SINGULAR ISSUES ABOUT STRICTLY SINGULAR OPERATORS

JESÚS M. F. CASTILLO

1. SINGULAR OPERATORS WHERE YOU THOUGHT WAS NONE

Theorem 1. There is a separable isomorphically polyhedral \mathcal{L}_{∞} space that is not isomorphically Lindenstrauss. Moreover, it is a subspace of an isomorphically polyhedral Lindenstrauss space.

JMF Castillo, P.L. Papini, On isomorphically polyhedral \mathcal{L}_{∞} -spaces J. Funct. Anal. 270 (2016) 2336 -2342

2. Singular operators save the day

Theorem 2.

- (1) For every non-trivial L_{∞} -centralizer Ω on L_2 there is a complex structure on L_2 that can not be extended to an operator on $d_{\Omega}L_2$.
- (2) For every non-trivial ℓ_{∞} -centralizer Ω on ℓ_2 there is a complex structure on ℓ_2 that can not be extended to an operator on $d_{\Omega}\ell_2$.

JMF Castillo, V. Ferenczi, Y. Moreno, W. Cuellar, *Complex structures on twisted Hilbert spaces*, preprint

3. Where are the singular operators when you need one?

The Henson-Moore classification problem of \mathcal{L}_{∞} -spaces by isomorphic ultrapowers is

Problem. How many ultratypes of \mathcal{L}_{∞} -spaces are there?

Only two different ultra-types of \mathcal{L}_{∞} -spaces are known: that of C(K)-spaces and that of spaces of almost universal disposition. I personally believe that:

There is a continuum of different ultratypes of \mathcal{L}_{∞} -spaces

A. Avilés, F. Cabello Sánchez, JMF Castillo, M. González, Y. Moreno, *Separable injective Banach spaces*, Lecture Notes in Mathematics 2132 (2016) Springer-Verlag.