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1. Introduction

Let `p, 1 ≤ p < ∞, the usual Lebesgue space of sequences

`p := {f = (f (n))n≥0 ⊂ C : ‖f ‖p
p :=

∞∑
n=0

|f (n)|p < ∞},

and `∞, the set of bounded sequences with the norm

`∞ := {f = (f (n))n≥0 ⊂ C : ‖f ‖∞ := sup
n≥0

|f (n)| < ∞}.

The continuous embedding `1 ↪→ `p ↪→ `∞ holds.
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A Banach algebra A is a Banach space with an associative and
distributive product such that λ(xy) = (λx)y = x(λy) and
‖xy‖ ≤ ‖x‖‖y‖ for all λ ∈ C and x , y ∈ A.

Note that `1 is a commutative Banach algebra endowed with their
natural convolution product

(f ∗ g)(n) =
n∑

j=0

f (n − j)g(j), n ≥ 0; f , g ∈ `1.

Moreover `p ∗ `1 ↪→ `p (1 ≤ p ≤ ∞) and

‖f ∗ g‖p ≤ ‖f ‖1‖g‖p, f ∈ `1, g ∈ `p.

The space `p is a module over the algebra `1.
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The Cesàro operator C : CN0 → CN0 , f 7→ Cf , is defined by

Cf (n) =
1

n + 1

n∑
j=0

f (j), n ∈ N0.

Note that C : `1 6→ `1, C : `p → `p, with 1 < p ≤ ∞ due to

∞∑
n=0

∣∣∣∣∣∣ 1

n + 1

n∑
j=0

f (n)

∣∣∣∣∣∣
p

≤
(

p

p − 1

)p ∞∑
n=0

|f (n)|p

(Hardy inequality, 1930)
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For β > 0, the β-Cesàro operator Cβ : CN0 → CN0 , is defined by

Cβf (n) =
1

kβ+1(n)

n∑
j=0

kβ(n−j)f (j) =
1

kβ+1(n)

(
kβ ∗ f

)
(n), n ∈ N0,

where kβ(n) =
Γ(β + n)

Γ(β)Γ(n + 1)
. (Stempak (1994), Zygmund (1959))

Note that Cβ : `1 6→ `1, Cβ : `p → `p, with 1 < p ≤ ∞.
(Stempak(1994), Andersen (1996), Xiao (1997))
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kα(n) =
Γ(α + n)

Γ(α)Γ(n + 1)
=

(
α− 1 + n

α− 1

)
, n ∈ N0.

The kernel kα satisfies that:

(i)
∞∑

n=0

kα(n)zn =
1

(1− z)α
, |z | < 1, α > 0.

(ii) kα ∗ kβ = kα+β.

(iii) kα(n) ∼ nα−1

Γ(α) for large n.

(iv) kα is increasing for α > 1, decreasing for 0 < α < 1,
k1(n) = 1 and k0 = lim

α→0+
kα = e0 = (1, 0, 0, . . .), where

ej(n) = δj ,n is the Kronecker delta.

(v) kα+1(n)

(
n

j

)
= kα+1(j)

(
n + α

j + α

)
.
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Motivation: Césaro sums and Cesáro means [ALMV]

Let X be a complex Banach space, T ∈ B(X ) and denote by T
the discrete semigroup given by T (n) := T n for n ∈ N0.

The Cesàro sum of order α > 0 of T , {SαT (n)}n∈N0 ⊂ B(X ), is
defined by

SαT (n)x = (kα∗T )(n)x =
n∑

j=0

kα(n−j)T jx , x ∈ X , n ∈ N0.

For example S0T (n) = T n and S1T (n) =
n∑

j=0

T j .

The Cesàro means of order α > 0 of T , {MαT (n)}n∈N0 ⊂ B(X ), is
defined by

MαT (n)x =
1

kα+1(n)
(kα ∗ T ) (n)x , x ∈ X , n ∈ N0.
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In the case that ‖SαT (n)‖ ≤ Ckα+1(n), (i.e., Cesaro means are
uniformly bounded), the operator T is called (C , α)-bounded.

If T is (C , 0)-bounded means that T is power bounded, and if T is
(C , α)-bounded then is (C , β)-bounded for β > α.

However the inverse result is not true. For example, the matrix

T =

(
−1 −1

0 −1

)
defines a (C , 1)-bounded operator, that is,

‖S1T (n)‖ = ‖
n∑

j=0

T j‖ ≤ C (n + 1), n ∈ N0

but T does not satisfy the power-boundedness condition.
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Aims of the talk

The main aim of this talk is to study the boundedness of Cesáro
operator Cβ (and its adjoint (Cβ)∗) in some fractional finite
difference spaces, τα

p . We estimate their norms and describe their
spectrum sets.

(i) We introduce some fractional finite difference in the sense of
Weyl and a scale of Banach modules, τα

p , contained in `p.

(ii) We define some C0-semigroups of contractions in τα
p .

(iii) We express the operators Cβ and its adjoint, (Cβ)∗, in terms
of the C0-semigroups.

(iv) These representations allow us to estimate ‖Cβ‖ and ‖(Cβ)∗‖
and to describe their spectrum sets via a spectral mapping
theorem for C0-semigroups and we draw them.
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2. Weyl fractional finite differences

We denote by c00 the Banach space of complex sequences of finite
support with the supremum norm.

Let f : N0 → C, we denote the usual differences by

∇(n) = f (n)− f (n − 1),

W+f (n) = W 1
+f (n) = f (n)− f (n + 1) = −∆f (n),

W 2
+f (n) = f (n)− 2f (n + 1) + f (n + 2),

and for m ∈ N,

W m
+ f (n) =

m∑
j=0

(−1)j
(

m

j

)
f (n + j).
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Example.

(i) Let λ ∈ C\{0}, and pλ(n) := λ−(n+1) for n ∈ N0.

The
sequences pλ are eigenfunctions for the operator W α

+ for
α ∈ R if |λ| > 1 :

W α
+pλ =

(λ− 1)α

λα
pλ, |λ| > 1.

(ii) Let α ≥ 0 be given. We define

hα
n (j) :=

{
kα(n − j), 0 ≤ j ≤ n
0, j > n,

for n ∈ N0.

Then
W β

+hα
n = hα−β

n ,

for β ≤ α and n ∈ N0.
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3. Convolution Banach modules τα
p

For α > 0, we define qα,p : c0,0 → [0,∞) by

qα,p(f ) :=

( ∞∑
n=0

(
kα+1(n)|W α

+ f (n)|
)p) 1

p

, f ∈ c0,0.

Note that for α = 0, q0,p = ‖ ‖p.

Theorem.
Let α > 0. Then qα,p defines a norm in c0,0 and

qα,p(f ∗ g) ≤ Cα qα,p(f ) qα,1(g), f , g ∈ c0,0(N0).

Denote by τα
p the completion of c0,0 in the norm qα,p. Then

τβ
p ↪→ τα

p ↪→ `p, τα
1 ↪→ τα

p ↪→ τα
∞, (τα

p )′ = τα
p′ , 1 < p < ∞,

for 0 < α < β and limα→0+ qα,p(f ) = ‖f ‖p.



3. Convolution Banach modules τα
p

For α > 0, we define qα,p : c0,0 → [0,∞) by

qα,p(f ) :=

( ∞∑
n=0

(
kα+1(n)|W α

+ f (n)|
)p) 1

p

, f ∈ c0,0.

Note that for α = 0, q0,p = ‖ ‖p.

Theorem.
Let α > 0. Then qα,p defines a norm in c0,0 and

qα,p(f ∗ g) ≤ Cα qα,p(f ) qα,1(g), f , g ∈ c0,0(N0).

Denote by τα
p the completion of c0,0 in the norm qα,p. Then

τβ
p ↪→ τα

p ↪→ `p, τα
1 ↪→ τα

p ↪→ τα
∞, (τα

p )′ = τα
p′ , 1 < p < ∞,

for 0 < α < β and limα→0+ qα,p(f ) = ‖f ‖p.



3. Convolution Banach modules τα
p

For α > 0, we define qα,p : c0,0 → [0,∞) by

qα,p(f ) :=

( ∞∑
n=0

(
kα+1(n)|W α

+ f (n)|
)p) 1

p

, f ∈ c0,0.

Note that for α = 0, q0,p = ‖ ‖p.

Theorem.
Let α > 0. Then qα,p defines a norm in c0,0 and

qα,p(f ∗ g) ≤ Cα qα,p(f ) qα,1(g), f , g ∈ c0,0(N0).

Denote by τα
p the completion of c0,0 in the norm qα,p. Then

τβ
p ↪→ τα

p ↪→ `p, τα
1 ↪→ τα

p ↪→ τα
∞, (τα

p )′ = τα
p′ , 1 < p < ∞,

for 0 < α < β and limα→0+ qα,p(f ) = ‖f ‖p.



3. Convolution Banach modules τα
p

For α > 0, we define qα,p : c0,0 → [0,∞) by

qα,p(f ) :=

( ∞∑
n=0

(
kα+1(n)|W α

+ f (n)|
)p) 1

p

, f ∈ c0,0.

Note that for α = 0, q0,p = ‖ ‖p.

Theorem.
Let α > 0. Then qα,p defines a norm in c0,0 and

qα,p(f ∗ g) ≤ Cα qα,p(f ) qα,1(g), f , g ∈ c0,0(N0).

Denote by τα
p the completion of c0,0 in the norm qα,p. Then

τβ
p ↪→ τα

p ↪→ `p, τα
1 ↪→ τα

p ↪→ τα
∞, (τα

p )′ = τα
p′ , 1 < p < ∞,

for 0 < α < β and limα→0+ qα,p(f ) = ‖f ‖p.



Example.

Let pλ(n) = λ−(n+1). For 1 ≤ p ≤ ∞ and |λ| > 1, the function
pλ ∈ τα

p and

qα,p(pλ) ≤ Cα,p

(
|λp − λp−1|
|λ|p − 1

)α
1

(|λ|p − 1)
1
p

,

for 1 ≤ p < ∞ and |λ| > 1.
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4. Semigroups of composition on τα
p

Theorem.
Take 1 ≤ p ≤ ∞ and α ≥ 0. The one-parameter operator families
(Tp(t))t≥0 and (Sp(t))t≥0 defined by

Tp(t)f (n) := e−
t
p

n∑
j=0

(
n

j

)
e−tj(1− e−t)n−j f (j),

Sp(t)f (n) := e−t(n+1− 1
p
)
∞∑
j=n

(
j

n

)
(1− e−t)j−nf (j)

are contraction adjoint C0-semigroups on τα
p whose generators A

and B are given by

Af (0) := −1

p
f (0), Af (n) := −n∇f (n)− 1

p
f (n), n ∈ N,

Bf (n) := (n + 1)∆f (n) +
1

p
f (n), n ∈ N0.



Lemma
Let α ≥ 0 and f ∈ c0,0 Then

(i) W α
+(Tp(t)f )(n) = e−tαTα(t)(W α

+ f )(n).

(ii)

W α
+(Sp(t)f )(n) = e−t(n+1− 1

p
)
∞∑
j=n

(
j + α

n + α

)
(1− e−t)j−nW α

+ f (j).

Theorem
Let A and B the generators of (Tp(t))t≥0 and (Sp(t))t≥0 on τα

p

(1 ≤ p < ∞).

(i) The point spectra are σp(A) = ∅ and σp(B) = C−.

(ii) The spectrum of B is σ(B) = C− ∪ iR.
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5. Generalized Cesáro operators Cβ and C∗β on τα
p

Let β > 0, we consider the Cesàro operator of order β given by

Cβf (n) :=
1

kβ+1(n)

n∑
j=0

kβ(n − j)f (j) n ∈ N0,

and the adjoint Cesàro operator of order β given by

C∗βf (n) :=
∞∑
j=n

1

kβ+1(j)
kβ(j − n)f (j) n ∈ N0.



Theorem.
Let α ≥ 0 and β > 0. Then

(i) The operator Cβ is a bounded operator on τα
p , for 1 < p ≤ ∞,

‖Cβ‖ ≤
Γ(β + 1)Γ(1− 1

p )

Γ(β + 1− 1
p )

and

Cβf (n) = β

∫ ∞

0
(1− e−t)β−1e−t(1− 1

p
)Tp(t)f (n) dt, f ∈ τα

p .
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p )

Γ(β + 1
p )
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0
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t
p Sp(t)f (n) dt, f ∈ τα
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Theorem.
Let α ≥ 0 and β > 0. Then

(i) The operator Cβ
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p → τα
p satisfies
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6. Spetrum sets of Cβ and C∗β

σ(Cβ
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p )

: z ∈ C+ ∪ iR
}

.

For p = 1 and β = n ∈ N, we draw the sets{
n!

(n + it)(n − 1 + it) · · · (1 + it)
: t ∈ R

}
.
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