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Introduction

This talk is based on the paper:

Aragón, Borwein, Martín-Márquez, Yao
Applications of convex analysis within mathematics,

Math. Program., Ser B, December 2014, Volume 148, Issue 1, pp 49-88.

in a special issue to celebrate the 50th birthday of Modern Convex Analysis
and convex optimization that became a tribute to the memory of Jean
Jacques Moreau who passed away (on January 9, 2014) as the edition was
being completed.
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Introduction

The years 1962−1963 can be considered as birth date of modern convex
analysis as the now familiar notions of subdifferential, conjugate, proximal
mappings, and infimal convolution all date back to this period.

The development of convex analysis during the last fifty years owes much to

W. Fenchel (1905−1988) J. J. Moreau (1923−2014) R. T. Rockafellar (1935−)
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Introduction

Given a function f : X→ (−∞,+∞], x ∈ X, various terms appeared in 1963 to
name a vector s satisfying

f (x)+ 〈y− x,s〉 ≤ f (y) ∀y ∈ X.

In 1963 (Ph.D. thesis) Rockafellar called s “a differential of f at x”.

At the same time Moreau coined the term “sous-gradient” which
became “subgradient” in English, and investigated the properties of the
associated set-valued subdifferential operator ∂ f :

∂ f : X⇒ X∗ : x 7→ {x∗ ∈ X∗ | 〈x∗,y− x〉 ≤ f (y)− f (x), for all y ∈ X}.

term initially used by Moreau (“le sous-différentiel” in French)

In the USSR, researchers were interested in similar concepts. For
instance, in 1962, N. Z. Shor published the first instance of the use of a
subgradient method for minimizing a nonsmooth convex function.
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Introduction

The transformation f 7→ f ∗, where

f ∗ : X∗→ [−∞,+∞] : x∗ 7→ f ∗(x∗) := sup
x∈X
{〈x∗,x〉− f (x)}.

has its origins in a publication of A. Legendre (1752−1833).

Now is generally called Legendre-Fenchel transform or conjugate.

The inf-convolution of two functions f and g is the function

f�g : X→ [−∞,+∞] : x 7→ inf
y∈X

{
f (y)+g(x− y)

}
= inf

u+v=x

{
f (u)+g(v)

}
.

key operation in modern convex analysis used by Fenchel.

Moreau coined the term and use it in a more general setting.
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Introduction

In a Hilbert space H, the proximal or proximity mapping is the operator

proxf : H→ H : x 7→ proxf (x) := argmin
y∈H

{
f (y)+ 1

2‖x− y‖2
}
.

These fundamental notions of proximal mapping, subdifferential,
conjugation, and inf- convolution come together in Moreau’s
decomposition for a proper lower semicontinuous convex function f in a
Hilbert space:

x = proxf (x)+proxf ∗(x)

1
2‖ · ‖

2 = f�1
2‖ · ‖

2 + f ∗�1
2‖ · ‖

2

proxf ∗(x) ∈ ∂ (proxf (x)).

Moreau’s decomposition in terms of the proximal mapping is a powerful
nonlinear analysis tool in the Hilbert setting that has been used in various
areas of optimization and applied mathematics.
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Context

X real Banach space

f : X→ (−∞,+∞]

proper (dom f 6= /0)

convex (f (λx+(1−λ )y)≤ λ f (x)+(1−λ )f (y), ∀x,y ∈ dom f , λ ∈ [0,1])
⇔ epi f is convex

lower-semicontinuous (lsc) (liminf
x→x

f (x)≥ f (x) for all x ∈ X)

⇔ epi f is closed.

Lipschitz (∃M ≥ 0 so that |f (x)− f (y)| ≤M‖x− y‖ for all x,y ∈ X)

. epigraph of f is epi f := {(x,r) ∈ X×R | f (x)≤ r}
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Basic properties of convexity

1 (lsc) convex functions form a convex cone closed under pointwise
suprema: fγ convex (and lsc) ∀γ ∈ Γ =⇒ x 7→ sup

γ∈Γ

fγ(x) convex (and lsc).

2 Global minima and local minima in the domain coincide for proper
convex functions.

3 f proper convex and x ∈ dom f .
f locally Lipschitz at x⇐⇒ f continuous at x⇐⇒ f locally bounded at x.
f lower semicontinuous =⇒ f continuous at every point in intdom f .

4 A proper lower semicontinuous and convex function is bounded from
below by a continuous affine function.

5 If C is a nonempty set, then dC(·) is non-expansive (Lipschitz function
with constant one). Additionally, if C is convex, then dC(·) is convex.
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Basic properties of subdifferential

Set-valued subdifferential operator ∂ f :

∂ f : X⇒ X∗ : x 7→ {x∗ ∈ X∗ | 〈x∗,y− x〉 ≤ f (y)− f (x), for all y ∈ X}.

I ∂ f may be empty
(

example: ∂ f (0) =∅ for f (x) =
{
−
√

x x≥ 0
+∞ otherwise

)

I f proper, convex, lsc and Gâteaux dif. at x̄ ∈ dom f =⇒ ∂ f (x̄) = ∇f

I Fundamental significance of subgradients in optimization:

Subdifferential at optimality
f : X→ ]−∞,+∞] proper convex

x̄ ∈ dom f is a (global) minimizer of f ⇐⇒ 0 ∈ ∂ f (x̄).

I Relationship between subgradients and directional derivatives

Moreau’s max formula
f : X→ ]−∞,+∞] convex and continuous at x̄. d ∈ X. Then ∂ f (x̄) 6=∅ and

f ′(x̄;d) := lim
t→0+

f (x̄+ td)− f (x̄)
t

=max{〈x∗,d〉 | x∗ ∈ ∂ f (x̄)}.
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Basic properties of conjugate

Fenchel conjugate ( Legendre-Fenchel transform or conjugate)

f ∗ : X∗→ [−∞,+∞] : x 7→ f ∗(x∗) := supx∈X{〈x∗,x〉− f (x)}.

I By direct construction and Property 1 of convexity, for any function f , the
conjugate function f ∗ is always convex and lower semicontinuous.

I It plays a role in convex analysis in many ways analogous to the role played
by the Fourier transform in harmonic analysis with infimal convolution
replacing integral convolution

Fenchel–Young inequality
f : X→ ]−∞,+∞], x∗ ∈ X∗ and x ∈ dom f :

f (x)+ f ∗(x∗)≥ 〈x∗,x〉.

Equality holds if and only if x∗ ∈ ∂ f (x).
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Basic properties of conjugate

Example: f (x) := ‖x‖p

p (1 < p < ∞) =⇒ f ∗(x∗) = ‖x∗‖q
∗

q ( 1
p +

1
q = 1).

f ∗(x∗) = sup
λ∈R+

sup
‖x‖=1

{
〈x∗,λx〉− ‖λx‖p

p

}
= sup

λ∈R+

{
λ‖x∗‖∗−

λ p

p

}
=
‖x∗‖q

∗
q

.

From Fenchel–Young inequality: ‖x‖p

p + ‖x
∗‖q
∗

q ≥ 〈x∗,x〉,

When X = R one recovers the original Young inequality.

Biconjugate: f ∗∗=(f ∗)∗ defined on X∗∗ =⇒ f ∗∗|X ≤ f .

Hormander (Legendre, Fenchel, Moreau)
f : X→ ]−∞,+∞] proper:

f convex and lsc ⇐⇒ f = f ∗∗|X

Application in establishing convexity (to compute conjugates: SCAT Maple
software)
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software)
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Basic properties of infimal convolution

The inf-convolution of f and g:

f�g : X→ [−∞,+∞] : x 7→ inf
y∈X

{
f (y)+g(x− y)

}
= inf

u+v=x

{
f (u)+g(v)

}
.

The largest extended real-valued function whose epigraph contains the sum of
epigraphs of f and g =⇒ f�g is convex.

I f ,g proper =⇒ (f�g)∗ = f ∗+g∗

Example:

f (x) :=
{
−
√

1− x2, for −1≤ x≤ 1,
+∞ otherwise,

g(x) := |x|

(f�g)(x) =

{
−
√

1− x2, −
√

2
2 ≤ x≤−

√
2

2
|x|−

√
2, otherwise

-1.5 -1 -0.5 0.5 1 1.5

-1

-0.5

0.5

1

1.5

g

f
f g•

(f+g)epi
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Fenchel duality theorem

X,Y Banach spaces, f : X→ ]−∞,+∞] and g : Y→ ]−∞,+∞] convex
T : X→ Y bounded linear operator

p := inf
x∈X
{f (x)+g(Tx)} primal problem

d := sup
y∗∈Y∗
{−f ∗(T∗y∗)−g∗(−y∗)} dual problem

Then p≥ d weak duality inequality

Suppose further that f , g and Tsatisfy either⋃
λ>0

λ [domg−T dom f ] = Y and both f and g lsc CQ1

or the condition contg∩T dom f 6=∅ CQ2

Then p = d and the supremum in d is attained when finite.
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Consequences of Fenchel duality

Under the hypotheses of the Fenchel duality theorem

(f +g)∗(x∗) = (f ∗�g∗)(x∗)

with attainment when finite

Obtaining primal solutions from dual ones
If the conditions for equality in the Fenchel duality Theorem hold, and
ȳ∗ ∈ Y∗ is an optimal dual solution:

x̄ ∈ X optimal for primal problem⇐⇒
{

T∗ȳ∗ ∈ ∂ f (x̄)
−ȳ∗ ∈ ∂g(Tx̄)

Extended sandwich theorem
f ,g and T as in Fenchel duality theorem. If f ≥−g◦T then: ∃ α : X→ R
f ≥ α ≥−g◦T

(
α(x) = 〈T∗y∗,x〉+ r where ȳ∗ ∈ Y∗ is an optimal dual solution

)
Moreover, for any x̄ satisfying f (x̄) = (−g◦T)(x̄), we have −y∗ ∈ ∂g(Tx̄).
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When constraint qualifications are not satisfied

Examples:

f (x) :=
{
−
√
−x, for x≤ 0,

+∞ otherwise,

g(x) :=
{
−
√

x, for x≥ 0,
+∞ otherwise.

⋃
λ>0 λ [domg−dom f ] = [0,+∞[ 6= R

@ α separating f and −g

f

−g

f

−g

f (x) :=
{ 1

x , for x > 0,
+∞ otherwise,

g(x) :=
{
− 1

x , for x < 0,
+∞ otherwise.

⋃
λ>0 λ [domg−dom f ] = ]−∞,0[ 6= R

α(x) :=−x satisfies f ≥ α ≥−g
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Consequences of Fenchel duality

Subdifferential Sum rule
f ,g and T as in Fenchel duality theorem

without constraint qualifications:

∂ (f +g◦T)(x)⊇ ∂ f (x)+T∗(∂g(Tx))

with a constraint qualification:

∂ (f +g◦T)(x)=∂ f (x)+T∗(∂g(Tx))

Hahn-Banach extension
f : X→ R continuous sublinear function with dom f = X
L linear subspace of Banach space X
and h : L→ R linear and dominated by f (f ≥ h) on L.

Then ∃ x∗ ∈ X∗ dominated by f on X such that

h(x) = 〈x∗,x〉, for all x ∈ L.
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Consequences of Fenchel duality

Remark:
non− emptiness of the subdifferential at a point of continuity
Moreau′s max formula
Fenchel duality
Sandwich theorem
subdifferential sum rule
Hahn−Banach extension theorem


equivalent

in the sense that they are easily inter-derivable.

More consequences of Fenchel duality:

Existence of Banach limits
Chebyshev problem:

C weakly closed subset of a Hilbert space H

C convex ⇐⇒ C is a Chebyshev set.
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Monotone operator theory

A : X⇒ X∗ set-valued operator (∀x ∈ X, Ax⊆ X∗)
graph of A: graA :=

{
(x,x∗) ∈ X×X∗ | x∗ ∈ Ax

}
domain of A: domA :=

{
x ∈ X | Ax 6=∅

}
range of A: ranA := A(X)

A is monotone if 〈x− y,x∗− y∗〉 ≥ 0, for all (x,x∗),(y,y∗) ∈ graA
A is maximal monotone if A is monotone and A has no proper monotone
extension (in the sense of graph inclusion)

Minty 1962 (Extension to reflexive spaces by Rockafellar)
A : H⇒ H monotone in a Hilbert space H

A maximal monotone ⇐⇒ ran(A+ Id) = H

Sum theorem (Rockafellar 1970, ...)
X reflexive Banach space.

A,B : X⇒ X maximal monotone⋃
λ>0 λ [domA−domB] closed subspace

}
=⇒ A+B

maximal monotone
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Monotone operator theory

The Fitzpatrick function associated with A is FA : X×X∗→ ]−∞,+∞]

FA(x,x∗) := sup
(a,a∗)∈graA

(
〈x,a∗〉+ 〈a,x∗〉−〈a,a∗〉

)
.

A : X⇒ X∗ monotone with domA 6=∅. Then:
FA proper, convex, lsc in the norm × weak∗-topology ω(X∗,X), and

〈x,x∗〉= FA(x,x∗) ∀(x,x∗) ∈ graA.

If A maximal monotone: 〈x,x∗〉 ≤ FA(x,x∗)≤ F∗A(x
∗,x), ∀(x,x∗) ∈ X×X∗

F : X×X∗→ ]−∞,+∞]

autoconjugate if F(x,x∗) = F∗(x∗,x), ∀(x,x∗) ∈ X×X∗

representer for A if graA =
{
(x,x∗) ∈ X×X∗ | F(x,x∗) = 〈x,x∗〉

}
If A : X⇒ X∗ is maximally monotone, does there necessarily exist an
autoconjugate representer for A? Fitzpatrick 1988
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Monotone operator theory

Bauschke, Wang (2009) gave an affirmative answer in reflexive spaces by
construction of the function BA : X×X∗→ ]−∞,+∞]

BA(x,x∗) = inf
(y,y∗)∈X×X∗

{
1
2 FA(x+ y,x∗+ y∗)+ 1

2 F∗A(x
∗− y∗,x− y)+ 1

2‖y‖
2 + 1

2‖y
∗‖2
}

Is BA still an autoconjugate representer for a maximally monotone operator
A in a general Banach space?

We give a negative answer
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A in a general Banach space?

We give a negative answer
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Monotone operator theory

Examples: BA is not always autoconjugate

X := c0 with ‖ · ‖∞ so that X∗ = `1 with ‖ · ‖1 and X∗∗ = `∞ with ‖ · ‖∗.
Fix α := (αn)n∈N ∈ `∞ with limsupαn 6= 0 and ‖α‖∗ < 1√

2
, and define

Aα : `1→ `∞:

(Aαx∗)n := α
2
n x∗n +2 ∑

i>n
αnαix∗i , ∀x∗ = (x∗n)n∈N ∈ `1.

Let Tα : c0⇒ X∗ be defined by

graTα :=
{
(−Aαx∗,x∗) | x∗ ∈ X∗,〈α,x∗〉= 0

}
=
{(

(−∑
i>n

αnαix∗i +∑
i<n

αnαix∗i )n∈N,x∗
)
| x∗ ∈ X∗,〈α,x∗〉= 0

}
.

Then

BTα
(−Aa∗,a∗)> B∗Tα

(a∗,−Aa∗), ∀a∗ /∈ {e}⊥.

In consequence, BTα
is not autoconjugate.
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More to read in the paper...

Convex functions and maximal monotone operators.
Symbolic convex analysis.
Asplund averaging: existence of equivalent norms.
Convexity and partial fractions

THANKS YOU

Australia, December 2013
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