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phase-only logarithmic-harmonic-derived filter
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A phase-only filter based on logarithmic harmonics for projection-invariant pattern recognition is
presented. This logarithmic-harmonic-derived filter is directly calculated in the Fourier plane. With
respect to normal logarithmic-harmonic filters it provides a smaller variation of the correlation intensity
with the projection factor of the target. Computer and optical experiments are presented.
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1. Introduction

Pattern recognition is one of the important prob-
lems, as yet unsolved, in robotics and automization
of processes. The most general method for recogni-
tion of objects is based on computing a set of charac-
teristics of the object. A comparison with a data
base may serve to determine if a given object should
or should not be detected. This method, although
very general, is complicated to implement and is
usually performed by numerical calculations. On
the other hand, optical methods involve an inherent
parallelism of the processing, are easily imple-
mented, and give a fast processing time. A widely
used optical method is based on obtaining the corre-
lation between the input scene, which contains or not
the object to be detected, and the target, or a function
connected with it. The correlation provides a mea-
sure of similarity connected with the mean-squared
difference between the patterns being correlated.
The usual VanderLugt correlator, based on matched
filtering,1 is the main tool for correlation. Usually
correlation has as amain drawback the high sensitiv-
ity of the system to deformations of the object.
One approach to making pattern recognition more

flexible is based on defining invariances. Typically
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two invariances are considered: scale and rotation.
There is a wide variety of algorithms in the litera-
ture that are used to cope with these invariances.
In particular, the ones based on orthogonal expan-
sions are widely used, being conceptually simple and
of easy implementation. For the case of rotation
invariance the circular-harmonic expansion2 is used,
whereas the Mellin radial-harmonic expansion3
serves for scale invariance. Combining the two
invariances simultaneously is much more compli-
cated, although somemethods have been proposed.4–6
The cases in which scale or rotation invariance are
needed are numerous and obvious. Rotation of the
same object on the image plane, or different scales
that are due to varying distances to the grabbing
systems, are common.
When deformations that involve a scale change

are considered, a problem arises. The energies of
objects that are differently distorted are also different.
A linear system can hardly provide the same correla-
tion output in this case. For this reason a main
limitation is imposed: the distortion range must be
limited to a certain range. A full-scale or projection
3one-dimensional 11D2 scaling4 invariance is not pos-
sible.
For the case of scale invariance, moreover, if an

orthogonal set of functions is to be used, an addi-
tional constraint is fed into the definition. The
correlation is independent of the scale of the target
in the sense that the correlation intensity distribu-
tion is scaled with the same factor as the input
pattern. The magnification factor affects not only
the spatial distribution but also its intensity. The
output intensity is not strictly invariant but depends
quadratically on the scale factor of the object.3



The variation of the correlation-peak intensity
with the scale factor can be avoided by use of a filter
derived from the previous idea but elimination of
the orthogonality condition.7 This approach relies
on using a phase-only filter. This type of filter does
not block any part of the energy of the input; as
the correlation is forced to have the same spatial
distribution, the peak intensity is kept almost con-
stant.
A third invariance that is often considered is

projection invariance. This deformation can arise
when images are recorded from remote objects that
have different rotations around an axis perpen-
dicular to the camera–object line. The logarith-
mic-harmonic 1LH2 functions were proposed for deal-
ing with this deformation.8,9 The harmonic func-
tions involved are analogous to those of the Mellin
radial harmonics, when expressed for one dimen-
sion, aside from the intensity of the correlation
distribution that depends inversely on the 1D scale
factor. Owing to this dependence, only images that
have suffered small tilts can be properly detected
before the correlation peak decreases to undetect-
able levels.
In this paper we propose the use of a phase-only

LH-derived filter for projection-invariant pattern
recognition. The filter is designed directly in the
Fourier plane. With this filter the correlation-
intensity distributions present a 1D scaling identical
to that of the input object, and the peak intensity
varies slowly with this factor. The theory for deriv-
ing the filter is presented in Section 2. The perfor-
mance is checked by computer simulations and
optical experiments, the results being presented in
Sections 3 and 4, respectively. In Section 5 we
present the conclusions.

2. Phase-Only Logarithmic-Harmonic-Derived Filter

In order to obtain projection-invariant pattern recog-
nition of a two-dimensional 12D2 object, f 1x, y2, one
solution is to decompose the object into a set of
logarithmic harmonics8
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A single harmonic of order N is used to generate a
matched filter of the object f 1x, y2. Thus object ver-
sions tilted around the y axis, i.e., having a scale
factor along the x axis, can be recognized in a scene.
Taking g1x, y2 as a tilted version of f 1x, y2, g1x, y2 5
f 1ax, y2, where a is the 1D scale factor, we obtain the
next correlation distribution8:

Cfg1x, y2 5 a21@2 exp1i2pN ln a2Cff 1x, y2. 132

The correlation intensity is inversely proportional to
the scale factor a, reducing the true target correla-
tion peaks according to the projection factor a.
Thus misdetection owing to large scale factors could
appear.
To solve this objection, one would like to obtain a

correlation function of the type

C1a2 5 C0 exp3ij1a24, 142

where C0 is a constant and j1a2 is any real function of
the scale factor a.
The solution, in a way similar to that employed by

Rosen and Shamir7 to obtain scale-invariant pattern
recognition, can be achieved as follows. Denoting
F1u, v2 as the Fourier transform of the untilted target
f 1x, y2 and H1u, v2 as the filter function, we obtain the
center correlation value corresponding to any object
for which g1x, y2 5 f 1ax, y2:
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where the finite size of the filter is taken into
account. Moreover, the filter performance is im-
proved because the low frequencies are removed
1Fig. 12.

Fig. 1. Fourier plane of the target function. The limits of the
filter are indicated by the signatures u1, 2u1, v1, and 2v1.
Frequencies between 2u0 and u0 are removed.
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Performing a change of the integration variable,
h 5 u@a, in Eq. 152 results in
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In this way, the scale variance is included in the
filter. The next step is the obtention of a filter
function that does not depend on the scale factor.
This property can be accomplished provided that the
filter is defined as follows:

H*q1u, v2 5 C1v210u 0u02
iq@w

, 172

where C1v2 is a function that contains the informa-
tion of the v frequency in the object function, q is the
LH frequency, and w is a weight constant,

w 5
1

2p
ln1u1u02 . 182

It can easily be checked that

H*q1au, v2 5 exp3i qw ln1a24H*q1u, v2. 192

Then, a scale factor in the target results in only a
constant phase factor in the center correlation value.
Substitution of this filter into correlation equation 162
yields
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C1v2may have any arbitrary definition without alter-
ing the tilt invariance of the filter. To maximize the
correlation output, we select it to compensate the
phase in both integrals in Eq. 1102 in a way similar to
the regular matched filter. The simplest solution of
C1v2 has two different terms, one for each integral:

C11v2 5 exp52arg3e
2u1

2u0

F1h, v212h

u0 2
iq@w

dh46 1112

for the first term and

C21v2 5 exp52arg3e
u0

u1

F1h, v21hu02
iq@w

dh46 1122

for the second one.
Consequently the filter function is defined, in
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general, as

H*q1u, v2 5 5
C11v212u

u0 2
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if u0 # u # u1

, 1132

and the final correlation expression is identical in
form to Eq. 142 except for the integration interval,
which changes with the scale factor a. In particu-
lar, if a 5 1, the center correlation value is
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The phase of the integration through the v fre-
quency is canceled, and a real and positive correla-
tion results. The LH frequency q must be chosen
properly to give the maximal intensity correlation
value. In the ideal case it would be Cq1a2 5 Cq112.
In practice the correlation intensity depends on a
through the integration limits, as can be seen in Eq.
1102, but this dependence has a small influence on the
final correlation intensity.

3. Computer Simulations

To check the capability of the above-defined filter for
projection-invariant pattern recognition, both com-
puter and optical experiments were carried out.
The input function used in the experiments contains
three different models of traffic signals, in a scene of
2563 256 pixels, with four gray levels 1Fig. 22. Each
signal has a tilted version with a 5 2 as the 1D scale
factor. The STOP signal was used to prepare the
filter.

Fig. 2. Input image containing three different models of traffic
signals. The signal used as the target function is depicted at the
upper-left corner of the image. Every signal appears twice in the
scene with two projection factors 1a 5 1 and a 5 22.



First, we have to establish a criterion to find the
optimal LH frequency q. In the above-mentioned
Refs. 7 and 8, this parameter is chosen to maximize
the energy content of the filter. But this criterion is
sensitive to variations of the scale factor a because
the energy distribution for each value of the fre-
quency of any object in the scene changes with a.
To override this scale dependence, we use the peak-to-
correlation energy10,11 1PCE2 distribution instead of
the energy distribution of the filter. In principle we
want to choose a q value that provides the highest
possible PCE. Figure 3 shows a plot of the PCE as a
function of q for the tilted STOP with a 5 2. Thus,
the optimal value would be qa52 5 1.8. When
different tilted versions of the STOP are used the
corresponding graph, PCE versus q in Fig. 3 changes.
This behavior is explained because the scale factor a
affects the correlation intensity through the integra-
tion interval 3see Eq. 11024, aside from the information
loss caused by resampling.
To avoid this scale dependence, we made a plot of

the qa value that yields the maximum PCE in Fig. 3
as a function of the scale factor. The corresponding
result shown in Fig. 4 shows that the qa value
stabilizes for increasing values of a. This fact serves
to establish the criterion that we propose to select
the q value used to prepare the filter as that to which
the graph tends. For the STOP signal the graph
tends to the value q0 5 0.9. In the following, for
simplicity, to record the filter, we use the integer
value for q closest to the optimal value, i.e., q 5 1.
With the filter matched to the untilted STOP signal

with q 5 1, the correlation with the scene in Fig. 2 is
computed. The intensity correlation output is shown
in Fig. 51a2. With the proposed filter the peak
intensities for both versions of the true target differ
about an 8% and a 44% threshold, which is enough to

Fig. 3. Plot of the LH frequency versus the PCE. As the input
image, the tilted version of the STOP signal for a 5 2 is used.
reject the peaks corresponding to the other objects in
the scene.
For comparison, in Fig. 51b2 we show the correla-

tion obtained with a LH-component filter, expanded
around the center 1128, 1282 with expansion order
N 5 1 and L 5 2. In this case the peak intensities
for both STOP versions differ in ,50%, in agreement
with a projection factor of a 5 2. Other objects
produce higher peaks than that of the scaled true
target, impeding the detection.
In Fig. 6 a plot of the intensity correlation peak

versus the scale factor for both types of filters was
made. For the phase-only LH-derived filter the
intensity correlation peaks for the STOP signal never
decreases to ,90% for projection factors of as much
as a 5 4 3Fig. 61a24. In comparison, for LH decompo-
sition 3Fig. 61b24 the intensity values decrease quickly
with a, as predicted by Eq. 132 1the correlation peak
decreases to ,80% of the nontilted correlation value
for a < 1.52. For values of a more than 2.5 the
results give a false appearance caused by resampling
problems.
In order to check the performance of the filter with

other types of objects, we used an input scene that
contained four airplane contours, two of them being
tilted versions of the other with parameter a 5 2
1Fig. 72. The targets are the two airplanes in the
upper part of the image. With the filter matched to
the untilted airplane with q 5 2, the correlation
intensity peaks for both targets differ ,26%, and a
very low threshold of 7% is enough to reject the
peaks corresponding to the other airplanes in the
scene.

4. Optical Results

The above results for the objects depicted in Fig. 2
were experimentally tested by optical experiments.

Fig. 4. Plot of the LH frequency qa that yields themaximumPCE
in Fig. 3 versus the 1D scale factor a for different tilted versions of
the STOP signal. The qa values tend to the q0 value when a

increases.
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The setup consists of a simple correlator with a
variable scale. The object is input into the system
by means of a photographic transparency. The fil-
ter is implemented through a computer-generated
hologram by the well-known detour phase method.12
The computer-generated hologram is written by a
300-dpi laser printer and photoreduced to ,10 mm.
No loss occurs in the amplitude information because
the filter is a phase-only filter. The output is grabbed
with a monochrome CCD camera and stored in a
computer.

1a2

1b2

Fig. 5. Computer simulation of the correlation-intensity plane
for the input image in Fig. 2 with 1a2 the phase-only LH-derived
filter for the target image in Fig. 2 with q 5 1 and 1b2 the LH filter
for the same target with L 5 2 and N 5 1 as the expansion order
and 1128, 1282 as the expansion center.
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Figure 8 shows the correlation obtained for the
image in Fig. 2 when the phase-only LH-derived
filter is used. The experimental results are analo-
gous to those obtained in numerical simulations 3Fig.
51a24. The correlation peaks corresponding to the
true targets present a similar intensity, and a rela-
tively low threshold 152%2 is sufficient to reject the
other objects. The overall noise is not significantly
increased with respect to that obtained in computer
simulations.

Fig. 6. Normalized intensity-correlation-peak value versus scale
factor for the filter matched to the STOP signal 1a2 with the
phase-only LH-derived filter for q 5 1 and 1b2 with the LH filter
with L 5 2 and N 5 1 as the expansion order and 1128, 1282 as the
expansion center.

Fig. 7. Input image containing two different types of airplane
contours. The reference is located at the upper-left corner of the
image. Every signal appears twice in the scene with two projec-
tion factors 1a 5 1 and a 5 22.



5. Conclusions

A new phase-only LH-derived filter has been pro-
posed for projection-invariant pattern recognition.
Computer simulations and optical experiments have
been performed to verify its theoretical behavior.
First, a procedure to determine the optimal LH

frequency to make the filter was outlined. In this
way, the harmonic-frequency value selected is opti-
mum for detection of any tilted version of the target
in the input plane.
In agreement with the theory, the intensities of the

correlation peaks of the true targets change slowly
with the 1D scale factor. Conversely, when LH
filters are used, the output peaks reduce inversely
with the projection scale factor. As a consequence,
an important improvement in the discrimination

Fig. 8. Correlation intensity distribution obtained in optical
experiments. The input image is shown in Fig. 2, and the filter is
the phase-only LH-derived filter matched to the target object in
Fig. 2 for LH frequency q 5 1.
capability of the filter has been obtained because
there are only small differences between detecting
any tilted object and detecting the untilted one.
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supported by the Israeli-Spanish cultural agree-
ment.

References
1. A. VanderLugt, ‘‘Signal detection by complex spatial filter-

ing,’’ IEEE Trans. Inf. Theory IT-10, 139–145 119642.
2. Y. N. Hsu and H. H. Arsenault, ‘‘Optical pattern recognition

using circular harmonic expansion,’’Appl. Opt. 21, 4016–4019
119822.

3. D. Mendlovic, E. Marom, and N. Konforti, ‘‘Shift and scale
invariant pattern recognition using Mellin radial harmonics,’’
Opt. Commun. 67, 172–176 119882.

4. D. Casasent and D. P. Psaltis, ‘‘Position, rotation and scale
invariant optical correlation,’’Appl. Opt. 15, 1795–1799 119762.

5. K. Mersereau and G. M. Morris, ‘‘Scale, rotation and shift
invariant image recognition,’’Appl. Opt. 25, 2338–2342 119862.

6. S. Chang, H. H. Arsenault, and D. Liu, ‘‘Invariant optical-
pattern recognition based on a contour bank,’’ Appl. Opt. 33,
3076–3085 119942.

7. J. Rosen and J. Shamir, ‘‘Scale invariant pattern recognition
with logarithmic radial harmonic filters,’’ Appl. Opt. 28,
240–244 119892.

8. D. Mendlovic, N. Konforti, and E. Marom, ‘‘Shift and projec-
tion invariant pattern recognition using logarithmic harmon-
ics,’’Appl. Opt. 29, 4784–4789 119902.

9. D. Mendlovic, Z. Zalevsky, J. Garcı́a, and C. Ferreira, ‘‘Loga-
rithmic harmonics proper expansion center and order for
efficient projection invariant pattern recognition,’’ Opt. Com-
mun. 107, 292–299 119942.

10. B. V. K. Vijaya Kumar, W. Shi, and C. Hendrix, ‘‘Phase-only
filters with maximally sharp correlation peaks,’’ Opt. Lett. 15,
807–809 119902.

11. B. V. K. Vijaya Kumar and L. Hassebrook, ‘‘Performance
measures for correlation filters,’’ Appl. Opt. 29, 2997–3006
119902.

12. A. W. Lohmann and D. P. Paris, ‘‘Binary Fraunhofer holo-
grams generated by computer,’’ Appl. Opt. 6, 1739–1748
119672.
10 July 1996 @ Vol. 35, No. 20 @ APPLIED OPTICS 3867


