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Rotation-invariant pattern recognition can be achieved with circular-harmonic decomposition. A com-
mon problem with such a filter is that, because it is only a single term out of the circular decomposition,
it does not contain much of the reference object’s energy. Thus, the obtained correlation selectivity is
low. This problem is solved by use of wavelength multiplexing. First, different harmonic terms are
encoded by different wavelengths, and then they all are added incoherently in the output correlation
plane. This process leads to rotation-invariant pattern recognition with a higher discrimination ability.
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1. Introduction

Optical pattern recognition is commonly performed
with a 4f correlator.1 This setup uses a matched
filter that provides the highest signal-to-noise ratio
for a Gaussian white noise but is not invariant to any
parameter except lateral shifts of the input object.
Other invariant properties could be obtained by use
of harmonic decompositions. In this method the ref-
erence object is decomposed into a set of orthogonal
harmonic functions, and the filter source is chosen as
a single expansion order. This approach achieves
invariant pattern recognition, but its discrimination
abilities are worse than those of the conventional
matched-filter approach because here the filter is
only a single term out of the full harmonic decompo-
sition.
Suggested decompositions for obtaining invariant

properties were circular-harmonics for rotation in-
variance,2 radial harmonics ~RH! for scale invari-
ance,3 and logarithmic harmonics ~LH! for projection
invariance.4 Later, the harmonic-decomposition
method was generalized for other distortion proper-
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ties by use of deformation harmonics ~DH!.5 These
methods are optimized by the choice of the proper
center for harmonic expansion and the proper har-
monic order for the filter.6,7
Another method that permitted achieving both in-

variant pattern recognition and high discrimination
ability is the synthetic-discriminant-function ap-
proach.8 The problem with this method was that an
invariant property was achieved only in the correla-
tion peak itself, and it was commonly followed by
unacceptable levels of sidelobes.
In this paper we propose a method that permits the

achievement of full invariant pattern recognition
while the filter combines several harmonic orders si-
multaneously. The method is demonstrated with
circular harmonics, but any other decomposition set
~RH, LH, DH! may be used. In this approach each
harmonic order is transmitted with a different wave-
length. At the output correlation plane all correla-
tion distributions coming from the different
decomposition orders are added incoherently. This
finally provides improved discrimination ability.
In Section 2 we provide the necessary details re-

garding circular-harmonic ~CH! decomposition. In
Section 3 we explain and prove the suggested algo-
rithm. In Section 4 we give an experimental dem-
onstration.

2. Circular Harmonic Decomposition

CH decomposition is the first harmonic expansion
that was used for invariant pattern recognition.2 It
involves the set of orthogonal functions $exp~iNu!%,
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which is multiplied by a radial function:

f ~r, u! 5 (
N52`

`

fN~r! exp~iNu!, (1)

fN~r! 5
1
2p *

0

2p

f ~r, u! exp~2iNu!du, (2)

whereN is the expansion order and f ~r, u! is the input
object. A single-harmonic impulse response is thus
g~r, u! 5 fM~r! exp~iMu!, and it can provide rotation-
invariant pattern recognition by use of a single har-
monic out of this expansion. The correlation
between the target and a single-harmonic component
at the origin of the correlation plane is given by

CN 5 2p *
0

`

u fN~r!u2rdr. (3)

Correlation of the object with the same object ro-
tated at an angle a, in terms of the correlation with
different CH components, results in

Ca 5 (
N52`

`

CN exp@iNa#. (4)

Equation ~4! permits the interpretation of the rota-
tion variance of a conventional matched filter. The
correlation-peak contributions of the different CH
components get out of phase except for a 5 0 ~when
N Þ 0!. If only one CH is considered, the phase
factor can be neglected when the output-plane inten-
sity is taken. However, the simultaneous use of sev-
eral harmonics may destroy the correlation peak as a
result of differing phase factors. Multiple CH com-
ponents can be used if the phase shift of each term in
Eq. ~4! is compensated.9 This method, however, can
be applied only to digital correlation or to the use of
spatial multiplexing.10

3. Optical Implementation

The proposed method can be applied with different
harmonic decompositions. We demonstrate it with
the CH expansion used for rotation-invariant pattern
recognition, but it can be extended to RH, LH, and
DH. The optical setup for performing multiple-
harmonic rotation-invariant pattern recognition by
use of wavelength multiplexing is illustrated in Fig.
1. The input pattern should be illuminated by sev-

Fig. 1. Suggested optical setup for rotation-invariant pattern rec-
ognition.
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eral spatially coherent wavelengths @for instance, a
He–Ne laser ~red!, a doubled Nd:Yag laser ~green!,
and an argon laser ~blue!#.
The first part of the setup performs a Fourier trans-

form of the input pattern. A filter is placed in the
Fourier plane and contains several rings, with each
ring being a filter matched to a different order of the
CH decomposition. The size of each ring is scaled
with respect to the ratio between the different wave-
lengths used for the input illumination because an
achromatic lens performs a Fourier transform that is
scaled by l1yli for the different wavelengths li @ i.
Each ring, which represents a different order of the
CH decomposition, is applied to a different wave-
length, i.e., each ring corresponds to a different wave-
length. Thus, in the output plane the correlation
peaks generated by the different harmonic orders are
displayed in different wavelengths but at the same
location and added in their intensities. Holograms
with different spatial carrier frequencies are plotted
inside each ring ~each CH order!. The ratio between
the grating periods is as follows:

sin a 5
li

Ti
5

lj

Tj
, (5)

where a is the angle of the first diffraction order from
each grating, li and lj are two different wavelengths,
and Ti and Tj are the periods of the two correspond-
ing gratings. Equation ~5! ensures that different
wavelengths li and lj will diffract to the same spatial
location. Because different wavelengths, coming
from different rings ~different CH orders!, diffract to
the same spatial position, they are added incoher-
ently. A schematic illustration of the filter is given
in Fig. 2.
The second part of the system performs another

Fourier transform. Thus, in the output plane, an
image of the input pattern is obtained after the pat-
tern has passed through the CH filter. Each wave-
length passes through a different CH order. If many
wavelengths are used the output correlation plane is

Fig. 2. Schematic sketch of the CH filter for three-wavelength
multiplexing.



both rotation invariant and able to provide high dis-
crimination comparable with that of the matched fil-
ter.
As mentioned above each harmonic order ~each

ring! is encoded by a different spatial frequency ~see
Fig. 2!. Two contiguous rings should fulfill Eq. ~5!.
This means that the first diffraction order coming
from the grating that has the period T1 and is illu-
minated by l1 and the first diffraction order coming
from the grating that has the period T2 and is illu-
minated by l2 should overlap. However, in addition
we expect that the diffracted distributions coming
from grating T1 illuminated by l2 or from grating T2
illuminated by l1 will not overlap with the desired
distribution. Because the overall setup is an imag-
ing setup with a magnification of f2yf1, one can trans-
late the last restriction ~nonoverlap! to the following
mathematical condition:

f2
l1yT1

Î1 2 ~l1
2yT1

2!
2 f2

l2yT1

Î1 2 ~l2
2yT1

2!
$ 2Lx

f2
f1
, (6)

where f1 and f2 are the focal lengths of the first and
second parts of the setup, respectively, ~see Fig. 1!
and Lx is the size of the input image @the term 2Lx~ f2y
f1! is an approximation for the size of the correlation
plane#. Using the approximation of sin b ' tan b
permits Eq. ~6! to be simplified to

T1 #
f1~Dl!

2Lx
, (7)

where Dl is the smallest difference between two
wavelengths. Condition ~7! gives us a restriction on
the maximal value for the period of the gratings.
In this setup the ring sizes and CH components

must be chosen to maximize the energy contents of
the filter. A different approach can be used to utilize
every CH component fully. We can accomplish this
by multiplexing the filters for the different wave-
lengths. This multiplexing, although troublesome
in computer-generated holograms ~CGH’s!, is easy for
optically recorded holograms ~provided there is a
small number of holograms!. Thus, each CH filter
should be recorded at the same angle for the refer-
ence beam but with the use, in each exposure, of a
different wavelength. This approach will provide
the same periods for the carrier frequencies as the
above-described procedure. The final output inten-
sity for a target rotated by an angle a, in the notation
introduced in Section 2, is given by

Ia 5 uCau2 5 (
N52`

`

uCN
l u2, (8)

where the superscript l gives the wavelength with
which each correlation is obtained. The addition is
obtained in the intensity, which is in contrast to the
matched-filter case in which there is coherent addi-
tion. Nevertheless, now there is no variation with
the rotation angle of the target, and every component
contributes to the intensity of the correlation peak.
4. Chromatic Aberrations

The experimental problem raised when several wave-
lengths are used with achromatic lenses is chromatic
aberration.11,12 These aberrations are expressed as
shifts of the focal length as a function of wavelength.
This shift is caused by the dependence of the refrac-
tion index on the wavelength:

1
FAL~l!

5
n~l! 2 1

FAL~l0!@n~l0! 2 1#
, (9)

where FAL~l0! is the focal length of the achromatic
lens for the wavelength of l0 and n is the refractive
index. The dependence of the refractive index n on
the wavelength may be approximated as

n~l! < n~l0! 2 d~l 2 l0!, (10)

where d is a constant.
If a zone plate is attached to the achromatic lens,

the overall focal length becomes

1
F~l!

5
1

FZP~l!
1

1
FAL~l!

, (11)

where FZP~l! is the focal length of the zone plate,
whose wavelength dependence may be expressed as

FZP~l! 5
l

l0
FZP~l0!. (12)

Thus, by using Eqs. ~9!, ~11!, and ~12! one obtains

1
F~l!

5 lH 1
l0FZP~l0!

2
d

@n~l0! 2 1#FAL~l0!
J

1
n~l0! 1 dl0 2 1
FAL~l0!@n~l0! 2 1#

. (13)

The first term on the right-hand side is responsible
for chromatic aberrations. Choosing

FZP~l0! 5
@n~l0! 2 1#FAL~l0!

l0d
(14)

ensures the elimination of those aberrations.
Keeping the deviation of the wavelength l from the

wavelength l0 small and choosing achromatic lenses
made out of a material with a small d value ensure
negligible aberrations. Note that, for the suggested
wavelength-multiplexing approach, the difference be-
tween the various wavelengths does not have to be
large. Small deviations will also ensure the desired
spatial incoherence.

5. Experimental Results

To demonstrate the abilities of the new approach we
have performed several experiments. The reference
object is decomposed into the CH decomposition, and
two orders are chosen out of this decomposition ~ac-
cording to energy and peak-sharpness consider-
ations7!. We chose orders 2 and 5. Obviously,
when decomposition into circular harmonics occurs,
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the proper center ~once again according to energy and
peak-sharpness considerations6! is also chosen.
To improve performance we prepared a phase-only

filter out of each circular harmonic. Because the
filter is designed for two orders of circular harmonic,
it should be illuminated by two wavelengths. We
chose to work with the doubled Nd:Yag ~532-nm! and
He–Ne ~632.8-nm! lasers. Each circular harmonic
was modulated by a different carrier frequency ~grat-
ing! such that conditions ~6! and ~7! are fulfilled. To
encode the phase of the filter we used a CGH.13
However, to do so we must first calculate the number
of periods of the grating that enter into each pixel of
the matrix ~which contains the CH information! that
we wish to encode. The minimal number of periods
in each pixel of the matrix must be

n0 5
LnyN
T1

, (15)

where N is the number of pixels inside the matrix ~in
our case, N 5 128! and Ln is the size of the filter.
Because the fast-Fourier-transform algorithm was
used for the calculations, the following scaling ratio
should be held between the sizes of the input plane
and the spectral plane ~see Ref. 14, for instance!:

LxLn 5 lf1N. (16)

Substituting condition ~7! and Eq. ~16! into Eq. ~15!
yields

n0 $
2l

l1 2 l2
. (17)

Calculation with condition ~17! leads to a value of n0
$ 10.6. We chose to use 12 periods per pixel. Next,
using Lohmann’s CGH method of vertical encoding,
we create the filter. Each pixel of the filter contains
12 grating periods, encoded so that the compatible
phase of the pixel of the matrix will be reconstructed.
Note that the final filter is composed of two matri-

ces: The first one encodes the second CH order, and
the second one encodes the fifth harmonic. The ratio
between the gratings inside each CH is set according
to Eq. ~5!. Therefore, the second harmonic will cor-
respond to the green laser and the fifth to the red one.
Figure 3 illustrates the input pattern scene. The

upper image is of a fault object, and the lower image
is of the reference object, rotated by 90°. In Fig. 4
one can see the obtained experimental results. The
center image depicts the obtained color output ~green
and red!; this is the correlation peak for both the fifth
and second CH’s. On the righthand side one can see
the correlation plane obtained for the second har-
monic ~green! and on the lefthand side the correlation
obtained for the fifth harmonic ~in red!. Improved
discrimination ability and stronger correlation peaks
are obtained for the multiplexed correlation ~central
image!, as compared with the single only-red or only-
green channels.
Figure 5~a! illustrates a three-dimensional plot of

the region of interest of Fig. 4, whereas Fig. 5~b! is a
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plot of the peaks’ cross sections. One can see here,
as well, the improved correlation peak obtained for
the multiplexed correlation. Note that the experi-
mental results obtained in this paper are only sup-
posed to show that the method works. More results
are required before evaluation of the performance of
the method can be carried out with certainty.

6. Conclusion

From the experimental results one can see that the
proposed filter provides improved discrimination
ability and demonstrates a wide range of rotation
invariance. Sharp correlation peaks were obtained.
Note that the suggested technique was demonstrated
for circular harmonics and achieved improved
rotation-invariant pattern recognition. The same
procedure may be applied to LH or RH. In this case,
several orders of LH or RH are wavelength multi-
plexed ~encoded in the different rings!. In addition
to achieving an improved single invariant property,
one may obtain several invariant properties simulta-
neously. To do so, we choose one harmonic order out
of several harmonic types ~for example, CH and RH!,
and each harmonic type is multiplexed by a different

Fig. 3. Input scene used in the experiments.

Fig. 4. Experimental output correlation plane.



wavelength ~i.e., each harmonic type is encoded in
different ring of the filter!. The result is correlation
that is invariant to either rotation or scale.
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