## Vniver§itatÿdValència

Facultat de Ciències Matemàtiques Departament d'Estadística i Investigació Operativa



# Geoestadística en regiones heterogéneas con distancia basada en el coste

#### TESIS DOCTORAL Facundo Martín Muñoz Viera

Director: Antonio López-Quílez Febrero 2013



Motivation: heterogeneous regions and covariance functions

Cost based-distance: a practical approach

**Positive-definiteness violation** 

Positive-definiteness in Riemannian manifolds

**Pseudo-Euclidean embedding** 

**Alternative approaches** 

Conclusions and open lines of work

# Motivation: acoustic maps and heterogeneous regions



observations

prediction

Assessment of the uncertainty!

 $\begin{array}{l} \overset{h=d(\boldsymbol{s}_1,\boldsymbol{s}_2)}{C(h)} \stackrel{\downarrow}{=} \mathbb{C}\left[Z(\boldsymbol{s}_1),Z(\boldsymbol{s}_2)\right] \text{ represents the relationship between the$ *proximity* $and the statistical correlation.} \\ \text{We restrict to isotropic functions.} \end{array}$ 

#### Typical Covariance function



#### Valid covariance functions

Not all functions are **permissible** as covariance functions

 $\begin{array}{l} \overset{h=d(\boldsymbol{s}_1,\boldsymbol{s}_2)}{\overset{\downarrow}{=}} \mathbb{C}\left[Z(\boldsymbol{s}_1),Z(\boldsymbol{s}_2)\right] \text{ represents the relationship between the$ *proximity* $and the statistical correlation.} \\ \text{We restrict to isotropic functions.} \end{array}$ 

#### Typical Covariance function



#### Valid covariance functions

Not all functions are permissible as covariance functions

#### **Positivity condition**

The covariance function must be positive-definite

$$\forall \{s_1, \dots, s_n\}, \quad \forall a_1, \dots, a_n, \quad \sum_i \sum_j a_i a_j C(h_{ij}) = a' \mathbf{\Sigma} a \ge 0$$

In the Euclidean space  $E_d = (\mathbb{R}^d, \cdot)$ , the family of positive-definite functions is fully characterized by Schoenberg's (1938) theorem:

$$C(h) = \int_0^\infty \Omega_{\frac{d-2}{2}}(h\lambda) \, dG(\lambda),$$

where  $\Omega_m(x) = \Gamma(m+1)(\frac{2}{x})^m J_m(x)$ ,  $J_m$  is the Bessel function of the first kind of order m, and G is a nondecreasing bounded measure on  $[0, \infty)$ .

#### **Positivity condition**

The covariance function must be positive-definite

$$\forall \{s_1, \dots, s_n\}, \quad \forall a_1, \dots, a_n, \quad \sum_i \sum_j a_i a_j C(h_{ij}) = a' \mathbf{\Sigma} a \ge 0$$

In the Euclidean space  $E_d = (\mathbb{R}^d, \cdot)$ , the family of positive-definite functions is fully characterized by Schoenberg's (1938) theorem:

$$C(h) = \int_0^\infty \Omega_{\frac{d-2}{2}}(h\lambda) \, dG(\lambda),$$

where  $\Omega_m(x) = \Gamma(m+1)(\frac{2}{x})^m J_m(x)$ ,  $J_m$  is the Bessel function of the first kind of order m, and G is a nondecreasing bounded measure on  $[0, \infty)$ .

## Bochner's Theorem (1933)

Characterizes the positive-definite (non-isotropic) functions as characteristic functions (a kind of Fourier Transform) of distribution functions in  $E_d$ .

$$\tilde{C}(\boldsymbol{h}) = \mathbb{E}\left[e^{i\boldsymbol{h}'\boldsymbol{X}}\right] = \int_{E_d} e^{i\boldsymbol{h}'\boldsymbol{x}} dF_X(\boldsymbol{x}), \quad \boldsymbol{h}, \boldsymbol{X} \in E_d$$
(1)

Sufficiency:

$$\sum_{i,j} a_i a_j \tilde{C}(s_i - s_j) = \mathbb{E} \left[ \sum_{i,j} a_i a_j e^{i(s_i - s_j)^j x} \right]$$
$$= \mathbb{E} \left[ \left( \sum_i a_i e^{is_i^j x} \right) \overline{\left( \sum_j a_j e^{is_j^j x} \right)} \right]$$
$$= \mathbb{E} \left[ \left| \left( a_i \sum_i e^{is_i^j x} \right) \right|^2 \right] \ge 0.$$

## Bochner's Theorem (1933)

Characterizes the positive-definite (non-isotropic) functions as characteristic functions (a kind of Fourier Transform) of distribution functions in  $E_d$ .

$$\tilde{C}(\boldsymbol{h}) = \mathbb{E}\left[e^{i\boldsymbol{h}'\boldsymbol{X}}\right] = \int_{E_d} e^{i\boldsymbol{h}'\boldsymbol{x}} dF_X(\boldsymbol{x}), \quad \boldsymbol{h}, \boldsymbol{X} \in E_d$$
(1)

Sufficiency:

$$\sum_{i,j} a_i a_j \tilde{C}(\mathbf{s}_i - \mathbf{s}_j) = \mathbb{E} \left[ \sum_{i,j} a_i a_j e^{i(\mathbf{s}_i - \mathbf{s}_j)' \mathbf{x}} \right]$$
$$= \mathbb{E} \left[ \left( \sum_i a_i e^{is'_i \mathbf{x}} \right) \overline{\left( \sum_j a_j e^{is'_j \mathbf{x}} \right)} \right]$$
$$= \mathbb{E} \left[ \left| \left( a_i \sum_i e^{is'_i \mathbf{x}} \right) \right|^2 \right] \ge 0.$$

## Heterogeneous regions

In the presence of barriers, the correlation is not directly associated with the Euclidean distance.

## Heterogeneous regions



In the presence of barriers, the correlation is not directly associated with the Euclidean distance.

## A practical approach

#### Definition: Cost-based distance

Given a cost-surface, the cost-based distance between two sites is defined as the cost of the minimum-cost path connecting them.



## A practical approach

#### Definition: Cost-based distance

Given a cost-surface, the cost-based distance between two sites is defined as the cost of the minimum-cost path connecting them.



## **Cost-based geostatistics**

- The cost-based distance generalizes the Euclidean distance, which is a particular case where the cost surface is flat
- It accounts not only for barriers but for general heterogeneous regions
- This definition and its implementation is an original contribution of the first part of the thesis project

- Geographic computation of cost-based distances (GRASS GIS)
- Send covariates, observations and prediction locations with cost-based distance matrices to R
- Use (modified) geoR functions to perform cost-based geostatistical prediction
- Return results to GRASS GIS and produce prediction maps

## **Cost-based geostatistics**

- The cost-based distance generalizes the Euclidean distance, which is a particular case where the cost surface is flat
- It accounts not only for barriers but for general heterogeneous regions
- This definition and its implementation is an original contribution of the first part of the thesis project

- Geographic computation of cost-based distances (GRASS GIS)
- Send covariates, observations and prediction locations with cost-based distance matrices to R
- Use (modified) geoR functions to perform cost-based geostatistical prediction
- Return results to GRASS GIS and produce prediction maps

## **Cost-based geostatistics**

- The cost-based distance generalizes the Euclidean distance, which is a particular case where the cost surface is flat
- It accounts not only for barriers but for general heterogeneous regions
- This definition and its implementation is an original contribution of the first part of the thesis project

- Geographic computation of cost-based distances (GRASS GIS)
- Send covariates, observations and prediction locations with cost-based distance matrices to R
- Use (modified) geoR functions to perform cost-based geostatistical prediction
- Return results to GRASS GIS and produce prediction maps

- The cost-based distance generalizes the Euclidean distance, which is a particular case where the cost surface is flat
- It accounts not only for barriers but for general heterogeneous regions
- This definition and its implementation is an original contribution of the first part of the thesis project

- Geographic computation of cost-based distances (GRASS GIS)
- Send covariates, observations and prediction locations with cost-based distance matrices to R
- Use (modified) geoR functions to perform cost-based geostatistical prediction
- ▶ Return results to GRASS GIS and produce prediction maps

## Validity: a toy example



$$\mathbf{D} = \begin{pmatrix} 0 & 1 & 1 & 2 \\ 1 & 0 & 2 & 1 \\ 1 & 2 & 0 & 1 \\ 2 & 1 & 1 & 0 \end{pmatrix}$$

 $\boldsymbol{Z} = (Z_1, Z_2, Z_3, Z_4) \sim MVN(\boldsymbol{0}, \boldsymbol{\Sigma})$ 

| Σ = |  |  |
|-----|--|--|
|     |  |  |
|     |  |  |

Eigenvalues: {58.52, 12.64, 12.64, -3.80}



#### Validity: a toy example



$$\mathbf{D} = \begin{pmatrix} 0 & 1 & 1 & 2 \\ 1 & 0 & 2 & 1 \\ 1 & 2 & 0 & 1 \\ 2 & 1 & 1 & 0 \end{pmatrix}$$

$$\boldsymbol{Z} = (Z_1, Z_2, Z_3, Z_4) \sim MVN(\boldsymbol{0}, \boldsymbol{\Sigma})$$

| Σ = | /20.00 | 15.58 | 15.58 | 7.36   |
|-----|--------|-------|-------|--------|
|     | 15.58  | 20.00 | 7.36  | 15.58  |
|     | 15.58  | 7.36  | 20.00 | 15.58  |
|     | (7.36) | 15.58 | 15.58 | 20.00/ |

Eigenvalues:  $\{58.52, 12.64, 12.64, -3.80\}$ 

### Validity: a toy example



$$\mathbf{D} = \begin{pmatrix} 0 & 1 & 1 & 2 \\ 1 & 0 & 2 & 1 \\ 1 & 2 & 0 & 1 \\ 2 & 1 & 1 & 0 \end{pmatrix}$$

$$\boldsymbol{Z} = (Z_1, Z_2, Z_3, Z_4) \sim MVN(\boldsymbol{0}, \boldsymbol{\Sigma})$$

$$\boldsymbol{\Sigma} = \begin{pmatrix} 20.00 & 15.58 & 15.58 & 7.36 \\ 15.58 & 20.00 & 7.36 & 15.58 \\ 15.58 & 7.36 & 20.00 & 15.58 \\ 7.36 & 15.58 & 15.58 & 20.00 \end{pmatrix}$$

Eigenvalues: {58.52, 12.64, 12.64, -3.80}

The positive-definite functions of the Euclidean space may not be valid with non-Euclidean distances are used

- If Σ is positive-semidefinite,
  - the kriging prediction is vali
  - it does not guarantee that Gaussian field of the spatia
- The approach can be used safely, provided that the positive-definiteness of ∑ is verified every time.

#### Second part of the thesis

- The positive-definite functions of the Euclidean space may not be valid with non-Euclidean distances are used
- If Σ is positive-semidefinite,
  - the kriging prediction is valid under the interpretation of a BLUP.
  - it does not guarantee that C is positive-definite, thus, the underlying Gaussian field of the spatial statistical model might be invalid
- ► The approach can be used safely, provided that the positive-definiteness of ∑ is verified every time.

#### Second part of the thesis

- The positive-definite functions of the Euclidean space may not be valid with non-Euclidean distances are used
- If Σ is positive-semidefinite,
  - the kriging prediction is valid under the interpretation of a BLUP
  - ▶ it does not guarantee that C is positive-definite, thus, the underlying Gaussian field of the spatial statistical model might be invalid
- ► The approach can be used safely, provided that the positive-definiteness of ∑ is verified every time.

#### Second part of the thesis

- The positive-definite functions of the Euclidean space may not be valid with non-Euclidean distances are used
- If Σ is positive-semidefinite,
  - the kriging prediction is valid under the interpretation of a BLUP
  - it does not guarantee that C is positive-definite, thus, the underlying Gaussian field of the spatial statistical model might be invalid
- ► The approach can be used safely, provided that the positive-definiteness of ∑ is verified every time.

#### Second part of the thesis

- The positive-definite functions of the Euclidean space may not be valid with non-Euclidean distances are used
- If Σ is positive-semidefinite,
  - the kriging prediction is valid under the interpretation of a BLUP
  - it does not guarantee that C is positive-definite, thus, the underlying Gaussian field of the spatial statistical model might be invalid
- The approach can be used safely, provided that the positive-definiteness of Σ is verified every time.

#### Second part of the thesis

- The positive-definite functions of the Euclidean space may not be valid with non-Euclidean distances are used
- If Σ is positive-semidefinite,
  - the kriging prediction is valid under the interpretation of a BLUP
  - it does not guarantee that C is positive-definite, thus, the underlying Gaussian field of the spatial statistical model might be invalid
- ► The approach can be used safely, provided that the positive-definiteness of ∑ is verified every time.

#### Second part of the thesis

• Define in  $D \subseteq \mathbb{R}^d$  the following Riemannian metric

$$g_p(\boldsymbol{x}, \boldsymbol{y}) \coloneqq \mathfrak{f}(p)^2 \langle \boldsymbol{x}, \boldsymbol{y} \rangle, \qquad p \in D, \ \boldsymbol{x}, \boldsymbol{y} \in T_p D$$

where f is the cost-surface and  $\langle \cdot, \cdot \rangle$  the Euclidean inner product.

Now, given a curve  $\alpha$  in D, its length is given by

$$L(\alpha) = \int_0^1 \sqrt{g_{\alpha(t)}(\alpha'(t), \alpha'(t))} \, dt = \int_0^1 \mathfrak{f}(\alpha(t)) \|\alpha'(t)\| \, dt.$$

This is, its *Euclidean* length weighted locally by the corresponding cost. The *metric*  $\tau_g$  induced by this Riemannian metric is precisely the cost-based distance.

• Define in  $D \subseteq \mathbb{R}^d$  the following Riemannian metric

$$g_p(\boldsymbol{x}, \boldsymbol{y}) \coloneqq \mathfrak{f}(p)^2 \langle \boldsymbol{x}, \boldsymbol{y} \rangle, \qquad p \in D, \ \boldsymbol{x}, \boldsymbol{y} \in T_p D$$

where f is the cost-surface and  $\langle \cdot, \cdot \rangle$  the Euclidean inner product.

Now, given a curve  $\alpha$  in D, its length is given by

$$L(\alpha) = \int_0^1 \sqrt{g_{\alpha(t)}(\alpha'(t), \alpha'(t))} \, dt = \int_0^1 \mathfrak{f}(\alpha(t)) \|\alpha'(t)\| \, dt.$$

This is, its *Euclidean* length weighted locally by the corresponding cost. The *metric*  $\tau_g$  induced by this Riemannian metric is precisely the cost-based distance.

• Define in  $D \subseteq \mathbb{R}^d$  the following Riemannian metric

$$g_p(\boldsymbol{x}, \boldsymbol{y}) \coloneqq \mathfrak{f}(p)^2 \langle \boldsymbol{x}, \boldsymbol{y} \rangle, \qquad p \in D, \ \boldsymbol{x}, \boldsymbol{y} \in T_p D$$

where f is the cost-surface and  $\langle \cdot, \cdot \rangle$  the Euclidean inner product.

Now, given a curve  $\alpha$  in D, its length is given by

$$L(\alpha) = \int_0^1 \sqrt{g_{\alpha(t)}(\alpha'(t), \alpha'(t))} \, dt = \int_0^1 \mathfrak{f}(\alpha(t)) \|\alpha'(t)\| \, dt.$$

This is, its *Euclidean* length weighted locally by the corresponding cost. The *metric*  $\tau_g$  induced by this Riemannian metric is precisely the cost-based distance.

• Define in  $D \subseteq \mathbb{R}^d$  the following Riemannian metric

$$g_p(\boldsymbol{x}, \boldsymbol{y}) \coloneqq \mathfrak{f}(p)^2 \langle \boldsymbol{x}, \boldsymbol{y} \rangle, \qquad p \in D, \ \boldsymbol{x}, \boldsymbol{y} \in T_p D$$

where f is the cost-surface and  $\langle \cdot, \cdot \rangle$  the Euclidean inner product.

Now, given a curve  $\alpha$  in D, its length is given by

$$L(\alpha) = \int_0^1 \sqrt{g_{\alpha(t)}(\alpha'(t), \alpha'(t))} \, dt = \int_0^1 \mathfrak{f}(\alpha(t)) \|\alpha'(t)\| \, dt.$$

This is, its *Euclidean* length weighted locally by the corresponding cost. The *metric*  $\tau_g$  induced by this Riemannian metric is precisely the cost-based distance.

## Positive definiteness in Riemannian manifolds

#### ► We are interested in the family of positive-definite functions

- ▶ In this framework the Vector Space (and group) structure is lost
- Generalizing Bochner's and Schoenberg's theorems in such an abstract context is extremely difficult
- Strategy: embedding into more structured spaces
- Embedding into an Euclidean (or Hilbert) space is not possible in general

- ► In this framework the Vector Space (and group) structure is lost
- Generalizing Bochner's and Schoenberg's theorems in such an abstract context is extremely difficult
- Strategy: embedding into more structured spaces
- Embedding into an Euclidean (or Hilbert) space is not possible in general

- ► In this framework the Vector Space (and group) structure is lost
- Generalizing Bochner's and Schoenberg's theorems in such an abstract context is extremely difficult
- Strategy: embedding into more structured spaces
- Embedding into an Euclidean (or Hilbert) space is not possible in general

- ► In this framework the Vector Space (and group) structure is lost
- Generalizing Bochner's and Schoenberg's theorems in such an abstract context is extremely difficult
- Strategy: embedding into more structured spaces
- Embedding into an Euclidean (or Hilbert) space is not possible in general

- ► In this framework the Vector Space (and group) structure is lost
- Generalizing Bochner's and Schoenberg's theorems in such an abstract context is extremely difficult
- Strategy: embedding into more structured spaces
- Embedding into an Euclidean (or Hilbert) space is not possible in general

## Positive definiteness in Riemannian manifolds

Banach spaces (algebras)

#### Kuratowski embedding

The metric space D embeds isometrically in the Banach space  $L^{\infty}(D)$  of bounded functions on D with the supremum norm. Fixing  $x_0 \in D$ , define

$$D \hookrightarrow L^{\infty}(D)$$
$$x \mapsto \phi_x : D \to \mathbb{R}$$
$$y \mapsto \mathfrak{d}(x, y) - \mathfrak{d}(y, x_0).$$

#### • $\phi_x$ are bounded (triangle ineq.)

- The norm ||·||<sub>∞</sub> induces a distance in L<sup>∞</sup>(D) compared cost-based distance: ||φ<sub>x1</sub> − φ<sub>x2</sub>||<sub>∞</sub> = ∂(x<sub>1</sub>, x<sub>2</sub>)
- Rudin (1991, Teo. 11.32) gives a generalization of Boomer's in the context of Banach algebras
- Generalization of Schoenberg's theorem is open
Banach spaces (algebras)

#### Kuratowski embedding

The metric space D embeds isometrically in the Banach space  $L^{\infty}(D)$  of bounded functions on D with the supremum norm. Fixing  $x_0 \in D$ , define

$$D \hookrightarrow L^{\infty}(D)$$
  

$$x \mapsto \phi_x : D \to \mathbb{R}$$
  

$$y \mapsto \mathfrak{d}(x, y) - \mathfrak{d}(y, x_0).$$

#### • $\phi_x$ are bounded (triangle ineq.)

- ▶ The norm  $\|\cdot\|_{\infty}$  induces a distance in  $L^{\infty}(D)$  compatible with the cost-based distance:  $\|\phi_{x_1} \phi_{x_2}\|_{\infty} = \mathfrak{d}(x_1, x_2)$
- Rudin (1991, Teo. 11.32) gives a generalization of Bochner's theorem in the context of Banach algebras
- Generalization of Schoenberg's theorem is open

Banach spaces (algebras)

#### Kuratowski embedding

The metric space D embeds isometrically in the Banach space  $L^{\infty}(D)$  of bounded functions on D with the supremum norm. Fixing  $x_0 \in D$ , define

$$D \hookrightarrow L^{\infty}(D)$$
  
$$x \mapsto \phi_x : D \to \mathbb{R}$$
  
$$y \mapsto \mathfrak{d}(x, y) - \mathfrak{d}(y, x_0).$$

- $\phi_x$  are **bounded** (triangle ineq.)
- The norm ||·||∞ induces a distance in L<sup>∞</sup>(D) compatible with the cost-based distance: ||φ<sub>x1</sub> φ<sub>x2</sub>||∞ = ∂(x1, x2)
- Rudin (1991, Teo. 11.32) gives a generalization of Bochner's theorem in the context of Banach algebras
- Generalization of Schoenberg's theorem is open

Banach spaces (algebras)

#### Kuratowski embedding

The metric space D embeds isometrically in the Banach space  $L^{\infty}(D)$  of bounded functions on D with the supremum norm. Fixing  $x_0 \in D$ , define

$$D \hookrightarrow L^{\infty}(D)$$
  
$$x \mapsto \phi_x : D \to \mathbb{R}$$
  
$$y \mapsto \mathfrak{d}(x, y) - \mathfrak{d}(y, x_0).$$

- $\phi_x$  are bounded (triangle ineq.)
- The norm ||·||∞ induces a distance in L<sup>∞</sup>(D) compatible with the cost-based distance: ||φ<sub>x1</sub> φ<sub>x2</sub>||∞ = ∂(x1, x2)
- Rudin (1991, Teo. 11.32) gives a generalization of Bochner's theorem in the context of Banach algebras
- Generalization of Schoenberg's theorem is open

Banach spaces (algebras)

#### Kuratowski embedding

The metric space D embeds isometrically in the Banach space  $L^{\infty}(D)$  of bounded functions on D with the supremum norm. Fixing  $x_0 \in D$ , define

$$D \hookrightarrow L^{\infty}(D)$$
  
$$x \mapsto \phi_x : D \to \mathbb{R}$$
  
$$y \mapsto \mathfrak{d}(x, y) - \mathfrak{d}(y, x_0).$$

- $\phi_x$  are bounded (triangle ineq.)
- The norm ||·||∞ induces a distance in L<sup>∞</sup>(D) compatible with the cost-based distance: ||φ<sub>x1</sub> φ<sub>x2</sub>||∞ = ∂(x1, x2)
- Rudin (1991, Teo. 11.32) gives a generalization of Bochner's theorem in the context of Banach algebras
- Generalization of Schoenberg's theorem is open

An Euclidean representation of a distance matrix  $\mathbf{D} \ n \times n$  is a matrix  $\mathbf{X}$  whose rows give the coordinates of a set of points  $x_1, \ldots, x_n \in \mathbb{R}^d$  that reproduce the distances.

An Euclidean representation of a distance matrix  $\mathbf{D} \ n \times n$  is a matrix  $\mathbf{X}$  whose rows give the coordinates of a set of points  $x_1, \ldots, x_n \in \mathbb{R}^d$  that reproduce the distances.

► Not all distance matrices admit an exact Euclidean representation.

► The matrix **D** from the example does not.

An Euclidean representation of a distance matrix  $\mathbf{D} \ n \times n$  is a matrix  $\mathbf{X}$  whose rows give the coordinates of a set of points  $x_1, \ldots, x_n \in \mathbb{R}^d$  that reproduce the distances.

- ► Not all distance matrices admit an exact Euclidean representation.
- The matrix **D** from the example does not.

A pseudo-Euclidean inner product in  $\mathbb{R}^d$  of index k is of the form  $\langle \boldsymbol{x}, \boldsymbol{y} \rangle = (x_1y_1 + \dots + x_ky_k) - (x_{k+1}y_{k+1} + \dots + x_dy_d).$ 



**Figure:** Some points and their relative quadratic distances in the pseudo-Euclidean space  $E_{(1,1)}$ 

A pseudo-Euclidean inner product in  $\mathbb{R}^d$  of index k is of the form  $\langle \boldsymbol{x}, \boldsymbol{y} \rangle = (x_1y_1 + \dots + x_ky_k) - (x_{k+1}y_{k+1} + \dots + x_dy_d).$ 



**Figure:** Some points and their relative quadratic distances in the pseudo-Euclidean space  $E_{(1,1)}$ 

Theorem: All distance matrices D can be represented in a pseudo-Euclidean space

$$\mathbf{X} = \mathbf{\Gamma}(\mathbf{\Lambda}\mathbf{S}_k)^{1/2}, \quad \mathbf{H}\mathbf{D}\mathbf{H} = \mathbf{\Lambda}\mathbf{S}_k\mathbf{\Lambda},$$

where  $\mathbf{S}_k$  is the signature of the space.



 The pseudo-Euclidean embedding is not strict: there are configurations that are not representations of any cost-based problem (e.g., negative quadratic distances; violations of triangle ineq.)



### Positive definiteness in pseudo-Euclidean spaces

- At least the trivial constant function is positive-definite in the pseudo-Euclidean space
- All cost-based problems can be represented in the pseudo-Euclidean space
- The Euclidean space is a particular case of cost-based manifold

$$\emptyset \neq \mathcal{P}(E_{(k,d-k)}) \subseteq \mathcal{P}(D) \subseteq \mathcal{P}(E).$$

### Positive definiteness in pseudo-Euclidean spaces

- At least the trivial constant function is positive-definite in the pseudo-Euclidean space
- All cost-based problems can be represented in the pseudo-Euclidean space
- The Euclidean space is a particular case of cost-based manifold

$$\emptyset \neq \mathcal{P}(E_{(k,d-k)}) \subseteq \mathcal{P}(D) \subseteq \mathcal{P}(E).$$

### Positive definiteness in pseudo-Euclidean spaces

- At least the trivial constant function is positive-definite in the pseudo-Euclidean space
- All cost-based problems can be represented in the pseudo-Euclidean space
- ► The Euclidean space is a particular case of cost-based manifold

$$\varnothing \neq \mathcal{P}(E_{(k,d-k)}) \subseteq \mathcal{P}(D) \subseteq \mathcal{P}(E).$$

# Generalizations of Bochner's and Schoenberg's theorems

Bochner's theorem remain valid in pseudo-Euclidean spaces!

$$\tilde{C}(\boldsymbol{h}) = \int_{E_d} e^{i\boldsymbol{h}'\boldsymbol{x}} dF_X(\boldsymbol{x}), \quad \boldsymbol{h}, \boldsymbol{X} \in E_d$$
(3)

Schoenberg's theorem need to be adapted: integrate over the sphere

 isotropic positive-definite functions are not the same in the Euclidean and pseudo-Euclidean spaces

# Generalizations of Bochner's and Schoenberg's theorems

Bochner's theorem remain valid in pseudo-Euclidean spaces!

$$\tilde{C}(\boldsymbol{h}) = \int_{E_d} e^{i\boldsymbol{h}'\boldsymbol{x}} dF_X(\boldsymbol{x}), \quad \boldsymbol{h}, \boldsymbol{X} \in E_d$$
(3)

Schoenberg's theorem need to be adapted: integrate over the sphere





 isotropic positive-definite functions are not the same in the Euclidean and pseudo-Euclidean spaces

# Generalizations of Bochner's and Schoenberg's theorems

Bochner's theorem remain valid in pseudo-Euclidean spaces!

$$\tilde{C}(\boldsymbol{h}) = \int_{E_d} e^{i\boldsymbol{h}'\boldsymbol{x}} dF_X(\boldsymbol{x}), \quad \boldsymbol{h}, \boldsymbol{X} \in E_d$$
(3)

Schoenberg's theorem need to be adapted: integrate over the sphere



 isotropic positive-definite functions are not the same in the Euclidean and pseudo-Euclidean spaces

### Integrating on the hyperboloid

- The pseudo-Euclidean sphere has infinite surface, therefore the integration of a constant is divergent
- We can consider the *mean* value of the function C
  (h) over the surface (which is C(ρ), where ρ = ||h||).
- The mean of the right-hand side can be formally expressed as the quotient of two divergent integrals, and then change the integration order to express it as the integral of a function M(ρ) with respect to the distribution F.

$$C(\rho) = \int_{S_{\rho}^{+}} \left( \int_{\mathbb{R}^{d}} e^{i\omega'x} F(d\omega) \right) s(dx) \Big/ \int_{S_{\rho}^{+}} s(dx) = \int_{\mathbb{R}^{d}} \underbrace{\left( \int_{S_{\rho}^{+}} e^{i\omega'x} s(dx) \Big/ \int_{S_{\rho}^{+}} s(dx) \right)}_{F(d\omega)} F(d\omega).$$

### Integrating on the hyperboloid

- The pseudo-Euclidean sphere has infinite surface, therefore the integration of a constant is divergent
- We can consider the *mean* value of the function C̃(h) over the surface (which is C(ρ), where ρ = ||h||).
- ► The mean of the right-hand side can be formally expressed as the quotient of two divergent integrals, and then change the integration order to express it as the integral of a function  $M(\rho)$  with respect to the distribution F.

$$C(\rho) = \int_{S_{\rho}^{+}} \left( \int_{\mathbb{R}^{d}} e^{i\omega'x} F(d\omega) \right) s(dx) \Big/ \int_{S_{\rho}^{+}} s(dx) = \int_{\mathbb{R}^{d}} \underbrace{\left( \int_{S_{\rho}^{+}} e^{i\omega'x} s(dx) \Big/ \int_{S_{\rho}^{+}} s(dx) \right)}_{F(d\omega)} F(d\omega).$$

#### Integrating on the hyperboloid

- The pseudo-Euclidean sphere has infinite surface, therefore the integration of a constant is divergent
- We can consider the *mean* value of the function C̃(h) over the surface (which is C(ρ), where ρ = ||h||).
- ► The mean of the right-hand side can be formally expressed as the quotient of two divergent integrals, and then change the integration order to express it as the integral of a function M(ρ) with respect to the distribution F.

$$C(\rho) = \int_{S_{\rho}^{+}} \left( \int_{\mathbb{R}^{d}} e^{i\omega' \boldsymbol{x}} F(d\boldsymbol{\omega}) \right) s(d\boldsymbol{x}) \Big/ \int_{S_{\rho}^{+}} s(d\boldsymbol{x}) = \int_{\mathbb{R}^{d}} \underbrace{\left( \int_{S_{\rho}^{+}} e^{i\omega' \boldsymbol{x}} s(d\boldsymbol{x}) \Big/ \int_{S_{\rho}^{+}} s(d\boldsymbol{x}) \right)}_{M_{\parallel \boldsymbol{\omega} \parallel}(\rho)} F(d\boldsymbol{\omega}).$$

### Divergence of the function M

- Defined formally as the mean value of the (bounded) complex exponential function over the (infinte) surface of the hyperboloid
- Integrate in pseudo-hyperspheric coordinates and reduce the problem to the quotient of one-dimensional integrals

$$\int_{1}^{\infty} x^{\frac{k}{2}} J_{\frac{k}{2}-1}(A_2 x) \frac{dx}{\sqrt{x^2-1}} \bigg/ \int_{1}^{\infty} x^{k-1} \frac{dx}{\sqrt{x^2-1}}$$

where  $J_{\nu}$  denotes de Bessel function of the first kind, and  $A_2$  is a constant.

► This is the quotient of two divergent functions. The numerator looks something like (k = 5)



### Divergence of the function M

- Defined formally as the mean value of the (bounded) complex exponential function over the (infinite) surface of the hyperboloid
- Integrate in pseudo-hyperspheric coordinates and reduce the problem to the quotient of one-dimensional integrals

$$\int_{1}^{\infty} x^{\frac{k}{2}} J_{\frac{k}{2}-1}(A_2 x) \frac{dx}{\sqrt{x^2-1}} \bigg/ \int_{1}^{\infty} x^{k-1} \frac{dx}{\sqrt{x^2-1}}$$

where  $J_{\nu}$  denotes de Bessel function of the first kind, and  $A_2$  is a constant.

► This is the quotient of two divergent functions. The numerator looks something like (k = 5)



## Divergence of the function M

- Defined formally as the mean value of the (bounded) complex exponential function over the (infinte) surface of the hyperboloid
- Integrate in pseudo-hyperspheric coordinates and reduce the problem to the quotient of one-dimensional integrals

$$\int_{1}^{\infty} x^{\frac{k}{2}} J_{\frac{k}{2}-1}(A_2 x) \frac{dx}{\sqrt{x^2 - 1}} \bigg/ \int_{1}^{\infty} x^{k-1} \frac{dx}{\sqrt{x^2 - 1}}$$

where  $J_{\nu}$  denotes de Bessel function of the first kind, and  $A_2$  is a constant.

► This is the quotient of two divergent functions. The numerator looks something like (k = 5)



#### Spectral density functions of particular cases

• Isotropic correlation function in  $E_{(2,1)}$ 

$$f(\boldsymbol{\omega}) = \begin{cases} \frac{1}{2\pi^2 \|\boldsymbol{\omega}\|} \int_0^\infty R(\rho^2) \rho \Big( \cos(\|\boldsymbol{\omega}\|\rho) + e^{-\|\boldsymbol{\omega}\|\rho} \Big) d\rho, \quad (\boldsymbol{\omega}, \boldsymbol{\omega}) > 0\\ \frac{-1}{2\pi^2 \|\boldsymbol{\omega}\|} \int_0^\infty R(\rho^2) \rho \sin(\|\boldsymbol{\omega}\|\rho) d\rho, \qquad (\boldsymbol{\omega}, \boldsymbol{\omega}) < 0 \end{cases}$$

• Exponential correlation function in  $E_{(2,1)}$ 

$$f(\boldsymbol{\omega}) = \begin{cases} \frac{1}{2\pi^2 \|\boldsymbol{\omega}\|} \left( \frac{\varphi^2 - \|\boldsymbol{\omega}\|^2}{(\varphi^2 + \|\boldsymbol{\omega}\|^2)^2} + \frac{1}{(\varphi + \|\boldsymbol{\omega}\|)^2} \right), & (\boldsymbol{\omega}, \boldsymbol{\omega}) > 0\\ \frac{-\varphi}{\pi^2 (\varphi^2 + \|\boldsymbol{\omega}\|^2)^2}, & (\boldsymbol{\omega}, \boldsymbol{\omega}) < 0 \end{cases}$$

where  $\|\omega\| = \sqrt{|(\omega, \omega)|}$ . This goes negative for  $\|\omega\|$  large enough in  $(\omega, \omega) > 0$ . The exponential function is not positive-definite in  $E_{(2,1)}$ .

- Model the elements of a reparameterization of the covariance matrix (e.g. Cholesky) as a function of the distances
- We still want covariances to be functions of the distances
- We need all possible covariance matrices to be positive-definite
- No significant progress on this line

- Model the elements of a reparameterization of the covariance matrix (e.g. Cholesky) as a function of the distances
- We still want covariances to be functions of the distances
- We need all possible covariance matrices to be positive-definite
- No significant progress on this line

- Model the elements of a reparameterization of the covariance matrix (e.g. Cholesky) as a function of the distances
- We still want covariances to be functions of the distances
- ► We need all possible covariance matrices to be positive-definite
- No significant progress on this line

- Model the elements of a reparameterization of the covariance matrix (e.g. Cholesky) as a function of the distances
- We still want covariances to be functions of the distances
- We need all possible covariance matrices to be positive-definite
- No significant progress on this line

## Markov approximations of Matérn fields

#### S different approach to irregular regions

- The resulting correlations structure is different from cost-based
- The approach works well, although is less general and has some other issues (e.g., border effects)

## Markov approximations of Matérn fields

- S different approach to irregular regions
- The resulting correlations structure is different from cost-based
- The approach works well, although is less general and has some other issues (e.g., border effects)

## Markov approximations of Matérn fields

- S different approach to irregular regions
- The resulting correlations structure is different from cost-based
- The approach works well, although is less general and has some other issues (e.g., border effects)

#### Thesis topic: Geostatistical prediction in heterogeneous regions

- Main contribution 1: The cost-based methodology. A practical and applied approach, and its implementation.
- Main contribution 2: The mathematical framework of the problem of positive-definiteness with cost-based distances.
- Main contribution 3: Investigation of possible approaches.
   Pseudo-Euclidean embedding theorem. Formulas for the spectral density of an isotropic function in E<sub>(2,1)</sub>.

- Thesis topic: Geostatistical prediction in heterogeneous regions
- Main contribution 1: The cost-based methodology. A practical and applied approach, and its implementation.
- Main contribution 2: The mathematical framework of the problem of positive-definiteness with cost-based distances.
- Main contribution 3: Investigation of possible approaches.
   Pseudo-Euclidean embedding theorem. Formulas for the spectral density of an isotropic function in E<sub>(2,1)</sub>.

- Thesis topic: Geostatistical prediction in heterogeneous regions
- Main contribution 1: The cost-based methodology. A practical and applied approach, and its implementation.
- Main contribution 2: The mathematical framework of the problem of positive-definiteness with cost-based distances.
- Main contribution 3: Investigation of possible approaches.
   Pseudo-Euclidean embedding theorem. Formulas for the spectral density of an isotropic function in E<sub>(2,1)</sub>.

- Thesis topic: Geostatistical prediction in heterogeneous regions
- Main contribution 1: The cost-based methodology. A practical and applied approach, and its implementation.
- Main contribution 2: The mathematical framework of the problem of positive-definiteness with cost-based distances.
- Main contribution 3: Investigation of possible approaches.
   Pseudo-Euclidean embedding theorem. Formulas for the spectral density of an isotropic function in E<sub>(2,1)</sub>.

## Open lines of work

 Combine the cost-based approach with the outcome of a Computer Model of noise diffusion

- Elaborate known results about positive-definite functions on Banach Algebras (Rudin, 1991; Berg et al., 1984)
- Elaborate the isotropy characterization of stationary functions under the action of a group over the manifold, considering a generalized Fourier transform with respect to the Hausdorff measure
- Mean value of a function over the d-dimensional hyperboloid
- Search positive-definite functions on the pseudo-Euclidean space using the formulas for the spectral density of isotropic functions
- Brute-force investigation of positive-definiteness for candidate functions
## Open lines of work

- Combine the cost-based approach with the outcome of a Computer Model of noise diffusion
- Elaborate known results about positive-definite functions on Banach Algebras (Rudin, 1991; Berg et al., 1984)
- Elaborate the isotropy characterization of stationary functions under the action of a group over the manifold, considering a generalized Fourier transform with respect to the Hausdorff measure
- Mean value of a function over the d-dimensional hyperboloid
- Search positive-definite functions on the pseudo-Euclidean space using the formulas for the spectral density of isotropic functions
- Brute-force investigation of positive-definiteness for candidate functions

- Combine the cost-based approach with the outcome of a Computer Model of noise diffusion
- Elaborate known results about positive-definite functions on Banach Algebras (Rudin, 1991; Berg et al., 1984)
- Elaborate the isotropy characterization of stationary functions under the action of a group over the manifold, considering a generalized Fourier transform with respect to the Hausdorff measure
- Mean value of a function over the d-dimensional hyperboloid
- Search positive-definite functions on the pseudo-Euclidean space using the formulas for the spectral density of isotropic functions
- Brute-force investigation of positive-definiteness for candidate functions

- Combine the cost-based approach with the outcome of a Computer Model of noise diffusion
- Elaborate known results about positive-definite functions on Banach Algebras (Rudin, 1991; Berg et al., 1984)
- Elaborate the isotropy characterization of stationary functions under the action of a group over the manifold, considering a generalized Fourier transform with respect to the Hausdorff measure
- ► Mean value of a function over the *d*-dimensional hyperboloid
- Search positive-definite functions on the pseudo-Euclidean space using the formulas for the spectral density of isotropic functions
- Brute-force investigation of positive-definiteness for candidate functions

- Combine the cost-based approach with the outcome of a Computer Model of noise diffusion
- Elaborate known results about positive-definite functions on Banach Algebras (Rudin, 1991; Berg et al., 1984)
- Elaborate the isotropy characterization of stationary functions under the action of a group over the manifold, considering a generalized Fourier transform with respect to the Hausdorff measure
- ► Mean value of a function over the *d*-dimensional hyperboloid
- Search positive-definite functions on the pseudo-Euclidean space using the formulas for the spectral density of isotropic functions
- Brute-force investigation of positive-definiteness for candidate functions

- Combine the cost-based approach with the outcome of a Computer Model of noise diffusion
- Elaborate known results about positive-definite functions on Banach Algebras (Rudin, 1991; Berg et al., 1984)
- Elaborate the isotropy characterization of stationary functions under the action of a group over the manifold, considering a generalized Fourier transform with respect to the Hausdorff measure
- ► Mean value of a function over the *d*-dimensional hyperboloid
- Search positive-definite functions on the pseudo-Euclidean space using the formulas for the spectral density of isotropic functions
- Brute-force investigation of positive-definiteness for candidate functions

## Vniver§itatÿdValència

Facultat de Ciències Matemàtiques Departament d'Estadística i Investigació Operativa



## Geoestadística en regiones heterogéneas con distancia basada en el coste

## TESIS DOCTORAL Facundo Martín Muñoz Viera

Director: Antonio López-Quílez Febrero 2013

