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Geometric clustering

M2 = (R2, ‖ · ‖) is a 2-dimensional normed (or Minkowski) plane.

Let S be a set of n points in the normed plane and k a fixed
number.

How can S be separated (by an algorithm) in k clusters
verifying some conditions?
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Geometric clustering

k = 1, minimizing the radius of a enclosing disc:
I Elzinga-Hearn and Shamos-Hoey (Euclidean plane).
I Alonso-Martini-Spirova and Jahn (general normed plane).

k = 2, minimizing the maximum Euclidean diameter of the
clusters:

I Avis, O(n2 log n).
I Asano-Bhattacharya-Keil-Yao, O(n log n).

k = 2, minimizing the sum of the two Euclidean diameters:

I Monma-Suri, O(n2).

k = 2, µ a measure, µ1 > 0 and µ2 > 0, splitting S into two
clusters A and B such that µ(A) ≤ µ1 and µ(B) ≤ µ2:

I Hershberger and Suri,
I µ =Euclidean diameter, O(n log n).
I µ =area, perimeter, or diagonal of the smallest rectangle with

sides parallel to the coordinates axes (O(n log n) time).
I µ =radius of the smallest enclosing sphere with the norms L1

(O(n log n) time) or the Euclidean norm (O(n2 log n) time)
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Geometric clustering

k = 2, the 2-center problem: cover S by (the union of) two
congruent closed disks whose radius is as small as possible.

I Eppstein and Sharir (1997), near linear time cost (Euclidean
case).

k = 3, minimizing the maximum Euclidean diameter

I Hagauer-Rote, O(n2 log2 n)

Any k , minimizing any monotone function F (F : Rk → R) of the
Euclidean diameters or the Euclidean radii of the clusters.
Examples of F :

· The sum of the diameters (or the radii)

· The maximum of the diameters (or the radii)

· The sum of the squares of the diameters (or the radii).

I Capoyleas-Rote-Woeginger, polynomial time.
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Linear separation of clusters

Hagauer-Rote and Capoyleas-Rote-Woeginger obtain their results
from this theorem

Theorem (Capoyleas-Rote-Woeginger)

Let A and B be two sets of points in the Euclidean plane. Then,
there are two linearly separable sets A′ and B ′ such that
diam(A′) ≤ diam(A), diam(B ′) ≤ diam(B), and A′ ∪ B ′ = A ∪ B.

sets 2.pdf

Figure: Non linearly separable (left) and linarly separable sets (right)
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Linear separation of clusters

This first statement is used in the proof of the Theorem:
In every triangle with an obtuse angle, the side lying opposite to
the obtuse angle is the (Euclidean) longest side in the triangle.

a

b
c

−→
bc

Figure: The side opposite to the obtuse angle is not the longest side in in
the triangle 4abc.
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Linear separation of clusters

This second statement is used in the proof of Theorem:
1.diam(A) ≥ diam(B)
2.{ai , a′i , am} ⊂ A, {bj , b′j} ⊂ B

Clockwise order: ai ′ , bj ′ , am, bj , ai
3. < bj , bj ′ > separates {ai , ai ′} from am.


=⇒
(E2)

{‖ai − bj‖, ‖ai ′ − bj ′‖}
≤ diam(A).

am

bj′

bj

ai

ai′
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Linear separation of clusters

But this point configuration is possible in a general normed plane:

am

bj′

bj

ai

ai′
−−→
ai′bj′

−→
aibj

−−→
bjbj′

Figure: ‖ai − bj‖ and ‖ai ′ − bj′‖ are longer than the diameter of A.
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Linear separation of clusters

Objective: to prove the Theorem for any normed plane.
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Linear separation of clusters

A1

u2
B1

u3 A2

u4
B2

u5

A3

u6

B3

u7

A4
u8

B4 u1

Step 1: {u1, u2, . . . , u2k} = ∂(conv(A)) ∩ ∂(conv(B)).
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Linear separation of clusters

We can assume that diam(A) ≥ diam(B)

We say that...

I (Ai ,Bj) is a bad pair if diam(Ai ∪ Bj) > diam(A).

Then, Ai and Bj are bad partners.

I ai ∈ Ai and bj ∈ Bj are bad points if ‖ai − bj‖ > diam(A).

Then, ai and bj are bad partners,

and the segment aibj is a bad segment.
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Linear separation of clusters

Lemma
Let (Ai ,Bj) and (Ai ′ ,Bj ′) two disjoint bad pairs. Let us choose
ai ∈ Ai , bj ∈ Bj , ai ′ ∈ Ai ′ , bj ′ ∈ Bj ′ such that aibj and ai ′bj ′ are
bad segments. Then, either these bad segments intersect, or any
point a ∈ Am belonging to the halfplane defined by < bjbj ′ >
where ai and ai ′ are not contained, is not bad.

Skecth of the proof. Possible clockwise order (up to symmetries):

ai′

bj

ai

bj′

Case 1: ai , bj ′ , ai ′ , bj

bj′

bj

ai

ai′

Case 2: ai , ai ′ , bj ′ , bj
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Linear separation of clusters

Case 1: clockwise order

ai , bj ′ , ai ′ , bj
ai′

bj

ai

bj′

We get a contradiction:

diam(A) + diam(B) ≥ ‖ai − ai ′‖+ ‖bj − bj ′‖ ≥
‖ai − bj‖+ ‖ai ′ − bj ′‖ > 2 diam(A).
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Linear separation of clusters

Case 2: clockwise order ai , ai ′ , bj ′ , bj :

am
bj′bj

ai

ai′

Figure: (ai , bj), (ai ′ , bj′) are bad partners =⇒ @ any bad partner for am
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Linear separation of clusters

Case 2: clockwise order ai , ai ′ , bj ′ , bj :

am
bj′bj

ai

ai′

bk

Figure: (ai , bj) and (ai ′ , bj′) bad partners =⇒ @ any bad partner for am
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Linear separation of clusters

Step 2: Maximal cyclic subsequences of polygons.

A1

u2
B1

u3 A2

u4
B2

u5

A3

u6

B3

u7

A4
u8

B4 u1
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Linear separation of clusters

Step 2: Maximal cyclic subsequences of polygons.

I Consider maximal cyclic subsequences of adjacent bad
polygons Ai .

I No ”good” polygon Ak belongs to one of this maximal cyclic
subsequences of bad Ai -polygons.

I Some intervening ”good” polygon Bj can belong to this
maximal cyclic subsequences of Ai -polygons.

I Similarly with adjacent bad polygons Bj .

I These maximal cyclic sequences are noted by Ā1, Ā2, . . . , Āp

and B̄1, B̄2, . . . , B̄q.
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Linear separation of clusters

Example with 3 maximal cyclic subsequences of Ai -polygons and 3
maximal subsequences of Bj -polygons:
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Linear separation of clusters

Example with 3 maximal cyclic subsequences of Ai -polygons, 3
maximal subsequences of Bj -polygons, and ”good” intervening
polygons:
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Linear separation of clusters

Properties

I Let (Ai ,Bj) and (Ai ′ ,Bj ′) be two disjoint bad pairs. Then

Ai ,Ai ′ ∈ Āk =⇒ Bj ,Bj ′ ∈ B̄t

I The number of maximal cyclic sequences of adjacent bad
Ai -polygons and Bj -polygons is the same.

I If (Āi , B̄j) and (Āi ′ , B̄j ′) are disjoint bad pairs of maximal
subsequences, then there exist two (one from every pair)
bad-crossing segments.

I There is an odd number of subsequences from each cluster,
and they must be completely interlacing.
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Linear separation of clusters

Step 3: Separate the sets.
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Linear separation of clusters

I Let Ai be the last polygon of a maximal cyclic subsequence
(in clockwise order)

I Let Bj be the last bad partner of Ai .

I Let Bj ′ be the first bad polygon after Ai

I let Ai ′ be the first bad partner of Bj ′ .

I Choose the line L going through the point just before Bj and
the point just after Bj ′ .

I Define B ′ to be the points in A ∪ B lying on the same side of
L as Bj and Bj ′ , and A′ as the remaing points.
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Linear separation of clusters
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Linear separation of clusters

Proposition

diam(A′) ≤ diam(A), diam(B ′) ≤ diam(B).

Theorem
Let A and B be two sets of points in a general normed plane.
Then, there are two linearly separable sets A′ and B ′ such that
diam(A′) ≤ diam(A), diam(B ′) ≤ diam(B), and A′ ∪ B ′ = A ∪ B.

Corollary

In the construction in the Theorem,

perimeter(A) + perimeter(B) ≥ perimeter(A′) + perimeter(B ′)

holds. If conv(A) ∩ conv(B) 6= ∅, then the inequality is strict.
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Some consequences

The 2-clustering problem for diameter respect to the minimum:
Dividing S in two sets minimizing the maximum diameter of the
sets.

Theorem
Given a set S of n points in a normed plane, the 2-clustering
problem for diameter respect to the minimum can be computed in
O(n2 log2 n) time.

I Sort the distances di between the points of S into increasing
order.

I By a binary search, locate the minimum di that admits a
stabbing line for the set of segments meeting point of S at
distance greater than di .
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Some consequences

The k-clustering problem for diameter respect to a function F (for
example, F can be the maximum, the sum, or the sum of squares):

Dividing S in k sets minimizing a function F of the diameters of
the sets.

Theorem
Consider the optimal k-clustering problem for the diameter respect
to a monotone increasing function F of such as diameters. For
every set S of n points in a general normed plane,

I There is an optimal k-clustering such that each pair of
clusters is linearly separable.

I The problem is solvable by an algorithm in polynomial time.
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Thank you very much!
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