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Motivation

During the last fifteen years, analysis on metric spaces has been
a very active field of research.

It has been realized that metric spaces, possibly endowed with
some additional features, are a natural setting for many prob-
lems in analysis and geometry.
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Poincaré inequalities

Geometric implications

Motivation

1. The increasing use of metric tools in different fields, such as:

Harmonic Analysis
Quasiconformal Mapping Theory
Nonlinear Potential Theory
Riemannian Geometry
Geometric Group Theory

2. The interest on relevant types of spaces which are very different
from the classical euclidean or riemannian cases. For example:

Carnot Groups
Fractals
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Example: Heisenberg group

The Heisenberg group H is the group of matrices of the form 1 x z
0 1 y
0 0 1


where x , y , z ∈ R.

Topologically, H ' R3, so we can consider the Heisenberg
group as the space R3 endowed with a special group operation
and a special metric.
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Example: Heisenberg group

For p, q ∈ R3, the Carnot-Carathéodory distance is given by

dcc(p, q) = inf { lenght(γ) },

where γ is an admissible path from p to q.

For each p ∈ R3 we have a plane Hp ⊂ R3 varying smoothly
with p.

A piecewise smooth path γ : [a, b]→ R3 is admissible if

γ′(t) ∈ Hγ(t)

for almost all t ∈ [a, b].
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Example: Heisenberg group

This plane distribution is in fact defined as a sub-bundle of the
tangent bundle of R3.

For each p, we have that

Hp = span{X (p),Y (p)},

where the smooth vector fields X and Y on R3 are defined as

X =
∂

∂x
+ 2y

∂

∂z
and Y =

∂

∂y
− 2x

∂

∂z

From Chow Theorem it follows that every pair of points can be
joined by an admissible path.
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Example: Heisenberg group

The Carnot-Carathéodory distance is bi-Lipschitz equivalent to
the homogeneous distance

dH(p, q) = ‖p−1 · q‖,

where
‖(x , y , z)‖ = ((x2 + y2)2 + z2)1/4.

The Hausdorff dimension of Heisenberg group is 4.
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Analysis on metric spaces
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Example: Sierpinski Carpet

We endow the Sierpinski Carpet with euclidean distance.

The Hausdorff dimension is log8
log3 .
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Our setting

A metric measure space is (X , d , µ), where:

(X , d) is a metric space

µ is a Borel regular measure on (X , d), which means that µ
is an outer measure on X , such that every Borel set in (X , d)
is µ-measurable and every subset of X is contained in a Borel
set with the same measure.

We say that (X , d , µ) is doubling if there is a constant C ≥ 1 such
that, for every x ∈ X and every r > 0:

0 < µ(B(x , 2r)) ≤ C · µ(B(x , r)) < +∞
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Poincaré inequalities

Geometric implications

Our setting

A metric measure space is (X , d , µ), where:

(X , d) is a metric space

µ is a Borel regular measure on (X , d), which means that µ
is an outer measure on X , such that every Borel set in (X , d)
is µ-measurable and every subset of X is contained in a Borel
set with the same measure.

We say that (X , d , µ) is doubling if there is a constant C ≥ 1 such
that, for every x ∈ X and every r > 0:

0 < µ(B(x , 2r)) ≤ C · µ(B(x , r)) < +∞

Jaramillo Poincaré inequalities
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Our setting

In euclidean space Rn, the Lebesgue measure Ln is doubling:

Ln(B(x , 2r)) = 2n Ln(B(x , r)).

It can be shown that if a complete metric space supports a
doubling measure, then it is locally compact.
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Our setting

By the end of the ’70 it was recognized that a 0-th order cal-
culus can be developed on a doubling metric measure space
(”spaces of homogeneous type”, by Coifmann-Weiss).

In par-
ticular, Vitali coverings, Maximal functions, Lebesgue differen-
tiation theorem, all work in this general context.

But this class of spaces is too general to allow a 1-st order
calculus.
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Poincaré inequalities

From Heinonen-Koskela (1998), Cheeger (1999) and Haj lasz-
Koskela (2000), a rich 1-th order calculus can be developed on
metric measure spaces, with suitable generalizations of deriva-
tives, fundamental theorem of calculus, and Sobolev spaces.

One needs plenty of curves, well distributed along the space.

One way to make this idea precise is to assume that the space
supports a p-Poincaré inequality.
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Classical Poincaré inequalities

Classical Poincaré Inequality: there exists a dimensional constant
C > 0 such that, for each ball B in the euclidean space Rn and all
functions f ∈W 1,p(B), we have:

∫
B
|f − fB | dLn ≤ C rad(B)

∫
B
|∇f |dLn.

Here Ln denotes the n-dimensional Lebesgue measure, rad(B) is
the radius of B, and fB is the average of f over B:

fB =

∫
B

f dLn =
1

Ln(B)

∫
B

f dLn.
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Poincaré inequalities

Geometric implications

Classical Poincaré inequalities
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Definition of Poincaré inequality

On a metric measure space:∫
B
|f − fB | dLn ≤ C rad(B)

∫
B
|∇f |dLn

Jaramillo Poincaré inequalities
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Definition of Poincaré inequality

On a metric measure space:∫
B
|f − fB | dµ ≤ C rad(B)

∫
B
|∇f |dµ

Where fB is the average of f over B:

fB =

∫
B

f dµ =
1

µ(B)

∫
B

f dµ
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Upper gradients

Recall that if f : Rn → R is a smooth function and γ : [a, b]→ Rn

is a smooth path, we have that:

f (γ(b))− f (γ(a)) =

∫ b

a
〈∇f (γ(t)), γ′(t)〉 dt

≤
∫ b

a
|∇f (γ(t))| · |γ′(t)| dt

=

∫
γ
|∇f | ds
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Upper gradients

Definition (Heinonen-Koskela, 1998). Let (X , d , µ) be a metric
measure space and f a real-valued function on X .

A Borel function
g : X → [0,+∞] is said to be an upper gradient of f if, for every
rectifiable path γ : [a, b]→ X

|f (γ(b))− f (γ(a))| ≤
∫
γ

g ds.
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Upper gradients

The path γ : [a, b]→ X is rectifiable if `(γ) <∞, where

`(γ) = inf {
m∑
j

d(γ(tj), γ(tj−1)) : a = t0 < t1 < · · · < tm = b}.

The path integral is defined using the arc-length parametriza-
tion γ̃ of γ ∫

γ
g ds =

∫ b

a
g(γ̃(t)) dt.

If f is a smooth function defined on Rn or on a riemannian
manifold, then |∇f | is an upper gradient of f .
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Upper gradients: examples

For example, let (X , d , µ) be a metric measure space and f a real-
valued Lipschitz function on X .

Then the Lipschitz constant of f :

g ≡ LIP(f ) = sup
x 6=y

|f (x)− f (y)|
d(x , y)

is an upper gradient of f .

Also the pointwise Lipschitz constant of f :

g(x) = Lip f (x) := ĺım sup
y→x

|f (x)− f (y)|
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Analysis on metric spaces
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p-Poincaré inequality

Definition (Heinonen-Koskela, 1998). Let 1 ≤ p < ∞. A metric
measure space (X , d , µ) supports a weak p-Poincaré inequality

if
there exist constants Cp > 0 and λ ≥ 1 such that for each ball
B(x , r), for every Borel measurable function f : X → R and every
upper gradient g : X → [0,∞] of f , the pair (f , g) satisfies∫

B(x ,r)
|f − fB(x ,r)| dµ ≤ Cp r

(∫
B(x ,λr)

gpdµ
)1/p

∫
B(x ,r)

|f − fB(x ,r)| dµ ≤ C r ‖g‖L∞(B(x ,λr)) ( for p =∞)
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Examples

Examples of doubling metric measure spaces satisfying a weak p-
Poincaré inequality (p-P.I.):

Euclidean space Rn, endowed with Lebesgue measure Ln, ad-
mits a 1-P.I.

Non-compact riemannian manifolds with non-negative Ricci cur-
vature, endowed with riemannian distance and volume, admit
a 2-P.I.

Carnot groups (and, in particular, Heisenberg group) admit a
1-P.I.

Gromov-Haussdorf limits of measured spaces with a p-P.I. also
satisfy a p-P.I.
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Analysis on metric spaces
Poincaré inequalities

Geometric implications

A scale of properties

From Hölder inequality, if a space admits a p-Poincaré inequal-
ity, then it admits a p′-Poincaré inequality for each p′ ≥ p.

Thus the ∞-Poincaré inequality is the weakest one.

Given 1 ≤ q < p it is possible to construct spaces supporting
a p-Poincaré inequality, but not a q-Poincaré inequality.

Theorem (Keith and Zhong, 2008). Let X be a complete
metric space equipped with a doubling measure satisfying a p-
Poincaré inequality for some 1 < p < ∞. Then there exists
ε > 0 such that X supports a q-Poincaré inequality for all
q > p − ε.
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Examples: Sierpinski Carpet

The Sierpinski Carpet does not admit ∞-Poincaré inequality.
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Examples: Sierpinski Strip

The Sierpinski Strip is obtained placing together each consec-
utive step of Sierpinski Carpet along an infinite strip in the
plane.

The Sierpinski Strip admits ∞-Poincaré inequality, but admits
no p-Poincaré inequality for 1 < p <∞.
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Geometric implications: quasiconvexity

If a metric measure space X supports a p-Poincaré inequality
(1 ≤ p ≤ ∞), then X is connected.

(Cheeger, Semmes, 1999) Every complete metric space X sup-
porting a doubling measure and a p-Poincaré inequality (1 ≤
p <∞) is quasiconvex.

A metric space (X , d) is quasiconvex if there exists a constant
C ≥ 1 such that, for every x , y ∈ X , there is a path γ in X
from x to y , with length `(γ) ≤ C d(x , y).
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Analysis on metric spaces
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p <∞) is quasiconvex.

A metric space (X , d) is quasiconvex if there exists a constant
C ≥ 1 such that, for every x , y ∈ X , there is a path γ in X
from x to y , with length `(γ) ≤ C d(x , y).

Jaramillo Poincaré inequalities
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Poincaré inequalities

Geometric implications

Geometric implications: quasiconvexity

If a metric measure space X supports a p-Poincaré inequality
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Thick quasiconvexity

A metric measure space will be said thick quasiconvex if every pair
of sets of positive measure, which are a positive distance apart, can
be connected by a “thick”family of quasiconvex paths.

B(x,ε)	
   B(y,ε)	
  

.	
   .	
  x	
   y	
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Poincaré inequalities

Geometric implications

Modulus of paths

Given (X , d , µ), for 1 ≤ p ≤ ∞ the p-modulus, Modp, is an
outer measure defined on the family of all nonconstant rectifi-
able paths in (X , d , µ).

If some property holds for all such paths, except for a set Γ with
Modp Γ = 0, we say that the property holds for p-a.e. path.

If a set of paths Γ satisfies that Modp Γ > 0, we say that Γ is
p-thick.
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Thick quasiconvexity

A metric measure space (x , d , µ) is p-thick quasiconvex if there
exists C ≥ 1 such that for every x , y ∈ X , every 0 < ε <
1
4d(x , y), and all measurable sets E ⊂ B(x , ε), F ⊂ B(y , ε)
satisfying µ(E )µ(F ) > 0 we have that

Modp(Γ(E ,F ,C )) > 0,

where Γ(E ,F ,C ) denotes the set of paths γp,q connecting p ∈
E and q ∈ F with `(γp,q) ≤ C d(p, q).

A complete, p-thick quasiconvex, doubling metric measure space,
is quasiconvex.
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Analysis on metric spaces
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Analysis on metric spaces
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Thick quasiconvexity

(Durand-Cartagena, J., Shamungalingam, Williams, 2011-2012)
In a complete metric space with a doubling measure, for 1 ≤
p ≤ ∞:

p-Poincaré inequality ⇒ p-thick quasiconvexity

Durand-Cartagena, Shamungalingam and Williams (2012). In a
complete metric space with a doubling measure, for 1 ≤ p <∞:

p-thick quasiconvexity ; p-Poincaré inequality
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Analysis on metric spaces
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Transversal paths

A path γ in a metric measure space X is transversal to a subset
E ⊂ X if γ intersects E on a set of zero-length, in the sense that:

L1({t : γ(t) ∈ E}) = 0.
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Geometric characterization

Theorem (Durand-Cartagena, J., Shanmugalingam, 2016). Let X
be a locally complete, doubling metric measure space. The following
conditions are equivalent:

(a) X supports an ∞-Poincaré inequality.

(b) X is ∞-thick quasiconvex.

(c) There is a constant C ≥ 1 such that, for every null set N ⊂
X and for every pair x , y ∈ X , there exists a path γ in X
transversal to N, connecting x and y and such that

`(γ) ≤ C d(x , y).
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Analysis on metric spaces
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(b) X is ∞-thick quasiconvex.

(c) There is a constant C ≥ 1 such that, for every null set N ⊂
X and for every pair x , y ∈ X , there exists a path γ in X
transversal to N, connecting x and y and such that

`(γ) ≤ C d(x , y).

Jaramillo Poincaré inequalities
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Modulus of paths: definition

Let Γ be a family of nonconstant rectifiable paths in a metric mea-
sure space (X , d , µ). A Borel function ρ : X → [0,∞] is admissible
for Γ if ∫

γ
ρ ≥ 1 for all γ ∈ Γ.

For 1 ≤ p <∞ the p-modulus of Γ is defined by

Modp(Γ) = inf {
∫

X
ρp dµ},

and the ∞-modulus of Γ is defined by

Mod∞(Γ) = inf {‖ρ‖L∞(X )},

where ρ : X → [0,∞] is admissible for Γ.
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Poincaré inequalities

Geometric implications

Modulus of paths: definition

Let Γ be a family of nonconstant rectifiable paths in a metric mea-
sure space (X , d , µ).

A Borel function ρ : X → [0,∞] is admissible
for Γ if ∫

γ
ρ ≥ 1 for all γ ∈ Γ.

For 1 ≤ p <∞ the p-modulus of Γ is defined by

Modp(Γ) = inf {
∫

X
ρp dµ},

and the ∞-modulus of Γ is defined by

Mod∞(Γ) = inf {‖ρ‖L∞(X )},

where ρ : X → [0,∞] is admissible for Γ.

Jaramillo Poincaré inequalities
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Poincaré inequalities

Geometric implications

Modulus of paths: definition

Let Γ be a family of nonconstant rectifiable paths in a metric mea-
sure space (X , d , µ). A Borel function ρ : X → [0,∞] is admissible
for Γ if ∫

γ
ρ ≥ 1 for all γ ∈ Γ.

For 1 ≤ p <∞ the p-modulus of Γ is defined by

Modp(Γ) = inf {
∫

X
ρp dµ},

and the ∞-modulus of Γ is defined by

Mod∞(Γ) = inf {‖ρ‖L∞(X )},

where ρ : X → [0,∞] is admissible for Γ.

Jaramillo Poincaré inequalities
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Analysis on metric spaces
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