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If X is a compact metric space and

T : C(X ) → C(X )
f → Tf

is a surjective linear isometry, then

Tf (t) = h(t) f (ϕ(t))

where |h(t)| = 1 and ϕ is a homeomorphism of X onto itself. That
is, T is the weighted composition operator Wh,ϕ.



Introduction

r 1950, Bishop
Let α ∈ (0, 1) be an irrational number and Tα : L2[0, 1)→ L2[0, 1)
defined by

(Tαh)(x) = xh({x + α}); x ∈ [0; 1)

where for any real number y the symbol {y} denotes the fractional
part of y ,



Introduction

r 1950, Bishop
Let α ∈ (0, 1) be an irrational number and Tα : L2[0, 1)→ L2[0, 1)
defined by

(Tαh)(x) = xh({x + α}); x ∈ [0; 1)

where for any real number y the symbol {y} denotes the fractional
part of y ,namely write y = n + s with n ∈ Z, s ∈ [0; 1) and set
{y} := s.



Introduction

r 1950, Bishop
Let α ∈ (0, 1) be an irrational number and Tα : L2[0, 1)→ L2[0, 1)
defined by

(Tαh)(x) = xh({x + α}); x ∈ [0; 1)

where for any real number y the symbol {y} denotes the fractional
part of y ,namely write y = n + s with n ∈ Z, s ∈ [0; 1) and set
{y} := s.

Conjecture: Tα are candidates as counterexamples to the
Invariant Subspace Problem.



Introduction

r 1950, Bishop
Let α ∈ (0, 1) be an irrational number and Tα : L2[0, 1)→ L2[0, 1)
defined by

(Tαh)(x) = xh({x + α}); x ∈ [0; 1)

where for any real number y the symbol {y} denotes the fractional
part of y ,namely write y = n + s with n ∈ Z, s ∈ [0; 1) and set
{y} := s.

Conjecture: Tα are candidates as counterexamples to the
Invariant Subspace Problem.

1974, Davie. Tα has non-trivial invariant subspaces for almost
every α ∈ [0, 1).



Introduction

r 1950, Bishop
Let α ∈ (0, 1) be an irrational number and Tα : L2[0, 1)→ L2[0, 1)
defined by

(Tαh)(x) = xh({x + α}); x ∈ [0; 1)

where for any real number y the symbol {y} denotes the fractional
part of y ,namely write y = n + s with n ∈ Z, s ∈ [0; 1) and set
{y} := s.

Conjecture: Tα are candidates as counterexamples to the
Invariant Subspace Problem.

1974, Davie. Tα has non-trivial invariant subspaces for almost
every α ∈ [0, 1).

Open question: Does Tα have non-trivial invariant subspaces for
every α ∈ [0, 1)?
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r D = {z ∈ C : |z | < 1}

Given h and ϕ analytic functions in D such that ϕ(D) ⊂ D, we
may consider the linear map

Wh,ϕ : f ∈ H(D) → h (f ◦ ϕ) ∈ H(D)

Weighted composition operator
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r 1960, de Leeuw, Rudin and Wermer

Characterization of the isometries of H1.

r 1964, Forelli

Characterization of the isometries of Hp, 1 < p <∞ and p 6= 2.
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f ∈ Hp, 1 ≤ p <∞ ⇐⇒ f ∈ H(D) and

‖f ‖p =

(
sup

0≤r<1

∫ 2π

0
|f (re iθ)|p dθ

2π

)1/p

<∞.

f ∈ H∞ ⇐⇒ f is a bounded analytic function on D
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Given h and ϕ analytic functions in D such that ϕ(D) ⊂ D, we
may consider the linear map

Wh,ϕ : f ∈ Hp → h (f ◦ ϕ)

Weighted composition operator

• Question: When does Wh,ϕ take Hp boundedly into itself?

• A necessary condition: h ∈ Hp.
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• Suppose that h ∈ H∞. Then, Wh,ϕ = Mh Cϕ.

1925, Littlewood Subordination Principle

If ϕ ∈ H(D) such that ϕ(D) ⊂ D, then Cϕ is bounded on Hp.

�D
ϕ

D

ϕ(D)

1



Boundedness of weighted composition operators on Hardy spaces

r 2003, Contreras and Hernández-D́ıaz

Necessary and sufficient condition for boundedness of Wh,ϕ in
terms of Carleson measures.
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r 2003, Contreras and Hernández-D́ıaz

Wh,ϕ is bounded in Hp ⇔ µh,ϕ is a Carleson measure on D, where

µh,ϕ(E ) =

∫
ϕ−1(E)∩D

|h|pdm,

for measurable subsets E ⊆ D.
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r 2006, Harper

Wh,ϕ is bounded in H2 ⇔

sup
|w |<1

‖Wh,ϕkw‖2 <∞,

where kw is the normalized reproducing kernel at w in H2.

r 2007, Cuc̆ković and Zhao

Generalizations to mappings between Hp and Hq spaces.
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Boundedness of weighted composition operators on Hardy spaces

r 2007, Jury

Let H(ϕ) denote the de Branges–Rovnyak space, that is, the
reproducing kernel Hilbert space on D with reproducing kernel at w

kϕw (z) =
1− ϕ(w)ϕ(z)

1− wz
.

r Theorem. Let ϕ be an analytic self-map of D and h ∈ H(ϕ).
Then Wh,ϕ is bounded in H2 and

‖Wh,ϕ‖2 ≤ ‖h‖H(ϕ).

r Remark. This is not a necessary condition for boundedness.
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r “Inner-Outer” factorization of Hardy functions.

Let f ∈ Hp, then f = BSσF where

• B is a Blaschke product.

Given a sequence of (not necessarily distinct) points {zk} in
D \ {0} satisfying the Blaschke condition

∞∑
k=1

(1− |zk |) <∞,

the infinite product

B(z) =
∞∏
k=1

|zk |
zk

zk − z

1− zkz
,

converges uniformly on compact subsets of D to a
holomorphic function B called the Blaschke product with zero
sequence {zk}.



r “Inner-Outer” factorization of Hardy functions.

Let f ∈ Hp, then f = BSσF where

• B is a Blaschke product.

A general expression for a Blaschke product is given by

e iθ zN
∞∏
k=1

|zk |
zk

zk − z

1− zkz

where N ≥ 0 is an integer.
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r “Inner-Outer” factorization of Hardy functions.

Let f ∈ Hp, then f = BSσF where

• B is a Blaschke product.

• Sσ is a singular inner function.

Sσ(z) = exp

(
−
∫ 2π

0

e iθ + z

e iθ − z
dσ(θ)

)
where σ is a positive singular measure in ∂D.
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r “Inner-Outer” factorization of Hardy functions.

Let f ∈ Hp, then f = BSσF where

• B is a Blaschke product.

• Sσ is a singular inner function.

• F is an outer function.

F (z) = λ exp

(
1

2π

∫ 2π

0

e iθ + z

e iθ − z
log |f (e iθ)| dθ

)
.
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r 2010, Kumar, GG and Partington

If ϕ is inner, then

H(ϕ) = Kϕ := H2 	 ϕH2,

and
PKϕh = ϕP−(ϕh),

where P− is the orthogonal projection onto L2 	H2.
In this case, if h ∈ Kϕ,∥∥∥∥∥

∞∑
n=0

anϕ
nh

∥∥∥∥∥
2

2

= ‖h‖2
2

∞∑
n=0

|an|2,

since

〈ϕnh, ϕmh〉 =

{
0 for n 6= m,

‖h‖2
2 for n = m,
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r 2010, Kumar, GG and Partington

So, if ϕ is inner and h ∈ Kϕ

‖Wh,ϕf ‖2 = ‖h‖2‖f ‖2.

Thus the condition in Jury’s Theorem holds for h ∈ Kϕ, although
not in general. Indeed, if ϕ(z) = z , then ‖Wh,ϕ‖ = ‖Th‖ = ‖h‖∞.
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Boundedness of weighted composition operators on Hardy spaces

r Definition. For ϕ : D→ D analytic, the multiplier space of ϕ is
defined by

M(ϕ) = {h ∈ H2 : Wh,ϕ := ThCϕ is bounded}.

r Remark. H∞ ⊆M(ϕ) ⊆ H2 for all analytic self-maps ϕ of the
unit disc. It is easily verified that M(ϕ) is a Banach space with the
norm

‖h‖M(ϕ) = ‖Wh,ϕ‖.

r Question. Determine M(ϕ).
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Boundedness of weighted composition operators on Hardy spaces

r Theorem (2010, Kumar, GG, Partington) M(ϕ) = H2 if and

only if ‖ϕ‖∞ < 1.

r Theorem (2003, Contreras and Hernández-D́ıaz, 2008 Matache)
M(ϕ) = H∞ if and only if ϕ is a finite Blaschke product.
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r Angular derivative

Let ϕ be an analytic self-map with ϕ(D) ⊂ D and α ∈ ∂D.

ϕ has (finite) angular derivative at α, denoted by ϕ′(α), whenever
the non-tangential limit

∠ ĺım
z→α

ϕ(z)− η
z − α

(z ∈ D),

exists and is finite for some η ∈ ∂D.
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1−|z| <∞, where the ĺım inf is calculated as z
approaches α within D.
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3 ĺım infz→α
1−|ϕ(z)|
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r Julia-Carathéodory Theorem:

Let ϕ be an analytic self-map of D with ϕ(D) ⊂ D and α ∈ ∂D.
The following conditions are equivalent

1 ϕ has finite angular derivative at α.

2 Both radial limits ϕ(α) and ϕ′(α) exist and are finite.

3 ĺım infz→α
1−|ϕ(z)|

1−|z| <∞, where the ĺım inf is calculated as z
approaches α within D.

Moreover, under the above conditions it holds that ϕ(α) = η,

|ϕ′(α)| = ĺım inf
z→α

1− |ϕ(z)|
1− |z |
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r Theorem (2010, Kumar, GG, Partington) Let ϕ be an analytic
self-map of D. Let

Eϕ = {ζ ∈ T : ϕ has finite angular derivative at ζ}.

If Wh,ϕ is bounded on Hp for some 1 ≤ p <∞, then h is pointwise
bounded on every Stolz domain whose vertex is a point of Eϕ.

r Remark. The converse does not hold.

r Corollary Let ϕ be an inner function . Then any function
h ∈M(ϕ) is essentially bounded on all relatively compact subsets
of T \ σ(ϕ), where σ(ϕ) denotes the spectrum of ϕ, namely,
σ(ϕ) = {an}n ∪ supp µ.
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Boundedness of weighted composition operators

The Dirichlet space D

f ∈ D ⇐⇒ f ∈ H(D) and

‖f ‖2
D = |f (0)|2 +

∫
D
|f ′(z)|2 dA(z)
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r Remark. Not every composition operator Cϕ takes D into itself!

r 1980, C. Voas

Cϕ : D → D
f → f ◦ ϕ

nϕ(w) ≡ multiplicity of ϕ at w

S(ξ, δ) = {z ∈ D : |z − ξ| < δ}

the Carleson disk centered at ξ ∈ ∂D of radius 0 < δ < 1.

Cϕ is bounded on D ⇐⇒
∫
S(ξ,δ)

nϕ(w)dA(w) ∼ O (δ2).



Boundedness of weighted composition operators on the Dirichlet space

It is clear that if Cϕ is a bounded operator on D and u is a
multiplier of D, that is, the Toeplitz operator Tu : f 7→ uf is
defined everywhere on D and hence bounded, the weighted
composition operator Wu,ϕ on D is obviously bounded.
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r Multipliers of D. Not easy to describe.

r 1980, Stegenga Characterization in terms of a condition
involving the logarithmic capacity of their boundary values. In
particular, the strict inclusion

M(D) ⊂ D ∩H∞

holds.r 1999, Wu An equivalent condition in terms of Carleson
measures for D (that is, there is a continuous injection from D
into L2(D, µ)),

u ∈M(D) ⇐⇒ u ∈ H∞ and dµ(z) = |u′(z)|2 dA(z)

is a Carleson measure for D.
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An example Let u(z) = (1− z)2 and let ϕ be the infinite
Blaschke product with zeroes

(1− 1/n2)n≥1.

Now ϕ 6∈ D, so Cϕ is clearly unbounded. However, Wu,ϕ is
bounded on D.

Conclusion One may construct self-maps of the unit disc ϕ such
that ϕ 6∈ D and multipliers u ∈M(D) such that Wu,ϕ is bounded
in the Dirichlet space.Therefore, facing the problem of describing
the weighted composition operators taking D boundedly into itself
deals not only with the multipliers of D but also with those
self-maps of the unit disc that may induce unbounded composition
operators in D.
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Let ϕ be a self-map of the unit disc D, the multiplier space
M(ϕ) associated to ϕ by

M(ϕ) = {u ∈ D : Wu,ϕ is bounded on D}.

1 If Cϕ is bounded on D, then M(D) ⊆M(ϕ) ⊆ D.

2 If ϕ induces an unbounded Cϕ in D, then M(D) is no longer
contained in M(ϕ) since, in such a case, this latter space
does not contain the constant functions.

An open question. Characterization of M(ϕ). Extreme cases?
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Boundedness of weighted composition operators on the Dirichlet space

Recall that if Cϕ is bounded then M(D) ⊆M(ϕ) ⊆ D. For ϕ a
finite Blaschke product the space of weighted composition
operators is as small as possible:

Theorem (2015, Chalendar, G-G, Partington) Let ϕ be an inner
function. Then M(ϕ) =M(D) if and only if ϕ is a finite Blaschke
product.

Remark. The assumption about ϕ being inner cannot be relaxed;
even if ‖ϕ‖∞ = 1 and Cϕ is bounded in D. We can have
M(ϕ) 6=M(D) even if ‖ϕ‖∞ = 1 and Cϕ is bounded in D. Let us
consider

ϕ(z) =
1− z

2
and h(z) =

∞∑
k=2

zk

k(log k)3/4
.

One has h ∈ D \M(D). Nonetheless, Wh,ϕ is bounded; that is,
h ∈M(ϕ).



Boundedness of weighted composition operators on the Dirichlet space

Theorem (2015, Chalendar, G-G, Partington)
Let ϕ be an analytic self-map of D. ThenM(ϕ) = D if and only if

1 ‖ϕ‖∞ < 1, and

2 ϕ ∈M(D).
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• Open question: Determine the spectrum of composition
operators in Hp.

• 2005, Highdon Spectrum of composition operators induced
by linear fractional self-maps of D acting on D.

• 2011, Gunatillake Study of the spectrum of invertible
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Extension of Gunatillake’s results and study of the spectrum
of invertible weighted composition operators in other spaces
of analytic functions.
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weighted composition operator and
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h ◦ ϕ−1
Cϕ−1 .
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Proposition. Wh,ϕ is invertible in D if and only if h ∈M(D),
bounded away from zero in D and ϕ is an automorphism of D. In
such a case, the inverse operator of Wh,ϕ : D → D is also a
weighted composition operator and

(Wh,ϕ)−1 =
1

h ◦ ϕ−1
Cϕ−1 .

r Disc automorphisms

ϕ(z) = e iθ
p − z

1− pz
(z ∈ D).

where p ∈ D and −π < θ ≤ π.

? Parabolic. ϕ has just one fixed point α ∈ ∂D (⇔ |p| = cos(θ/2))

? Hyperbolic. ϕ has two fixed points α and β, such that
α, β ∈ ∂D (⇔ |p| > cos(θ/2))

? Elliptic. ϕ has two fixed points α and β, with α ∈ D
(⇔ |p| < cos(θ/2))
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Spectral properties of invertible weighted composition operators on D
Elliptic case

Theorem (Chalendar, G-G, Partington)
Suppose that ϕ is an elliptic automorphism of D with fixed point
a ∈ D and Wh,ϕ a weighted composition operator on D. Let

h(n) =
∏n−1

k=0 h ◦ ϕk . Then

1 either there exists a positive integer j such that ϕj(z) = z for
all z ∈ D, in which case, if m is the smallest such integer, then

σ(Wh,ϕ) = {λ : λm = h(m)(z), z ∈ D},

2 or ϕn 6= Id for every n and, if Wh,ϕ is invertible, then

σ(Wh,ϕ) = {λ : |λ| = |h(a)|}.
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Suppose that ϕ is a parabolic automorphism of D with fixed point
a ∈ T and Wh,ϕ a weighted composition operator on D,
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Spectral properties of invertible weighted composition operators on D
Parabolic case

Theorem (Chalendar, G-G, Partington)
Suppose that ϕ is a parabolic automorphism of D with fixed point
a ∈ T and Wh,ϕ a weighted composition operator on D,
determined by an h ∈M(D) that is continuous at a. If Wh,ϕ is
invertible, then

σ(Wh,ϕ) = {λ ∈ C : |λ| = |h(a)|}.

Key idea. Causal operators
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Spectral properties of invertible weighted composition operators on D
Hyperbolic case

Theorem (Chalendar, G-G, Partington)
Suppose that ϕ is a hyperbolic automorphism of D with attractive
fixed point a ∈ T and repelling fixed point b ∈ T. Let Wh,ϕ be a
weighted composition operator on D, determined by an h ∈M(D)
that is continuous at a and b. If Wh,ϕ is invertible, then

ρ(Wh,ϕ) ≤ máx{|h(a)|, |h(b)|}/µ,

where φ is conjugate to the automorphism

ψ(z) =
(1 + µ)z + (1− µ)

(1− µ)z + (1 + µ)
,

with 0 < µ < 1. Hence σ(Wh,ϕ) is contained in the annulus with
radii máx{|h(a)|, |h(b)|}/µ and ḿın{|h(a)|, |h(b)|}µ.
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