, D. Errandonea , B. Schwager, R. Ditz, C. Gessmann, R. Boehler, and M. Ross, Phys.Rev.B 63, 132104 (2001).  

40.  Melting of the rare earth metals and f-electron delocalization, D. Errandonea , R. Boehler, and M. Ross, Phys. Rev. Letters 85, 3444 (2000).

Scientific Divulgation

*      Scheelitas a altas presiones, Revista Investigación y Ciencia , Nº 374 pag. 13 (2007).

*      Mas duro que el diamante; Revista Investigación y Ciencia, Nº 399 pag. 74 (2009).

Research in Progress

*      HP-HT phase diagram on metals.

*      Pressure-induced phase transitions in InNbO4 and GdNbO4.

*      MOFs under compression.

*      Structural and vibrational properties of sesquioxides.

*      High-pressure effects on the physical properties on nanocrystalline oxides.

*      Optical properties of orthotungstates and orthomolybdates under compression.

*      Pressure-induced metallization of oxides.

*      High-pressure behaviour of fluorides, iodates and other materials with technological applications.

*      Tantalum, Tungsten, Niobium, and Vanadium at high-pressure and high-temperature: Laser-heating and synchrotron x-ray micro-diffraction experiments beyond 1 Mbar and 5000 K.

*      High-pressure structural studies of defect-chalcopyrites and spinels.

*      Zeolites under pressure.

*      High-pressure studies of monazites and CrVO4-type oxides.

*      Raman and single-crystal and powder x-ray diffraction studies of orthovanadates.