Nikodym boundedness property in set-algebras

S. López Alfonso and Manuel López Pellicer (IUMPA, UPV)

March 2-4, 2016 XII Encuentro Red Análisis Funcional y Aplicaciones

Project Prometeo I/2013/058

イロト イポト イヨト イヨト

- 2 Deep unboundedness and property N
- 3 Web Nikodym property in $\mathcal{J}(K)$

イロン 不同 とくほ とくほ とう

Introduction

Deep unboundedness and property NWeb Nikodym property in $\mathcal{J}(K)$

S. López Alfonso and M. López Pellicer Nikodym boundedness property in set-algebras

イロン イロン イヨン イヨン

 Introduction

 Deep unboundedness and property N

 Web Nikodym property in $\mathcal{J}(K)$

Notations

Let Ω be a set and ${\cal B}$ a subset of a set-algebra ${\cal A}$ of subsets of $\Omega.$

 $L(\mathcal{B})$ is linear hull of $\{e_{\mathcal{C}} : \mathcal{C} \in \mathcal{B}\}$ with the supremum norm $\|\cdot\|$ $ba(\mathcal{A})$ (the Banach space of bounded variation finitely additive measures on \mathcal{A} with the variation norm $(|\cdot| := |\cdot| (\Omega)))$ is isometric to $L(\mathcal{A})'$ with the dual norm. Whence $L(\mathcal{A})'$ is identified with $ba(\mathcal{A})$.

The A-supremum norm in ba(A), i.e.,

 $\|\mu\| := \sup\{|\mu(C)| : C \in A\}, \mu \in ba(A)$, is equivalent to the variation norm.

ヘロト ヘアト ヘビト ヘビト

 Introduction

 Deep unboundedness and property N

 Web Nikodym property in $\mathcal{J}(K)$

Nikodym property $\mathcal{B} \subset \mathcal{A}$ (set-algebra)

Definition (Schachermayer-Valdivia)

 \mathcal{B} has Nikodym property, property N in brief, if each \mathcal{B} -pointwise bounded subset M of ba(\mathcal{A}) is bounded in ba(\mathcal{A}), i.e.,

$$\sup_{\mu \in M} |\mu(A)| < \infty, \forall A \in \mathcal{B} \Longrightarrow \sup_{A \in \mathcal{A}, \mu \in M} |\mu(A)| < \infty$$

Then $L(\mathcal{B})$ is dense subspace of $L(\mathcal{A})$ ({ $e_C : C \in \mathcal{B}$ }° is bounded $\implies {e_C : C \in \mathcal{B}}^{\circ\circ}$ neighborhood of 0).

Definition (Valdivia)

 \mathcal{B} has strong Nikodym property if for each increasing covering $\cup_m \mathcal{B}_m$ of \mathcal{B} there exists \mathcal{B}_n which has property N.

ヘロト ヘアト ヘビト ヘビト

э

Web Nikodym property of $\mathcal{B} \subset \mathcal{A}$ (set-algebra)

Definition

Increasing web in a set A is a family $\mathcal{W} := \{A_{m_1m_2...m_p} : (m_1, m_2, ..., m_p) \in \cup_{s \in \mathbb{N}} \mathbb{N}^s\}$ of subsets of A such that

•
$$A = \bigcup_{m_1} A_{m_1}$$

• $A_{m_1 m_2 \dots m_p} = \bigcup_{m_{p+1}} A_{m_1, m_2, \dots, m_p m_{p+1}}, \forall p, m_i \in \mathbb{N},$
 $1 \leq i \leq p+1.$

Each sequence $(A_{m_1m_2...m_p})_p$ is call a *strand* in \mathcal{W} .

Definition (Kakol-LP)

 \mathcal{B} has web Nikodym property, property wN in brief, if each increasing web $\{\mathcal{B}_t : t \in \cup_s \mathbb{N}^s\}$ in \mathcal{B} has a strand composed of sets which have property N

Properties *N*, *sN* and *wN* in σ -algebras

Theorem

For a σ -algebra S of subsets of a set Ω it was shown:

- S has property N (Nikodym-Dieudonné-Grothendieck).
- S has property sN (Valdivia).
- S has property wN (Kakol-LP).

ヘロト ヘアト ヘビト ヘビト

Properties N, sN and wN in algebras

Example

The algebra of finite and co-finite subsets of \mathbb{N} fails to have property *N*.

Example

The algebra $\mathcal{J}(I)$ of Jordan measurable subsets of I := [0, 1] has property *N* (Schachermayer)

Example

The algebra $\mathcal{J}(K)$ of Jordan measurable subsets of $K := \prod_{1 \leq i \leq k} [a_i, b_i]$ has property *sN* (Valdivia 2013)

The aim of this talk is to prove that $\mathcal{J}(K)$ has property *wN*.

イロト 不得 とくほ とくほとう

∃ <2 <</p>

More notations

Let
$$t = (t_1, t_2, ..., t_p) \in T \subset \mathbb{N}^p$$
 and
 $u = (u_1, u_2, ..., u_q) \in U \subset \mathbb{N}^q$.
 p is the *length of t*. If $t = (t_1)$ then $t = t_1$.
 $t(i) := (t_1, t_2, ..., t_i)$ is the *section of length i* of $t, 1 \leq i \leq p$.
 $t(i) := \emptyset$ if $i > p$.
 $t \times u := (t_1, t_2, ..., t_p, t_{p+1}, t_{p+2}, ..., t_{p+q})$, with $t_{p+j} := u_j$, for
 $1 \leq j \leq q$.

Definition

 $(t^n = (t_1^n, t_2^n, \dots, t_n^n, \dots) \in T)_n$ is an *infinite chain* if $t^{n+1}(n) = t^n(n) \neq \emptyset, \forall n \in \mathbb{N}.$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Last notations

 $t \times s$ ($t \times s \in U$) is an extension of t (of t in U). U is increasing at $t = (t_1, t_2, ..., t_p) \in \cup_s \mathbb{N}^s$ if there exists

$$\{t^1 = (t^1_1, t^1_2, \ldots), t^i = t(i-1) \times (t^i_i, t^i_{i+1}, \ldots), 1 < i \leq p\} \subset U$$

such that $t_i < t_i^i$, for each $1 \le i \le p$.

Definition

U is increasing (increasing respect to a subset *V* of $\cup_s \mathbb{N}^s$) if *U* is increasing at each $t \in U$ (at each $t \in V$).

U is increasing if $|U(1)| = \infty$ and $|\{n \in \mathbb{N} : t(i) \times n \in U(i+1)\}| = \infty$, $\forall t = (t_1, t_2, \dots, t_p) \in U$ and $1 \leq i < p$.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

э

NV-tree

Definition

An *NV*-tree *T* is an increasing subset of $\cup_{s \in \mathbb{N}} \mathbb{N}^s$ without infinite chains such that each $t = (t_1, t_2, ..., t_p) \in T$ verifies that the length of each extension of t(p - 1) in *T* is *p* and $\{t(i) : 1 \leq i \leq p\} \cap T = \{t\}.$

Example

The infinite subsets of \mathbb{N} are *NV*-trees, named trivial *NV*-trees.

Example

 \mathbb{N}^{i} , $i \in \mathbb{N} \setminus \{1\}$, and $\cup \{(i) \times \mathbb{N}^{i} : i \in \mathbb{N}\}$ are non trivial *NV*-trees.

Example

The product of a finite family of NV-trees is an NV-tree

S. López Alfonso and M. López Pellicer Nikodym boundedness property in set-algebras

Elementary properties of a NV-tree T

Proposition

Each increasing subset *S* of *T* is an NV-tree. Whence if $S_n \subset T$ and S_{n+1} is increasing respect to S_n then $\cup_n S_n$ is an NV-tree.

Proposition

If no NV-tree is contained in $U (\subset T)$ then $T \setminus U$ contains an NV-tree.

イロト イポト イヨト イヨト 一臣

Elementary properties of a NV-tree T

Proposition

$$\{B_u : u \in \cup_s \mathbb{N}^s\} \uparrow$$
 web in $B \Longrightarrow B = \cup \{B_t : t \in T\}.$

Proof.

This equality follows from the following trivial facts:

② $b \in B \implies \exists t \in T : b \in B_t$, (*T* does not contain infinite chains).

イロト イポト イヨト イヨト

Deep *B*-unbounded sets

Definition (Deep B-unbounded set)

Let $B \in A$. $M \subset ba(A)$ is deep *B*-unbounded if for each finite subset Q of $\{e_A : A \in A\}$

 $\sup\{|\mu(\mathcal{C})|: \mu \in \mathcal{M} \cap \mathcal{Q}^{\circ}, \ \mathcal{C} \in \mathcal{A}, \ \mathcal{C} \subset \mathcal{B}\} = \infty.$

<ロ> (四) (四) (三) (三) (三)

Proposition

Let $M(\subset ba(\mathcal{A}))$ be deep *B*-unbd and $\{B_i \in \mathcal{A} : 1 \leq i \leq q\}$ a partition of *B*. There exists *j*, $1 \leq j \leq q$, such that *M* is deep B_j -unbounded.

Proof.

If
$$\exists Q^i \subset \{e_A : A \in \mathcal{A}\}$$
, finite, $\sup_{\mu \in M \cap (Q^i)^\circ} |\mu|(C_i) < H_i$,
 $i \in \{1, 2, ..., q\}$, then $\sup_{\mu \in M \cap Q^\circ} |\mu|(B) < \sum_{1 \leq i \leq q} H_i$, with
 $Q = \bigcup_{1 \leq i \leq q} Q^i$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Webs without N-strands

Proposition

Let $\mathcal{B} := \{\mathcal{B}_{m_1m_2...m_p} : p, m_1, m_2, ..., m_p \in \mathbb{N}\}\$ be an increasing web in \mathcal{A} without N-strands. Then there exists an NV-tree T such that for each $t = (t_1, t_2, ..., t_q) \in T$ the set \mathcal{B}_t does not have property N and if p > 1 then $\mathcal{B}_{t(i)}$ has property N if i < p.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Webs without N-strands

Proof.

Either \mathcal{B}_{m_1} , $m_1 \in \mathbb{N}$ not prop N (then $T := \mathbb{N}$) or $\mathcal{B}_{m'_1}$ prop N. $Q_1 := \emptyset$ and $Q'_1 := \{t_1 \in \mathbb{N} : t_1 \ge m'_1\}$. Suppose $j \le i, t \in Q_j \cup Q'_j \Longrightarrow t(j-1) \in Q'_{j-1}$,

• $t \in Q_j \Longrightarrow \mathcal{B}_t$ not prop N; $t(j-1) \times \mathbb{N} \subset Q_j$; $S_{t(j-1)} := \mathbb{N}$ and $S'_{t(j-1)} := \emptyset$,

•
$$t \in Q'_j \Longrightarrow \mathcal{B}_t \text{ prop } N; \exists \left| S'_{t(j-1)} \right| = \infty \text{ with}$$

 $t(j-1) \times S'_{t(j-1)} \subset Q'_j \text{ and } (t(j-1) \times \mathbb{N}) \cap Q_j = \emptyset.$ Then $S_{t(j-1)} := \emptyset.$

イロト イ押ト イヨト イヨトー

æ

Webs without N-strands

Proof.

If $t \in Q'_i$ then \mathcal{B}_t prop N and $\mathcal{B}_t = \cup_n \mathcal{B}_{t \times n} \uparrow \Longrightarrow$

- Either each $\mathcal{B}_{t \times n}$ not prop *N*. Then $S_{t_1 t_2 \dots t_i} := \mathbb{N}$ and $S'_{t_1 t_2 \dots t_i} := \emptyset$,
- or $\exists m'_{i+1} \in \mathbb{N} : \mathcal{B}_{t \times n}$ prop N if $n \ge m'_{i+1}$. Then $S_{t_1 t_2 \dots t_i} := \emptyset$ and $S'_{t_1 t_2 \dots t_i} := \{n \in \mathbb{N} : m'_{i+1} \le n\}.$

 $Q_{i+1} := \cup \{t \times S_t : t \in Q'_i\}$ and $Q'_{i+1} := \cup \{t \times S'_t : t \in Q'_i\}$. \mathcal{B} without *N*-strands $\implies T := \cup \{Q_i : i \in \mathbb{N}\}$ does not contain infinite chains

$$(t \in \mathcal{Q}_{p} \Longrightarrow t(p-1) \in \mathcal{Q}'_{t(p-1)} \Longrightarrow \mathcal{B}_{t(p-1)} \text{ prop } N)$$

Webs without N-strands

Proof.

Each $t \in Q'_k$ has an extension $\tilde{t} \in Q_{k+q}$, hence $T(k) = Q_k \cup Q'_k$, $\forall k \in \mathbb{N}$. Hence *T* increasing prop, because

•
$$|T(1)| = |Q_1'| = \infty$$

•
$$t = (t_1, t_2, \dots, t_p) \in T$$
 then $|S'_{t(i-1)}| = \infty$, $1 < i < p$, and $|S_{t(p-1)}| = \infty$,

Further, $t(i) \in Q'_i \Longrightarrow \mathcal{B}_{t(i)}$ prop *N* and \mathcal{B}_t not prop *N*, $\{t(i) : 1 \leq i \leq p\} \cap T = \{t\}$ and

$$\{\text{ext } t(p-1) \text{ in } T\} = t(p-1) \times \mathbb{N}.$$

ヘロト 人間 とくほ とくほう

Increasing sequences without property N

Proposition

Let \mathcal{A} be an algebra of subsets of Ω and let $(\mathcal{B}_m)_m$ be an increasing sequence of subsets of \mathcal{A} such that each \mathcal{B}_m does not have property N and $\overline{\text{span}\{e_C : C \in \bigcup_m \mathcal{B}_m\}} = L(\mathcal{A})$. There exists $n_0 \in \mathbb{N}$ such that for each $m \ge n_0$ there exists a deep Ω -unbounded $\tau_s(\mathcal{A})$ -closed absolutely convex subset M_m of ba(\mathcal{A}) which is pointwise bounded in \mathcal{B}_m , i.e.,

 $\sup\{|\mu(C)|: \mu \in M_m\} < \infty$ for each $C \in \mathcal{B}_m$.

In particular, this proposition holds if $\cup_m \mathcal{B}_m = \mathcal{A}$ or if $\cup_m \mathcal{B}_m$ has property N.

イロト イポト イヨト イヨト

Deep Ω -unbounded sets indexed by *NV*-trees

From the two preceding Propositions follows the next proposition.

Proposition

Let $\mathcal{B} := \{\mathcal{B}_{m_1m_2...m_p} : p, m_1, m_2, ..., m_p \in \mathbb{N}\}$ be an increasing web in a set-algebra \mathcal{A} .

If \mathcal{B} does not contain strands consisting of sets with property N then there exists an NV-tree T such that for each $t \in T$ there exists a deep Ω -unbounded $\tau_s(\mathcal{A})$ -closed absolutely convex subset M_t of ba(\mathcal{S}) which is \mathcal{B}_t -pointwise bounded.

ヘロト 人間 とくほ とくほ とう

イロン 不同 とくほ とくほ とう

$\mathcal{J}(K), \, K := \prod_{1 \leqslant i \leqslant k} [a_i, b_i] \subset \mathbb{R}^k$

Definition

A bounded $B \subset \mathbb{R}^k$ is Jordan measurable whenever the Lebesgue measure of $\overline{B} \setminus \mathring{B}$ is zero.

 $\{B, Q_1, \ldots, Q_r\} \subset \mathcal{J}(K), M \subset ba(\mathcal{J}(K)), \text{ deep } B\text{-unbounded}$ absolutely convex.

Proposition

If $\alpha > 0$ and $\epsilon > 0 \exists C_1, C'_1 \in \mathcal{J}(K)$, disjoints contained in B and $\mu \in M$ such that

 \bigcirc M is deep C'₁-unbounded.

$${\it B} \subset {\it K} := \Pi_{1 \leqslant i \leqslant k} [{\it a}_i, {\it b}_i] \subset \mathbb{R}^k$$

Proof.

Let $(c_i^j)_{1 \le j \le s(i)}$ strictly increasing, $a_i = c_i^1$, $b_i = c_i^{s(i)}$ and

$$\prod_{1\leqslant i\leqslant k}(\boldsymbol{c}_{i}^{j_{i}+1}-\boldsymbol{c}_{i}^{j_{i}})<\epsilon$$

Let $I_i^j := [c_i^{j-1}, c_i^j[$, with 1 < j < s(i), and $I_i^{s(i)} := [c_i^{s(i)-1}, c_i^{s(i)}]$, and let $\{B_1, B_2, \dots, B_m\}$ the non-void intersections of *B* with $I_1^{j_1} \times \dots \times I_k^{j_k}, 1 \leq j_i \leq s(i), 1 \leq i \leq k$. There exists $B_n, 1 \leq n \leq m$, with *M* deep B_n -unbounded.

イロン 不得 とくほ とくほ とうほ

 $\{B_n \subset B, Q_1, \ldots, Q_r\} \subset \mathcal{J}(K)$

 $M \subset ba(\mathcal{J}(K))$, deep B_n -unbd absco, $\mathcal{Q} := \{Q_1, \ldots, Q_r\}$

Proof.

$$\begin{aligned} \sup\{|\mu(C)| &: \mu \in rM \cap \mathcal{Q}^{\circ}, \ C \subset B_n, \ C \in \mathcal{A}\} = \infty, \\ \exists D_1 \subset B_n, \ D_1 \in \mathcal{J}(K), \ \exists \lambda \in rM \cap \mathcal{Q}^{\circ} : |\lambda(D_1)| > r(1 + \alpha). \\ \mu &= r^{-1}\lambda \in M, \ |\mu(B_n)| \leqslant r^{-1} \leqslant 1 \text{ and} \\ \Sigma_{1 \leqslant j \leqslant r} \left|\mu(Q_j)\right| \leqslant r^{-1}r = 1. \\ |\mu(B_n \setminus D_1)| \geqslant |\mu(D_1)| - |\mu(B)| > 1 + \alpha - 1 = \alpha. \\ M \text{ is deep } D_1 \text{-unbded or } B_n \setminus D_1 \text{-unbded.} \end{aligned}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

$\{B, Q_1, \ldots, Q_r\} \subset \mathcal{J}(K), M \subset ba(\mathcal{A})$

Corollary

If M deep B-unbd absco, $q \in \mathbb{N}$, $\alpha > 0$, $\epsilon > 0$, \exists in B pairwise disjoint Jordan measurable subsets C_1 , C_2 ,..., C_q and μ_1 , μ_2 ,..., $\mu_q \in M$ such that:

M is deep C_q-unbounded

Proof:Exist disjoint subsets C_1 , $C'_1 \in \mathcal{J}(K)$, in B, and $\mu_1 \in M$:

- 2 *M* is deep C'_1 -unbded

$\{B, Q_1, \ldots, Q_r\} \subset \mathcal{J}(K), M_t \subset ba(\mathcal{A}), t \in T$

Proposition

If T is an NV-tree, each M_t is deep B-unbd absco, $\alpha > 0$, $\epsilon > 0$ and $\{t^j : 1 \leq j \leq k\} \subset T$, there exists $\{B_1, B'_1\} \subset \mathcal{J}(K)$, $B_1 \cap B'_1 = \emptyset$ and $B_1 \cup B'_1 \subset B$, $\mu_1 \in M_{t^1}$, an NV-tree T_1 and $\{\prod_{1 \leq i \leq k} [c^s_i, d^s_i], 1 \leq s \leq q\} \subset K$:

•
$$\{t^j: 1 \leq j \leq k\} \subset T_1 \subset T \text{ and } M_t \text{ is deep } B'_1\text{-unbd}, \forall t \in T_1.$$

2 $|\mu_1(B_1)| > \alpha$ and Σ{ $|\mu_1(Q_i)| : 1 ≤ i ≤ r$ } ≤ 1.

$$\begin{array}{l} { 3 } \quad B_1 \cup B_1' \subset \cup_{1 \leqslant s \leqslant q} \Pi_{1 \leqslant i \leqslant k} [c_i^s, d_i^s] \subset K, \\ \Sigma_{1 \leqslant s \leqslant q} (\Pi_{1 \leqslant i \leqslant k} (d_i^s - c_i^s)) < \epsilon. \end{array}$$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

$$t^j := (t_1^j, t_2^j, \dots, t_{\mathcal{P}_j}^j), \ 1 \leqslant j \leqslant k$$

Proof.

Let $q := 2 + \sum_{1 \leq j \leq k} p_j$, $(c_i^j)_{1 \leq j \leq s(i)} \uparrow$, $a_i = c_i^1$, $b_i = c_i^{s(i)}$, $1 \leq i \leq k, \prod_{1 \leq i \leq k} (c_i^{j_i+1} - c_i^{j_i}) < \epsilon/q$ for each $1 \leq j_i \leq s(i)$ and $I_{i}^{s(i)} := [c_{i}^{s(i)-1}, c_{i}^{s(i)}].$ Let $\{B_1, B_2, \ldots, B_m\}$ be the non-void intersections of B with the products $I_1^{j_1} \times \ldots \times I_k^{j_k}$. $\exists B_n, 1 \leq n \leq m$, such that M_{t^1} is deep B_n -unbounded. Corollary applied to $\{B_n, Q_1, \ldots, Q_r\}, M_{t^1}, \alpha$ and ϵ/q provides a Jordan measurable partition $\{C_1, C_2, \dots, C_q\}$ of B_n and $\{\lambda_1, \dots, \lambda_q\}$ $\lambda_2, \cdots, \lambda_q \} \subset M_{t^1}$ such that:

 $|\lambda_k(\mathcal{C}_k)| > lpha$ and $\sum_{1 \leqslant i \leqslant r} |\lambda_k(\mathcal{Q}_i)| \leqslant 1$, for $k = 1, 2, \dots, q$,

$\{D_i: 1 \leqslant i \leqslant q'\} := \{B_i: i \neq n\} \cup \{C_i: 1 \leqslant i \leqslant q\}$

Proof.

If $M \in ba(\mathcal{A})$ is deep *B*-unbd $\exists i_M \in \{1, 2, ..., q'\}$: *M* is deep D_{i_M} -unbd. Whence if *U* is an *NV*-tree, M_{i_I} is deep *B*-unbd $\forall u \in U$ and

 $V_i := \{u \in U : M_u \text{ is deep } D_i \text{-unbd}\}$

then $U = \bigcup_{1 \leq i \leq q'} V_i$. This implies that $\exists i_0$, with $1 \leq i_0 \leq q'$, such that V_{i_0} contains an *NV*-tree U_{i_0} .

イロン 不得 とくほ とくほ とうほ

Deep *D_i*-unboundedness

Proof.

•
$$j \in \{1, 2, \dots, k\} \Longrightarrow \exists i^j \in \{1, 2, \dots, q'\} : M_{t^j}$$
 deep D_{i^j} -unbd.

• $\exists i_0 \in \{1, 2, \dots, q'\}$ and an *NV*-tree $T_{i_0} \subset T : t \in T_{i_0}$, $M_t \Longrightarrow D_{i_0}$ -unbounded.

•
$$t^j = (t_1^j, t_2^j, \dots, t_{p_j}^j) \notin T_{i_0}, 1 \leqslant j \leqslant k$$
, and $2 \leqslant m \leqslant p_j \Longrightarrow$

$$W^j_m := \{ v \in \cup_s \mathbb{N}^s : t^j(m-1) imes v \in T \}$$

is an *NV*-tree. $M_{(t_1^j, t_2^j, \dots, t_{m-1}^j) \times w}$ is deep *B*-unbd, $\forall w \in W_m^j$, whence $\exists i_m^j \in \{1, 2, \dots, q'\}$ and an *NV*-tree $V_m^j \subset W_m^j$ such that

$$M_{(t_1^j,t_2^j,...,t_{m-1}^j) imes w}$$
is deep $D_{i_m^j}$ -unbd $orall w \in V_m^j$.

B_1 and μ_1

Proof.

Let *D* be the union of D_{i_0} and all D_{i^j} and $D_{i^j_m}$ obtained. The number of sets defining *D* is less or equal than q - 1, hence $\exists C_h : D \subset B \setminus C_h$. Let T_1 be the union of T_{i_0} and all $\{t^j\}$ and $\{(t^j_1, t^j_2, \ldots, t^j_{m-1}) \times V^j_m : 2 \leq m \leq p_j\}$ obtained. By construction T_1 has the increasing property ($\Longrightarrow NV$ -set) and if $t \in T_1$ the set M_t is deep *D*-unbounded. We get the proof with $B_1 := C_h$, $B'_1 := D$, $\mu_1 := \lambda_h$, because by construction

$$|\mu_1(B_1)| > \alpha, \Sigma_{1 \leq i \leq r} |\mu_1(Q_i)| \leq 1, \text{ and }$$

 $\begin{array}{l} \textcircled{2} \quad B_1 \cup B_1' \subset \cup_{s \in J} \{ \Pi_{1 \leqslant i \leqslant k} [c_i^s, d_i^s] \}, \, |J| \leqslant q, \, \text{whence} \\ \Sigma_{s \in J} (\Pi_{1 \leqslant i \leqslant k} (d_i^s - c_i^s)) < (\epsilon/q)q = \epsilon. \end{array}$

$\{B, Q_1, \ldots, Q_r\} \subset \mathcal{J}(K), M_t \subset ba(\mathcal{A}), t \in T$

Corollary

If T is an NV-tree, each M_t is deep B-unbd absco, $\alpha > 0$, $\epsilon > 0$ and $\{t^j : 1 \leq j \leq k\} \subset T$, there exists in B a family of pairwise disjoint subsets $\{B_1, B_2, \ldots, B_k, B'\} \subset \mathcal{J}(K)$, k measures $\mu_j \in M_{t^j}$, $1 \leq j \leq k$, and an NV-tree T* such that:

- $\{t^j : 1 \leq j \leq k\} \subset T^* \subset T$ and M_t is deep B'-unbounded for each $t \in T^*$.
- ② $|\mu_j(B_j)| > \alpha$ and $\Sigma\{|\mu_j(Q_i)| : 1 \le i \le r\} \le 1$, for j = 1, 2, ..., k.
- B' ⊂ ∪_{1≤s≤q}{Π_{1≤i≤k}[c^s_i, d^s_i]} of compact intervals contained in K, such that
 ∑ (d^s = c^s) → (d^s =

 $\Sigma_{1\leqslant s\leqslant q}(d_1^s-c_1^s) imes\ldots imes(d_k^s-c_k^s)<\epsilon.$

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

э

Proof.

Firstly apply Proposition. Then apply again Proposition with $\{t^2, t^3, \ldots, t^k, t^1\}$ and $B := B'_1$. Finish with *k* repetitions.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

The diagonal order in \mathbb{N}^2

The elements of \mathbb{N}^2 ordered with the diagonal order give the sequence

$$((1, 1), (1, 2), (2, 1), (1, 3), (2, 2), (3, 1), \ldots)$$

We will need the sequence

$$(i_n)_n := (1, 1, 2, 1, 2, 3, \ldots)$$

of its first components.

・ロット (雪) () () () ()

$\mathcal{J}(K)$ has property wN

Theorem

The algebra $\mathcal{J}(K)$ has property wN.

Proof.

Let us suppose that $\mathcal{J}(K)$ does not have property *wN*. Then \exists exists in $\mathcal{J}(K)$ an increasing web $\{\mathcal{B}_{m_1m_2...m_p} : p, m_1, m_2, ..., m_p \in \mathbb{N}\}$ without strands consisting of sets with Property *N*.

Whence \exists an *NV*-tree *T* such that for each $t \in T$ there exists a deep *K*-unbd $\tau_s(\mathcal{J}(K))$ -closed absco subset M_t of $ba(\mathcal{J}(K))$ which is \mathcal{B}_t -pointwise bounded.

ヘロト ヘアト ヘビト ヘビト

First induction

Proof.

By induction we determine an *NV*-tree $\{t^i : i \in \mathbb{N}\} \subset T$ and $(k_j \in \mathbb{N})_j \uparrow$ such that for each $(i, j) \in \mathbb{N}^2$ with $i \leq k_j$ there exists a set $B_{ij} \in \mathcal{J}(K)$ and $\mu_{ij} \in M_{t^i}$ that verify

$$2 ||\mu_{ij}(B_{ij})| > j,$$

3
$$B_{ij} \cap B_{i'j'} = \emptyset$$
 if $(i,j) \neq (i',j')$ and

$$\ \ \, {\bf 5} \ \ \, \Sigma_{1\leqslant s\leqslant q_j}(\Pi_{1\leqslant i\leqslant k}(d^s_{ij}-c^s_{ij}))<2^{-j}, \, {\rm for \ each \ } j\in\mathbb{N}.$$

ヘロト 人間 ト ヘヨト ヘヨト

æ

First induction. Step I I

Proof.

Select $t^1 \in T$. Corollary with $B := \Omega$, $\alpha = 1$ and $\epsilon = 2^{-1}$ provides

• $B_{11}, B'_1 \in \mathcal{J}(K), \mu_{11} \in M_{t^1}$ and an *NV*-tree T_1 such that

•
$$|\mu_{11}(B_{11})| > 1, t^1 \in T_1 \subset T$$
,

• M_t is deep B'_1 -unbd for each $t \in T_1$ and

• $B'_1 \subset \bigcup_{1 \leq s \leq q_1} \{ \prod_{1 \leq i \leq k} [c^s_{i1}, d^s_{i1}] \} \subset K$, such that

•
$$\Sigma_{1 \leq s \leq q_1}(\prod_{1 \leq i \leq k} (d_{i1}^s - c_{i1}^s)) < 2^{-1}.$$

Define $k_1 := 1$ and $S^1 := \{t^1\}$.

イロト イポト イヨト イヨト

First induction. Induction hypothesis

Proof: Let us suppose that we have obtained:

- The natural numbers $k_1 < k_2 < k_3 < ... < k_n$,
- the *NV*-trees $T_1 \supset T_2 \supset T_3 \supset \ldots \supset T_n$,
- $S^j := \{t^i : i \leq k_j\} \subset T_j, 1 \leq j \leq n, S^j \text{ incr respect } S^{j-1}, 1 < j \leq n,$
- $\{\mu_{iv} \in M_{t^i} : i \leq k_v, 1 \leq v \leq j\}$
- { B'_j , B_{iv} : $i \leq k_v$, $1 \leq v \leq j$ } $\subset \mathcal{J}(K)$, pairwise disjoint, $\forall j \leq n$,
- $|\mu_{ij}(B_{ij})| > j$ and $\sum_{s \leqslant k_v, 1 \leqslant v < j} |\mu_{ij}(B_{sv})| < 1, i \leqslant k_j$ and $j \leqslant n$,
- $j \leq n$ and $t \in T_j \Longrightarrow M_t$ is deep B'_j -unbd,
- $\cup_{s \leqslant k_v, j < v \leqslant n} B_{sv} \subset B'_j \subset \cup_{1 \leqslant s \leqslant q_j} \Pi_{1 \leqslant i \leqslant k} [c^s_{ij}, d^s_{ij}] \subset K,$
- $\Sigma_{1\leqslant s\leqslant q_j}(\Pi_{1\leqslant i\leqslant k}(d^s_{ij}-c^s_{ij}])<2^{-j}.$

First induction. End

Proof.

Select $S_{n+1} := \{t^{k_n+1}, \ldots, t^{k_{n+1}}\} \subset T_n \setminus \{t^i : i \leq k_n\}$ incr respect S^n . Apply Corollary to $\{B'_n, B_{sv} : s \leq k_v, 1 \leq v \leq n\}$, T_n , the finite subset $S^{n+1} := \{t^i : i \leq k_{n+1}\}$ of $T_n, \alpha = n+1$ and $\epsilon = 2^{-n-1}$ to obtain:

- $\{B'_{n+1}, B_{in+1} : 1 \leq i \leq k_{n+1}\} \subset \mathcal{J}(K)$, pairwise disjoint $\subset B'_n$,
- { $\mu_{in+1} \in M_{t^i}$, 1 $\leq i \leq k_{n+1}$ }, $|\mu_{in+1}(B_{in+1})| > n+1$, $\sum_{s \leq k_v, 1 \leq v \leq n} |\mu_{in+1}(B_{sv})| < 1$,
- $S^{n+1} \subset T_{n+1}$ (incr tree) $\subset T_n$, M_t deep B'_{n+1} -unbd $\forall t \in T_{n+1}$,
- $B'_{n+1} \subset \cup_{1 \leqslant s \leqslant q_{n+1}} \{ \Pi_{1 \leqslant i \leqslant k} [c^s_{i,n+1}, d^s_{i,n+1}] \} \subset K$
- $\Sigma_{1 \leq s \leq q_{n+1}}(\Pi_{1 \leq i \leq k}(d^s_{i,n+1} c^s_{i,n+1}]) < 2^{-n-1}.$

A Jordan measurable set

Proof.

If $H_j \subset \{1, 2, ..., k_j\}$, $j \in \mathbb{N}$, then $B := \cup \{B_{ij} : i \in H_j, j \in \mathbb{N}\}$ is Jordan measurable. In fact: For each $j_0 \in \mathbb{N}$ we have

$$\overline{B}ackslash \mathring{B} \subset \{\cup_{j\leqslant j_0}(\overline{B}_jackslash \mathring{B}_j)\}\cup \overline{B'_{j_0}},$$

hence $\overline{B} \setminus \mathring{B}$ is a subset of $\{ \bigcup_{j \leq j_0} (\overline{B}_j \setminus \mathring{B}_j) \} \cup \{ \bigcup_{1 \leq s \leq q_{j_0}} \Pi_{1 \leq i \leq k} [c^s_{ij_0}, d^s_{ij_0}] \}$, which Lebesgue measure is $\leq 0 + 2^{-j_0}$. Therefore $\overline{B} \setminus \mathring{B}$ is a Lebesgue measurable set with Lebesgue measure zero.

くロト (過) (目) (日)

Second induction and basic idea

Proof.

With a new easy induction we obtain a strictly increasing subset $J := \{j_1, j_2, \ldots, j_n, \ldots\}$ of \mathbb{N} such that for each $n \in \mathbb{N}$ we have that

 $\left|\mu_{i_n j_n}(\cup_{m>n} B_{i_m j_m})\right| < 1.$

Note that $|\mu_{i_n j_n}|(\Omega) < s_n \in \mathbb{N}, \{N_u, 1 \leq u \leq s_n\}$ partition of $J_n \subset \mathbb{N} \setminus \{1, 2, \dots, j_n\}$ in s_n infinite subsets and $B_u := \bigcup_{s \leq k_v, v \in N_u} B_{sv}$, then

$$\Sigma\{\left|\mu_{i_n j_n}\right|(B_u): 1 \leqslant u \leqslant s_n\} < s_n$$

implies $\exists u'$, with $1 \leq u' \leq s_n$, such that

 $\left|\mu_{i_n j_n}\right|(B_{u'}) < 1.$

Second induction. End

Proof.

Let $j_{n+1} \in N_{u'}$ and the induction is finish. Then $\cup_{m>n} B_{i_m j_m} \subset B_{u'}$ implies that

$$\left|\mu_{i_nj_n}\right|\left(\cup_{m>n}B_{i_mj_m}\right)<1,$$

whence the Jordan measurable set $\cup_{m>n} B_{i_m j_m}$ verifies that

 $\left|\mu_{\textit{injn}}(\cup_{m>n}B_{\textit{imjm}})\right|<1.$

Recall that $(B_{i_n j_n}, \mu_{i_n j_n})_n$ verifies for that:

$$\Sigma\{|\mu_{i_n j_n}(B_{i_m j_m})|: m < n\}) < 1,$$

$$|\mu_{i_nj_n}(B_{i_nj_n})| > j_n.$$

The contradiction

Proof.

$$\begin{split} S^{n+1} & \text{increasing respect } S^n \Longrightarrow \{t^i : i \in \mathbb{N}\} (\subset T) \text{ is an} \\ NV\text{-tree} \Longrightarrow \cup \{\mathcal{B}_{t^i} : i \in \mathbb{N}\} = \mathcal{J}(K) \ni H := \cup_{s \in \mathbb{N}} B_{i_s j_s} \Longrightarrow \exists r \in \\ \mathbb{N} : H \in \mathcal{B}_{t^r}. \\ & (n_p)_p \uparrow, i_{n_p} = r \Longrightarrow \{\mu_{i_{n_p} j_{n_p}} : p \subset \mathbb{N}\} \subset M_{t^r} \ (\mathcal{B}_{t^r}\text{-pointwise} \\ & \text{bounded}) \Longrightarrow \sup\{\left|\mu_{i_{n_p} j_{n_p}}(H)\right| : p \in \mathbb{N}\} < \infty \\ & \text{in contradiction with:} \end{split}$$

$$ig| egin{aligned} & \left| \mu_{i_{n_p}j_{n_p}}(\cup_{m < n_p} B_{i_m j_m})
ight| < 1 \ & u_{i_{n_p}j_{n_p}}(B_{i_{n_p}j_{n_p}}) > j_{n_p} > n_p \quad ext{anc} \ & \left| \mu_{i_{n_p}j_{n_p}}(\cup_{n_p < m} B_{i_m j_m})
ight| < 1 \end{aligned}$$

References I

- Diestel, J.: Sequences and Series in Banach Spaces. Springer, New York (1984)
- Diestel, J., Uhl, J.J.: Vector Measures. Mathematical Surveys, Number 15. American Mathematical Society, Providence (1977)
- Dieudonné, J.: Sur la convergence de suites de measures de Radon. An. Acad. Brasi. Ciên. **23**, 277–282 (1951)
- Kakol, J., López-Pellicer, M.: On Valdivia strong version of Nikodym boundedness property. Preprint

ヘロン 人間 とくほ とくほ とう

References II

- López-Alfonso, S. On Schachermayer and Valdivia results in algebras of Jordan measurable sets. RACSAM DOI 10.1007/s13398-015-0267-x, Published on line: 22 December 2015.
- López-Alfonso, S., Mas, J., Moll, S.: Nikodym boundedness property and webs in σ-algebras. RACSAM Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. (2015) DOI 10.1007/s13398-015-0260-4
- Nikodym, O.M.: Sur les familles bornées de fonctions parfaitement additives d'ensembles abstrait. Monatsh. Math. U. Phys. 40, 418–426 (1933)

・ 同 ト ・ ヨ ト ・ ヨ ト …

References III

- Schachermayer, W.: On some classical measure-theoretic theorems for non-sigma-complete Boolean algebras.
 Dissertationes Math. (Rozprawy Mat.) 214, 33 pp., (1982)
- Valdivia, M.: On Nikodym boundedness property. RACSAM Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. 107, 355–372 (2013)

(雪) (ヨ) (ヨ)