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The wavelet transform is a useful tool for data compression, analysis of short transient pulses, optical
correlators, etc. This transformwas obtained optically by the use of the spatial or temporal multiplexing
approaches. A two-dimensional wavelet transform is obtained with only one spatial channel. The
information of the different scalings is carried in different wavelengths and summed incoherently at the
output plane. Laboratory experimental results are demonstrated. © 1996 Optical Society of America
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1. Introduction

The Fourier transform is a commonly used tool in
signal processing. However, when processing tran-
sient signals having a short temporal or spatial ex-
tent ~such as speech signals!, the Fourier-transform
analysis is faced with high-frequency noise as a result
of the periodic mode contributions outside the specific
temporal or spatial locations of the transient signal.
Several approaches have been developed to overcome
this problem. One of the solutions was to use a win-
dowed Fourier-transform operation such as the Ga-
bor or the Zak transform. In the Gabor transform1,2

the transient signal is multiplied by a window func-
tion before the Fourier analysis. The position of this
window may be shifted along the time or the space
axis. However, the width of the window is fixed in
both the time ~or space! and the frequency domains.
This approach may produce an instability when an-
alyzing noisy signals, such as music, speech, or seis-
mic signals.3
The wavelet transform represents an improved

method that overcomes the above problem and is suc-
cessful in representing a signal in both the time ~or
space! and frequency domains.4 This transform has
been introduced in the analysis of seismic data and
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acoustic signals because of the inability of the Fourier
analysis to locate the underlying frequencies. It is
based on scaling and translating a single-function
mother wavelet, and it is a natural tool for pattern
recognition.3,5 It has also been a useful and common
tool for data compression, bandwidth reduction, and
time-dependent frequency analysis of short transient
signals.6
Other known applications of the wavelet transform

are sound analysis,7 representation of the human ret-
ina, and representation of fractal aggregates.8 In
the transform presented here, first a mother wavelet
h~x! ~typically a window function, such as a Gauss-
ian, multiplied by a modulation term! is chosen. A
set of daughter wavelets hab~x! is then generated
from the mother wavelet by dilation and shift oper-
ations:

hab~x! 5
1

Îa hSx 2 b
a D , (1)

where b is the shift, a is the scale, and =a is the
normalization factor. The one-dimensional ~1-D!
wavelet transform of the signal f ~x! is defined as9

W~a, b! 5 *
2`

`

f ~x!hab*~x!dx, (2)

which has the form of a correlation operation be-
tween the original signal f ~x! and the scaled and
shifted mother wavelet function hab~x!. For two-
dimensional ~2-D! signals f ~x, y!, the 2-D wavelet
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Fig. 1. Illustration of the suggested optical setup.
transform is defined as

W~a, b! 5
1
a *

2`

`

*
2`

`

f ~x, y!h*Sx 2 b1
a

,
y 2 b2
a Ddxdy,

(3)

where

b 5 Fb1b2G .
Several methods have been proposed for optically

obtaining the 2-D wavelet transform. One approach
is based on the VanderLugt 4f configuration with a
multireference-matched filter, in which each daugh-
ter wavelet is encoded with a different reference
beam. The system provides several wavelet compo-
nents that are spatially multiplexed.10,11 In this ap-
proach, the space–bandwidth product of the output
plane has to be increased to arrange every wavelet
component in a 2-D distribution. Another approach
for performing a 2-D wavelet transform is based on
the VanderLugt configurationwith timemultiplexing
~temporal replacement of the filter!. This method
resulted in a nonreal-time configuration. The third
approach for achieving a 2-D real-time wavelet trans-
form is based on recycling the input through an op-
tical correlator and using the magnification and
reduction capabilities of optics to scale it ~instead of
the mother wavelet functions!.12
In this paper we propose a novel method to obtain

the 2-D wavelet transform indicated in Eq. ~3!. This
is obtained with only one spatial channel and in real
time. The different wavelet scales a are multiplexed
with different wavelengths and incoherently added in
the output plane. The method does not involves an
increase in the resolution in the output plane, and an
arbitrary number of components can be multiplexed
in the same spatial extent of the input image.
In Section 2 we introduce the Morlet wavelet

mother function used in this project. In Section 3,
we explain the suggested optical setup. In Section 4,
we give experimental results.
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2. Morlet Mother Function

For the following discussion we used an approxi-
mated 2-D Morlet function7 as a mother function.
The definition of the Morlet function is

h~x! 5 2 cos~2pf0x!expS2
x2

2D . (4)

Such a wavelet was used by Martinet et al.7 in its 1-D
form for sound-signal analysis. Its Fourier trans-
form is

H~u! 5 2p$exp@22p2~u2 f0!
2# 1 exp@22p2~u1 f0!

2%. (5)

One can notice that this function is a real, nonnega-
tive. Its 2-D extension has a circular Gaussian ring
shape. In our optical experiments we have approx-
imated the Morlet function to a rectangular ring

H~u, v! < rectSÎu2 1 v2 2 f0
W D , (6)

where rect is the rectangular function and W is the
width of the ring. Note that this function meets the
zero dc requirement only when f0 is sufficiently large.

3. Experimental Implementation

The underlying idea in the proposed system is to
obtain the different wavelet components with differ-
ent wavelengths, i.e., wavelengthmultiplexing. The
system is designed to provide all the components in
the same spatial locations. The optical setup to per-
form the 2-D wavelet transform by use of wavelength
multiplexing is illustrated in Fig. 1. In this setup
the input pattern should be illuminated by several
spatially coherent wavelengths. Several methods
can be devised to provide this multilambda illumina-
tion. From the laboratory experimental point of
view the simplest is the use of several collinear laser
beams, each of them providing a perfectly coherent
wavelength. A single multiline laser can produce
the same result. Another option is the use of a spa-
tially coherent white light source with an étalon,
which also produces a set of narrow-band illumina-
tion wavelengths, in this case with uniform spacing
between them. With any of these procedures, a set



of wavelengths $l1, l2, . . . , lN; li , li11% is generated
to illuminate the input object.
The first part of the setup shown in Fig. 1 performs

the Fourier transform of the input pattern. Using
an achromatic lens obtains the same distribution for
every wavelength in the illumination set. The Fou-
rier transform for every wavelength is scaled in-
versely proportionately to l and appears in the same
axial location.
A filter is placed in the Fourier plane. The filter

contains several rings, with each ring corresponding
to the bandpass connected with the different scales of
the Morlet mother function. In addition, the sizes of
the different rings are scaled according to the ratio
lNyli between the different wavelengths used in the
input illumination. Filtering the Fourier transform
of the input by the bandpass of the ring i ~obtained
with li! will produce the corresponding wavelet com-
ponent. Numbering the rings from inside to outside
by increases of the index i @with the i ring correspond-
ing to the wavelength li~li , li11!# results in rings
that do not overlap among themselves. Gratings
with different spatial frequencies are plotted inside
each ring. A schematic illustration of the filter is
given in Fig. 2. The ratio between the grating peri-
ods is as follows:

sin a 5
li

Ti
, (7)

where a is the angle of the first diffraction order from
the grating with period Ti when illuminated with li,
and a is constant. This choice of period ensures that
the different wavelength components li @ i diffracting
from the respective i rings ~with period Ti @ i! are
directed with the same angle ~a!.
The second part of the system performs another

Fourier transform. Considering a single wave-
length, the whole system is just an off-axis imaging
system. Because of the different periods in the rings
of the filter, every range of spatial frequencies will be
imaged in a different lateral position. The central
position of the image produced by li by the ring j will

Fig. 2. Schematic illustration of the filter.
be at a location given by

lij 5 z2 tan aij . z2 sin aij 5 z2
li

Tj
. (8)

With the choice of periods of Eq. ~7! the locations of
the images formed with every wavelength li through
their respective rings i will coincide. Thus, in the
output plane, at a location lii 5 l 5 z2 sin a, a chro-
matic superposition of the wavelet components, one
of each wavelength, will be obtained. With the
proper bias term for every wavelength, the output
image will be reconstructed again in the output
plane, whereas different spectral information ~differ-
ent rings in the filter plane! will be encoded with
different wavelengths.
In addition to the superposition of the wavelet com-

ponents, the separation between the desired output
and other cross terms ~coming from the diffraction of
li through other rings, j Þ i! should be enough to fit
the reconstructed image. This situation imposes
constraints over the minimum frequencies of the
gratings or, alternatively, on themaximum size of the
input. Denoting the size of the input object as S and
using the fact that the magnification between the
input and output planes is z2yz1, we find that the
distance between the output ~located at lii! and any
cross term ~located at ljk! should fulfill

lii 2 ljk 5 z2S1 2
lj

lk
Dsin a $

z2
z1
S ; ~ j, k!. (9)

In the case of a uniform spacing of the frequencies,
condition ~9! can be simplified to

TN #
z1Dl

S
, (10)

where Dl 5 uli 2 li21u is the difference between two
sequential wavelengths. Condition ~10! provides a
restriction for the maximal value of the period of the
gratings. Note that, in principle, an arbitrary num-
ber of wavelet components can be achieved with this
method. The only technical restrictions are the
number of available wavelengths and the maximum
frequency that can be recorded on the filter. When
experiments are involved, the theoretical assumption
that a laser has a single illuminating wavelength is
no longer valid. Assume that the laser’s illumina-
tion has an illuminating bandwidth of dli for each
wavelength li. Then, using expression ~9!, one may
obtain the smear dl in the output plane that is due to
this bandwidth:

dl 5
z2dli sin a

li
. (11)

Thus, the number of degrees of freedom Ndl obtained
in the image of the output plane is the ratio be-
tween the smear size and the size of the output
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image ~z2Syz1!:

Ndl 5
z2Syz1

dl
. (12)

Using the relations of Eq. ~7! and condition ~10!,

Ti 5
z1Dl

S
, (13)

sin a 5
li

Ti
, (14)

and Eqs. ~11! and ~12!, one obtains

Ndl 5
Dl

dli
. (15)

Thus, the space-bandwidth product SW of the sys-
tem is

SW 5 min$N, Ndl%, (16)

whereN is the number of degrees of freedom ~number
of pixels! in the original image.
The above-presented setup is not the only possible

one. Instead of using the dispersion of a grating to
separate the components, a thick hologram may be
used. A thick transmission hologram is angular
sensitive. Hence the lateral location of the input is
critical, which means it is highly space variant.
However, when a thick reflection hologram is used
the obtained result is highly wavelength sensitive
and weakly position sensitive, which is mostly desir-
able. The recorded multiple-reflection hologram
plays the triple role of selecting the spatial frequen-
cies for every wavelet component, transforming a
broadband illumination in a set of wavelengths, and
eliminating the cross terms. This setup consists of a
thick hologram positioned at the location at which
every wavelet has been recorded in the Fourier plane
with a different wavelength. For monochromatic il-
lumination the hologram will reflect only one compo-
nent, but when illuminated with white light all the
components are reconstructed simultaneously.
Proper selection of the carrier frequencies will pro-
duce the desired overlap between the components.
Moreover, because of the selectivity of the hologram,
the reconstructed beam in a certain lwill not produce
cross talk with the other wavelets, which are re-
corded with a different carrier frequency in the vol-
ume hologram. This approach is a future direction
which is now under investigation.

4. Experimental Results

To demonstrate the operating ability of the system
we have prepared a filter with two rings. Each ring
has a different grating corresponding to one of the two
wavelength illuminations: a doubled Nd:Yag laser
~l 5 532 nm! and a red He–Ne laser ~l 5 632.8 nm!.
The illumination coming from the two lasers is input
into the setup as a single beam by the use of a beam
splitter. The periods of the gratings were T1 5 10
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Fig. 3. Output obtained using the Roseta input: ~a! with colored
input illumination, ~b! with red-only illumination, and ~c! with
green-only illumination.



Fig. 4. Output obtained using the Lenna input: ~a! with colored in-
put illumination, ~b!with red-only illumination, and ~c!with green-only
illumination.
mm and T2 5 11.895 mm. The filter was printed
with a Scitex Dolev plotter and photoreduced on a
lithographic film. Two patterns were used as input.
The first pattern is a “Roseta” pattern. This is a
pattern with symmetry around the origin and spatial
frequencies that decrease monotonously with the ra-
dius. The obtained output is illustrated in Fig. 3~a!.
Figures 3~b! and 3~c! show the output when only red
or green illumination, respectively, is used. The sec-
ond input pattern was the “Lenna” image. Once
again, Fig. 4~a! illustrates the output obtained by the
use of both illumination wavelengths. Figures 4~b!
and 4~c! show the output when only red or green
illumination, respectively, is used. One can see
that, indeed, in Fig. 4~a! more spatial frequencies are
reconstructed as compared with the use of only one
wavelength for illumination.

5. Conclusions

In this paper a novel method for obtaining a 2-D
wavelet transform has been suggested. The new ap-
proach uses wavelength multiplexing to transmit si-
multaneously the information related to different
scales of the wavelet function. At the output, the
information transmitted by means of the different
wavelengths is added incoherently, and the original
image pattern may be formed. The promising ex-
perimental results illustrate that this method of
wavelet multiplexing can be successfully used for
both image processing and communication transmit-
tance applications. Note that the demonstrated ex-
periment was performed with the Morlet wavelet
mother function. Obviously, other mother functions
~e.g., the Mexican-hat mother wavelet function! may
be used as well.
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