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Abstract

Recently, in the field of fractional Fourier transforms (FRT) an operation coined “fractional correlation™ has been
proposed and investigated experimentally. In this paper we propose a new setup for obtaining the fractional correlation,
which presents several advantages from the experimental point of view. The fractional filter plane can be adjusted accurately
with the help of converging beam illumination and using an adjusting device consisting of a combination of Fresnel zone
plates. Moreover the scaling factor between the input pattern and the filter can be adjusted at will. This degree of freedom
is of special interest when using SLMs. In addition we present a configuration, based on this setup, for spatial filtering of

chirp noise in the fractional Fourier domain.
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1. Introduction

The fractional Fourier transform (FRT) has been
defined mathematically by Condon [1] in 1937 and
extended by Bargman in 1961 [2]. For optical infor-
mation processing the FRT was re-discovered and im-
plemented by Ozaktas and Mendlovic [3,4] in 1993.
Since then a large amount of papers dealing with frac-
tional Fourier appeared. From the optical point of view
there exist two different approaches to obtain defini-
tions of an FRT. One definition is based on Hermite-
Gaussian-modes (HG) and can be implemented opti-
cally by means of GRIN media [4.5]. The other ap-
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proach is based on rotating the Wigner distribution
function of the input signal by a certain angle and can
be implemented by means of bulk optical setups [6].
Both definitions can be shown to be equivalent [7].
The definition of the FRT of order P for a given input
signal u(x) in the case of bulk optics reads [6]:

A L x24 X2
up(x') = /u(x) exp (mm)

xx!
—2mi—————— | dx, 1
xexp( m)tflsinqﬁ) % (1)

containing an angle ¢ which is related to the fractional
order P:

¢=Pxmw/2 (2)

The factor +/Af acts as a scaling factor between
the adimensional variable in the exponential functions
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and the linear dimensions in both the object and the
FRT plane coordinates. It is worth noting that in the
Fourier transform case (¢ = 7/2) for each scaling
of the input the output will be a differently scaled
version of the Fourier transform, i.e. the scaling can be
different in input and output planes. On the contrary,
in the FRT case, scaling the input results in a FRT of
different order (aside from the scaling). To avoid this
effect the scaling factors for the input and the output
plane must be the same.

Remember that an FRT of order P = 1 gives a
Fourier transform, an FRT of order P = 2 gives in-
verted imaging and P = 4 gives exact imaging. After
this definition of the FRT for bulk optics the way was
opened to convert systems containing usual or “classi-
cal” Fourier transforms into “fractional” Fourier sys-
tems. In this spirit the term “fractional correlation” was
coined and various theoretical definitions were sug-
gested [8]. The optical implementation of Eq. (1) can
be done by using the “type I and “type II” modules
proposed in Ref. [6], which are shown in Figs. 1a and
1b, respectively. A configuration containing a type I
module was designed for obtaining the fractional cor-
relation and investigated experimentally in Ref. [9].
In the following the basic expressions for a fractional
correlation are given. The classical correlation for two
input functions u(x) and v(x) is given by [10]

Ci(x1) = /u(x)v*(x—xl) dx

=fﬁ(v)5*(v) exp(2mivx;) dv, (3)

where @i and U denote the fractional Fourier transforms
of order P = 1, which are equal to the classical Fourier
transform. Shifting to the fractional correlation we re-
place the two classical Fourier operations by fractional
Fourier transforms:

ﬂ(]}) _>Mp(x’), U(V) —_)UP(XI): (4)

where the x’ includes the previously discussed scal-
ing factor. The final inverse Fourier transform of Eq.
(3) to obtain the correlation peak remains unchanged.
The use of different orders for every transform in-
volved in the process (FRT for input, reference and
the final transformation of the product), yields differ-
ent, but still valid definitions of the fractional correla-
tion [8]. In the following we will deal with the above
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Fig. 1. Optical setups for obtaining an FRT, (a) type 1 module,
(b) type II module.

described definition. An extension for a general case
is straightforward. The optical setup for this fractional
correlation contains two type I modules of Fig. 1a in
cascade. The first one with fractional order P # 1 and
the second with order P = —1.

Because the FRT contains information of the fre-
quency domain as well as of the object domain, the
fractional correlation is expected to provide different
features as compared to the classical correlation. One
property is the shift variance of the fractional correla-
tion [9]. A peak is obtained only if the input object
is in (or near) the exact position Xexaer. The range of
this position where a correlation peak still appears in
the output plane of the fractional correlator is a func-
tion of the fractional order [11]. This range can be
estimated by means of the phase mismatch in the FRT
plane. Assuming that the phase difference between the
fractional Fourier transforms of the input at its original
position and the displaced input is smaller than a fixed
value (7 was taken for convenience), it can be shown
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that the difference between the exact position and the
actual position must satisfy the following inequality:

| Xexact — X| < Af1| tan |/ Ax, (5)

where Ax denotes the object’s size. This estimation is
an upper bound, the actual range may strongly depend
on the geometry of the object.

For orders close to P = 1 this range is large and
therefore almost shift invariant like the classical corre-
lator. For low orders close to P = 0 this range is very
narrow and the shift variant property of the fractional
correlator is more crucial. Therefore if it is desired to
detect the location of the object with an accurate pre-
cision a low fractional order has to be implemented.

The disadvantage of the setup discussed above from
the experimental point of view occurs in finding the
exact fractional Fourier plane at distance z where the
filter should be placed at, for a given focal length of
the lens ( f) [6]:

z = fysin(Pr/2)
= tan( P /2) fsin(Pm/2). (6)

There are several experimental drawbacks in the
original setup. The first one is that, when dealing with
thick lenses, the principal planes are not accurately
known. On the other hand measuring distances accu-
rately on an optical bench is a problem, in general.
An additional problem is that the experimentalist has
no hint in hand to recognize whether he is in the right
FRT-plane or not. The fractional Fourier pattern does
not show any special features as the classical Fourier
pattern. The main disadvantage is that the scales of
the input object and the filter are fixed. In addition
the fractional order is determined by the system, re-
quiring a complex rearrangement if a different order
is needed. A “fake zoom™ system was proposed for
achieving a variable FRT order, at the price of increas-
ing the number of lenses in the system [12]

With all this in mind we want to propose a mod-
ified setup for obtaining a fractional correlation that
bypasses all the above mentioned problems. Such a
setup would have as a main advantage an accurately
adjustable filter plane, in axial position, as well as in
scale. The main idea of this setup is to use a conver-
gent beam illumination and an adjusting device. This
device is essentially a combination of Fresnel zone

plates (two-dimensional chirp functions). In the fol-
lowing we will explain the underlying idea in terms
of Wigner optics. A more detailed description of the
effect of FRT on chirp functions is given in Ref. [13].

In the 2D Wigner domain of a 1D function, a tilted
line delta function crossing the origin of the (x,v)
plane will result in a symmetrical chirp. This is, a spa-
tial distribution with a frequency that increases linearly
from the origin. For a 2D distribution, this is known
as a Fresnel zone plate pattern. For a two-dimensional
input function the corresponding Wigner domain be-
comes four-dimensional. Therefore, for the sake of
simplicity, we restrict ourselves to the 1D case. Tak-
ing into account that the FRT is a separable transfor-
mation, a generalization to two dimensions is straight-
forward. A fractional Fourier transform can be asso-
ciated with a rotation of the Wigner distribution func-
tion (WDF) by an angle connected to the FRT order.
Thus, in the spatial domain, the FRT tool can trans-
form a chirp (or equivalently a Fresnel zone plate)
into a delta function and vice versa.

In the following the underlying theory is explained
briefly. The Wigner transform of a one-dimensional
function u(x) is defined by

W(x,») = /u(x + X' [2)ut(x - X' [2)
x exp(—2mivx") dx’, (7)

where x represents the space coordinate and » rep-
resents the spatial frequency. The inversion from the
WDF to the signal is unique, apart from a constant
factor:

/W(x,v) exp(4mixy) dv = u(2x)u*(0). (8)

Some examples of WDFs are:
Pulse:

u(x) =86(x —x9) = W(x,») =6(x — xq). (9)
Monofrequency:

u(x) = exp(2mrivox) = W(x,v) =8(v — 1g).
(10)

A linear increasing frequency or chirp function is
given in coordinate space and after transformation to
the Wigner domain by
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Fig. 2. Adjustable fractional Fourier correlator.
u(x) = exp[2mi(bax* 2 + bix + by) ]
= W(x,v) =6(bx + b —v). (11)

Therefore a 1D-delta function corresponds to a ver-
tical line in the Wigner domain. A single frequency
corresponds to a horizontal line, while a chirp func-
tion corresponds to a slanted line. Thus, a 7r/2 rotation
operation in the Wigner domain transforms a pulse to
a monofrequency function, passing trough chirp func-
tions.

The fractional Fourier transform of order P is asso-
ciated with a rotation of the WDF by an angle of ¢ =
P x 7/2 as given in Eq. (2). Expressed implicitly by

WIFF(u)] = R_gWlul, (12)

where Ry denotes a counterclockwise rotation of a
two-dimensional function and W[u] is the Wigner
transform of u(x). Egs. (11) and (12) imply that
by performing an FRT of a certain order P, a chirp
term can be transformed into a delta function and vice
versa. This permits the spatial filtering of chirp noise
in a fractional domain. The fractional order P to obtain
this relationship is determined by

¢ =tan"! by. (13)

In Section 2 we introduce the modified setup for
performing the fractional correlation. Experimental re-
sults are shown and compared with computer simula-
tions. Section 3 discusses a similar setup for spatial
filtering of chirp noise in a fractional Fourier domain.

2. Modified setup for fractional correlation

The basic idea of the modified setup lies on a vari-
able scale inexact fractional Fourier transformer. A
scheme of it is shown in Fig. 2. Comparing with the
module of Fig. 1b (type II FRT module) the differ-
ences are that the second lens in front of the fractional

Fourier plane is removed and the effect of the first lens
is accomplished by illuminating the input transparency
with a spherical beam. The axial distance where the
beam converges, d, is equivalent to the focal distance
f in the type II setup. This produces an FRT that is in
fact multiplied by a diverging quadratic phase factor.
These quadratic phase factors (paraxial approxima-
tions of spherical waves) can be eliminated if the input
and the output are considered to be on two spherical
reference surfaces. An interpretation of the FRT based
on this idea can be found in the literature [ 14,15].

If in the FRT plane a filter matched to an exact FRT
is positioned then the phase of the optically obtained
FRT will be cancelled, remaining just a quadratic
phase factor that can be focused by an additional lens
without any special characteristics. In order to prove
this we can calculate the pattern in the filter plane
(x',y") diffracted by the object transparency u(x, y)
and compare it with the FRT expression (Eq. (1)).
The amplitude just after the transparency, for the
one-dimensional case, is given by

rx?
w1 (x) =u(x)exp (—lﬂ) 3 (14)

After Fresnel diffraction by a distance Z, the am-
plitude results:

. T
1y (x') = exp (lﬁx’z)

+0o0

X / u(x)exp [17—; (% — %) xz]

—00

27,
X exp (—z/\—zxx ) dx. (15)

As stated in the introduction the aim of this paper
is to design a setup for obtaining a variable scale FRT.
In order to check this let us consider the amplitude
distribution of the FRT of order P of u(x), when the
output plane is scaled by a factor a:

2
7-J-Aflaztaanr)

32
X fu(x) exp (iw’m)

PRRTTIE ool
X exp (_2m/lf]asin¢) dx. (16)

up(x'/a) = exp (i




J. Garcia et al. /Optics Communications 133 (1997) 393-400 397

Note that the +/Af) scaling factor affects equally
both input and output linear variables (x and x’ re-
spectively), while the a factor only scales the output
distribution, without altering the input one. Compar-
ing Egs. (15) and (16) we see that the integrals in
both expressions match, provided the following con-
ditions are fulfilled:

I 1

1
= and Z = flasing.

Z7d fimg’ )

With this changes, Eq. (15) can be rewritten as

N 1 _l 1”2
MZ(X)_eXP[E,\Z (1 a)x]

X exp (iﬁx’z) uy(x'/a). (18)

We see that the optically obtained distribution
equals the scaled FRT function, except for a global
quadratic phase factor. This factor is the paraxial
approximation of a spherical beam diverging from a
distance:

5 Zd

= m‘ (19)

In the particular case of @ = 1 the phase factor di-
verges from a distance d, as expected from the quali-
tative description of the setup.

The main advantage of this setup with respect to
previous ones is that the scale between the input pat-
tern and the filter recorded on the plate can be ad-
justed at will. This possibility is of special importance
when SLMs are used for either the input or the filter
transparency. In this case the size of the transparen-
cies cannot be changed arbitrarily, the scale matching
relying on the setup. The main action to be performed
is a longitudinal movement of the object transparency
along the z axis. This changes the convergence of the
quadratic phase factor illuminating the transparency.
According to the first condition in Eq. (17) this will
change both the global scaling factor, fi, and the frac-
tional order, given by ¢. An adjustment of the distance,
Z, between the input and the filter plane will fix the
FRT plane for the desired scaling factors and order.
After the action of the filter it is necessary to perform
a Fourier transform of the FRT plane. Under the above
defined assumptions the proposed setup produces the
product of the FRT and the filter function, illuminated

by a spherical beam diverging from an axial point lo-
cated at distance ! from the filter plane. If a lens is in-
troduced forming an image of this point, in the plane
of the image the correlation will be obtained. The out-
put will be also affected by a quadratic phase factor,
that can be neglected if an intensity detector is used.

The flexibility of adjusting the system has been in-
creased by defining a procedure for matching the sizes
of the optically obtained FRT and the filter. For this
purpose a transparency containing a set of chirp func-
tions (that for the 2D case are zone plates) and with
a size equal to that of the input scene is prepared. The
chirps are obtained by inverse FRT of a set of isolated
dots, with the desired fractional order. Also a trans-
parency with the FRT of the chirps (consisting on iso-
lated dots) is prepared with the same scale factor as
the CGH used to record the filter. Checking the match-
ing of the dots with the optically obtained FRT of the
chirps the perfect scaling adjustment is obtained. The
setup of Fig. 2 is not the only possible one. It pro-
vides a FRT with an additional quadratic phase factor.
This permits the adjustment of distances to match the
size. A similar setup may be prepared that produces
an FRT without any additional phase factor. Neverthe-
less, in this case the magnification of the FRT would
be fixed. It is also worthwhile to note that if a joint
transform fractional correlator is used, i.e. if the input
transparency contains both the target and the scene,
then the quadratic phase factor affects the full joint
spectrum. When the joint spectrum is recorded in in-
tensity it has no influence in the output plane. Then
this FRT joint correlator would be equivalent to a mis-
focused conventional JTC [16].

3. Adjustment procedure and experimental results
3.1. Fractional correlation

In order to detail the adjustment procedure, in this
section the steps for performing a fractional correla-
tion are described. The setup used in the experiment
is shown in Fig. 2. The goal is to obtain a fractional
correlation with order P = 0.5. The input image used
in the optical and computer experiments is shown in
Fig. 3a. It is a 256 x 256 binary image taken from a
CCD camera. The filter is prepared for the detection
of the upper screw (marked with an arrow in the fig-
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(@ (b)

Fig. 3. (a) Input scene for the fractional correlator. The target is
indicated with an arrow. (b) Digital fractional correlation obtained
for P =0.5.

ure) as a Detour Phase type computer generated holo-
gram [18]. An FRT of order P = 0.5 is computed
and its amplitude and phase are coded in the holo-
gram. The algorithm used to calculate the FRT is based
on Hermite-Gaussian functions and was introduced in
Ref. [17]. Both, the input image and the hologram are
printed in a laser printer and photoreduced down to
approximately 10 mm size. The pixel size in the input
transparency defines the global scaling parameter, fi,
equal for input and filter. In our setup, we will match
the fi value of the system to the one of the trans-
parencies. The ratio between the global size of the in-
put and the hologram determines the relative scaling
parameter, @, of the output. This is a fixed parameter,
independent of f). For the sake of later comparison
a computer simulation of the fractional correlation is
depicted in Fig. 3b. A distinct correlation peak corre-
sponding to the target in the upper part of the image
can be seen. The other two objects, identical to the
target, are not detected owing to the distance from the
target and the shift variance of the procedure.

The first step in the setup contains a point source
connected with a lens to produce a convergent beam.
Therefore the degree of convergence is adjustable eas-
ily by changing the parameter d, which means moving
the input transparency along the axis. Once the order
(P), the relative scaling factor, a, and the distance d
have been established, the distance between input and
FRT planes, Z, is given by Eq. (17). This distance
can be expressed as

Z =d(1+acosg). (20)

Every pair of distances (Z, d), is connected with a
different scaling parameter f;. Now it is necessary to

Fig. 4. Experimental output of the adjustable fractional Fourier
correlator.

select the proper pair of distances that will match the
sizes of input and filter transparencies. To get started
we generate an image with three delta-peaks and dig-
itally performed an inverse FRT of order P = —0.5.
This results in a three overlapping Fresnel zone plates
pattern. On the other hand we prepare the three delta-
functions as a transparency. Hence placing the Fres-
nel zone plates pattern into the converging beam we
can find the proper FRT plane of order P = +0.5
at distance Z by adjusting the distance d and match-
ing the transparency with the optically obtained delta-
peaks. Note that at least two delta-peaks have to be
on the mask in order to obtain exact matching of
both scales. This matching can be obtained quite ac-
curately by magnifying this plane ontc a CCD-chip
while adjusting. The proper FRT plane is now fixed
and the filter for the fractional correlation is placed
there. The filter is computed with the above mentioned
HG functions algorithm, and it is displayed with the
same pixel size than the adjusting transparency con-
taining the delta functions. Hence, the filter matches
with the optically fractional transformed input pattern
except for a quadratic phase which produces a diver-
gent beam after the fractional correlation. This beam
diverges from a distance [, according to Eq. (19).
Therefore the last step of the setup is to focus the
divergent beam to obtain the final correlation peak.
Neither for the FRT stage, nor for the second Fourier
transformer it is demanded any special characteristics
for the lens. Using a lens the correlation is focused
on a CCD camera and the intensity is recorded in a
computer by means of a frame grabber. The experi-
mental output is shown in Fig. 4. It agrees well with
our computer simulations (Fig. 3(b) ). For the sharp-
ness of the fractional correlation peak (PCE) we con-
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Fig. 5. Modified setup for performing chirp filtering.

sider the following. Generally speaking the larger the
extensions of the transformed object in the fractional
domain the smaller the extension of the output will
be after the final Fourier transform. This is related to
the scaling property of the Fourier transform. An ad-
ditional advantage of our modified setup is that it can
be adjusted for any fractional correlation order with-
out changing the focal length of the lens. This would
be unavoidable for a fractional correlator consisting of
type [ or type II modules [17].

3.2. Fractional spatial filtering

A similar idea can be applied for chirp filtering. If
the scene is corrupted by a chirp noise, it would be
impossible to remove it in either Fourier or in spatial
domain. The chirp, on the contrary, will be well fo-
cused in a FRT plane. Thus a spot in the proper frac-
tional domain (at the P value that concentrates the
chirp) will completely remove the noise.

For filtering chirp background noise we introduce
a similar modified setup to the one discussed above.
The illuminating part of this modified filtering setup
is equivalent to the one in Fig. 2. Chirp filtering with
a setup containing type I modules was described in
Ref. [13]. With our modified configuration shown in
Fig. 5 we can adjust again the FRT-plane, this time
for spatial filtering. Here we prepare an input pattern
similar to Fig. 3a but with a three Fresnel zone pattern
as background noise (see Fig. 6a). The Fresnel zone
plate pattern will focus in the fractional Fourier plane
of order P = +0.8 leading to three delta peaks. Here
we prepare a filter with three band stop dots of equal
spacing. Because our input pattern is a real function
we have to filter for the order P = —0.8 =2 - 0.8 =
1.2 in addition [13]. This is implemented by setting
a lens of focal length f = d/2 in the Fourier plane of
the convergent beam. This condition is not restrictive,

@ (L]

Fig. 6. Example of chirp noise removal. (a) Input scene of Fig.
3a with chirp noise as background. (b) Experimental output after
filtering the chirp background noise.

as the parameter ¢ can be varied by the position of
the first lens. Imaging of the input transparency is ob-
tained at the rear focal plane at distance d (4f-setup).
As stated above imaging is equivalent to an FRT of
order P = 2. Hence, the plane of an FRT of order
P =2 — 0.8 of the input object is located at the same
absolute distance z for order P = 40.8 but now mea-
sured from the output plane according to the diver-
gent beam after the lens. Note that this setup is totally
symmetrical for the two filter planes with respect to
the Fourier plane and therefore both filters have equal
size. The experimental output obtained after remov-
ing the chirps in the two fractional planes is shown in
Fig. 6b. It agrees well with computer simulations.

The removing of the central chirp distorts the in-
ner part of the image due to cutting information in
the central regions of the fractional planes. There the
delta peak and the fractional transform of the input
object are overlapped, and it is impossible to remove
the chirp without blocking a small part of the FRT of
the input pattern. On the contrary the outer chirps are
totally spatially separated in the fractional domain ac-
cording to their out of center location. After filtering
no information of the object is lost in this case. The
outer parts of Fig. 6b are well reconstructed, with the
only artifacts due to the coherent illumination and ex-
perimental sources of noise.

4. Conclusions

In this paper we introduce a modified optical setup
for the implementation of the fractional correlation.
This setup beats the previous ones from the experimen-
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tal point of view because of the accurately adjustable
fractional filter plane. It contains convergent beam il-
lumination and an adjusting device for localization of
the proper fractional Fourier plane. The main advan-
tage of the modified fractional correlator lies in the
freedom of adjusting the scale between the input pat-
tern and the filter. In addition the same setup can be
used for different fractional orders without changing
the lenses’ focal lengths. Experimental results are in
favor for our configuration.

Based on the same principle, a setup for spatial frac-
tional filtering of chirp noise is proposed. Experimen-
tal results are presented, for both fractional correlation
and chirp noise removal.
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