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Abstract

A bank of wavelets is used for pattern recognition by means of sequential filtering. Each element of the bank is matched
to a different wavelet coefficient of the target. A sequential process leads to a set of correlation outputs. Post-processing by
means of a fast blending method provides the final output correlation. Both computer simulations and optical experiments
are presented, showing the discrimination capability for this implementation.
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1. Introduction

The field of pattern recognition has been a subject
of interest in the optical community during the last
thirty years. Since the first patents and experiments
in the decade of 60 with incoherents correlators,
there has been a great progress, but the problem is
still alive owing to its intrinsic complexity. A pattern
recognition process usually involves three steps. First,
a preprocessing of the input target is made in order
to prepare it for filtering. Later, the filtering is
performed and a correlation image is obtained. Fi-
nally, some post-processing technique is carried out.
Thus in the final correlation output the recognition
peaks are enhanced and the possible false alarms are
rejected.

Between the differents methods to perform a pat-
tern recognition process (joint transform correlators
[1], neural networks [2], feature analyzers [3], etc.)
the optical coherent correlation by means of holo-

graphic filters has been extensively studied. Since
the introduction by Vander Lugt of the classical
matched filter (CMF) [4] many other holographic
filters have been developed. The performance capa-
bilities of these filters depend on the particular fea-
ture to be stressed. For example, the CMF has low
sensitivity to additive Gaussian noise, the phase-only
filter (POF) [5] yields an excellent light efficiency,
the synthetic discriminant function (SDF) filter [6]
allows the recognition of various targets, and so on.
It is well stated that improving one performance
parameter means deteriorating another one [7]. Thus
the study of possible trade-offs between different
parameters have become an interesting item. As a
result there have been reported filters like the opti-
mal trade-off (OT) filter [8], the minimum average
correlation energy (MACE) filter [9], and so on. The
use of passbands allows the improvement of the
discrimination and the signal-to-noise ratio but the
price is a reduction in the ligth efficiency [10,11].
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On the other hand, the wavelet transform is a
subject of interest in optics and others fields as
astrophysics, mechanics, geophysics, and so on. The
wavelet transform allows the decomposition of a
one- or two-dimensional signal into a time-frequency
or a space-frequency joint representation. The signal
to be analyzed is correlated with a bank of functions,
called wavelets. Each of the wavelets are derived
from an original mother wavelet by means of dila-
tion and shift operations. The interest showed by the
optical community can be seen in the extensive
literature produced in the last years [12]. Szu et al.
[13] showed the advantages of the wavelet transform
over the Fourier transform and the windowed Fourier
transform and considered the wavelets as a bank of
Vander Lugt matched filters. Several architectures
for the optical generation of the wavelet transform
have been developed. Zhang et al. [14] made an
optical system for performing the wavelet transform
of a one-dimensional signal. An intensity-modulated
wavelet mask represented as a group of bandpass
filters was used to filter the incoming signal. Sheng
et al. [15] implemented the wavelet transform of a
one-dimensional signal using an optical multichannel
correlator with a bank of matched filters encoded as
optical transmittance masks. Medlovic and Konforti
[16] implemented the wavelet transform of two-di-
mensional objects by the use of a conventional co-
herent correlator with a multireference matched fil-
ter. The wavelets of the bank are spatially multi-
plexed with different reference-beam directions.
Joseph et al. [17] employed holographic recording in
a photorefractive material for the implementation of
a wavelet transform of two-dimensional images. The
derivation of the wavelets of the bank was achieved
by the use of an optical feedback loop. Stolfuss et al.
[18] used coding methods of diffractive optics to
transform the original complex-valued distributions
of multiwavelets filters into light-efficient quantized
phase-only distributions preserving the original filter
functionality. Sheng et al. combined wavelet filters
and classical matched filters for optical pattern
recognition purposes [11]. Later, Roberge and Sheng
analized the combination of wavelet filters and
phase-only filter in order to increase the light effi-
ciency of the wavelet matched filter [19] and imple-
mented it using an on-axis optical correlator by
means of a liquid-crystal television [20]. This wavelet

matched filter shows improved discrimination capa-
bility with respect to the classical matched filter and
improved signal-to-noise ratio with respect to the
phase-only filter. Nevertheless, in order to obtain a
good compromise between their performance param-
eters it is necessary to look for suitable scale factors
of the wavelets encoded in the filter. This is not an
obvious task and could be excessively time consum-
ing.

In this paper we present a sequential approach for
pattern recognition tasks based on the use of a bank
of filters matched to different wavelet coefficients of
the target. A subsequent post-processing of the corre-
lations obtained with the different filters in the bank
leads to a better recognition ability. As we will see
later, the use of an appropiate bank of wavelets, in
combination with the post-processing of the outputs
correlations, eliminates the necessity of looking for
suitable parameters of the wavelets for each input
object to be detected and improves the recognition
ability with respect to the classical matched filter
(CMF), the phase-only filter (POF), the inverse filter
(IF), and the previous wavelet matched filter (WMF).
Section 2 recalls the wavelet transform theory. Sec-
tion 3 deals with the recognition procedure. In Sec-
tion 4 computer simulations are presented. Experi-
mental results are shown in Section 5, and finally
Section 6 sets out the conclusions.

2. The wavelet transform

The wavelet transform (WT) of a bidimensional
function f(x, y), for instance an image, is defined as
the correlation between that function and a set of
functions {A,(x, y)}, called wavelets

Wi(a, b; x, y) =f(x, y)*h(x,y). (1)

Wavelets are generated from a mother wavelet func-
tion A x, y) as following

1 (x—b_‘. y~b})

h.s(x,J’)=;h . g

(2)

where s is the scale parameter and b= (b,, b)) the
translation parameter. For a function to be consid-
ered as a wavelet it must oscillate in such a way that
it has zero mean. This is known as the admissible
condition. The correlation with a particular daughter
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wavelet, for example of scale parameter s, is called
the wavelet coefficient of scale s,. The wavelet
transform can be written in the frequency domain as
[21]

We(s,b; x,y) =s[Z.[Z.F(u,v) H" (su,sv)

Xexp[2wi(bxu + byv)] dxdy,
(3)

where a capital letter indicates a Fourier transforma-
tion. As we will see below, the factor H *(su, sv)
can be interpreted as a frequency filter and imple-
mented in an optical correlator. It operates like a
passband filter. When the scale parameter s varies
the filter is reduced or dilated, so it is possible to
work in different zones of the frequency spectrum of
the image f(x, y).

The particular wavelet function varies according
to the specific application. A few examples are: the
D4 wavelet (Daubechies’s wavelet) in analysis of
vibrations [22], the Haar’s wavelet in analysis of
fractal objects [23], the Meyer-Yamada's wavelet in
seismic phase identification [24], and so on. In the
field of optical pattern recognition a useful wavelet
is the bidimensional Mexican-hat wavelet, as was
pointed out by Sheng et al. [11]. Its analytical form is

2+y2

. ) (4)

i.e. the second derivative of the Gaussian function.
Its Fourier transform is

H(u,v) = 4w (4 + v?) exp[ — 27 (u® + 0?)].
(5)

It can be seen that this function has revolution
symmetry. This is not a necessary requirement. If we
wish to enhance the target in some particular direc-
tion a wavelet without revolution symmetry as, for
example, the Arc wavelet or the separable Mexican-
hat wavelet can be used.

h(x,y)= [(x2 +y¥)— 2] exp(— *

3. Sequential wavelet matched filtering

The recognition operation has been implemented
in a conventional variable scale correlator working
under spherical illumination. Let us suppose that

f(x, v) represents the object to be recognized and
h(x, y) a daughter wavelet. We define one filter of
the bank of filters as

F(u,v)|H(su,sv)l, (6)

where the first factor operates as a classical matched
filter. We will refer to it in the following as the
matched factor. The second factor acts, as was men-
tioned before, like a passband filter, selecting the
zone of the Fourier transform of the object to be
correlated. We will refer to it as the wavelet factor.
In the recognition procedure the wavelet factor im-
plicitly performs a preprocessing of the input scene.
So, it may be interpreted as that the matched factor
does not operates over the scene itself but over the
wavelet coefficient obtained. Sheng et al. called that
filter wavelet matched filter [11]. The definition given
by us basically is almost equal in its analytical form,
but our goal is to go deeply into the wavelet trans-
form concept taking into account a set of daughter
wavelets, i.e. a bank of wavelets filters, instead of
only one of them. Thus each wavelet filter enhances
only the spectral content of the object carried by it.
As different wavelets act over different zones of the
spectrum of the object then the correlation process
will be carried out among several versions of it, i.e.
several wavelet coefficients. The matched filter has
been made in two separate elements. The first ele-
ment consists of a holographic filter, either a classi-
cal matched filter (CMF) or a phase-only filter (POF),
and corresponds with the matched factor. Let us
recall that this factor is F*(u, v) for the CMF and
F*(u, v)/|F(u, v)| for the POF. The second element
consists of a bank of photographic filters. A wavelet
factor with a different scale parameter has been
recorded in each plate. The matched filter is the
superimposition of both elements. We will refer to it
in the following as wavelet coefficient matched fil-
ter. In Fig. 1 the modulus of the amplitude distribu-
tion for two filters matched to different wavelet
coefficients are shown. In a CMF there is a matching
to the phase of the target and, at the same time, an
amplitude filtering according to the modulus of its
Fourier transform. A POF eliminates this last filter-
ing allowing for the selection of any desired spectral
range. For instance, parts of the target spectrum can
be blocked in order to optimize the signal-to-noise
ratio and the peak-to-correlation energy [10,11]. The
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Fig. 1. Modulus of the amplitude distribution for two filters matched to different wavelet coefficients, (a) s
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use of wavelets as pass-bands permits to modulate
the amplitude and to select parts of the object spec-
trum providing a good discrimination and avoiding
the problem of the high sensitivity to noise of POFs.

The proposed recognition algorithm is as follows:
given a particular scene g(x, y) as the input of the
correlator, we introduce in the setup a filter, the
wavelet factor of it corresponding to a given scale
parameter, namely s,. The correlation output C(x,
y; s,) is grabbed in a computer for a posterior
processing. Next, the wavelet factor of the filter is
changed for other corresponding to a different scale
parameter s, and the correlation Cy(x, y; s,) is
grabbed. This process is repeated until all the wavelet
factors of the bank are used and a set of correlations
{C(x, y; 5))} is obtained. A digital recombination at
a high rate of the elements of this set yields the final
output correlation. The chosen method consists of
building an output image from the cascade of corre-
lations for all wavelets, by simple multiplication of
these images, pixel by pixel, i.e. the final output is
II, C{x, y; s;). If a pixel has a high intensity on
every correlation, the final image pixel will have a
high intensity value, while a pixel having a low
intensity in one or more correlation results in a
low-value output pixel. The pointwise combining
operation can be accomplished at a high rate, yield-
ing a single output plane in reduced analysis time.
Moreover, this method greatly reduces not only the
false alarm peaks but also the sidelobes in the output
plane. Another simple blending of the images is also
possible [25,26].

Several remarks about this filtering approach must
be done. The first one refers to the sequentiallity of
the process. In recent papers image analysis by
means of optical wavelet transform have been made
using parallel methods. For instance, Mendlovic and
Konforti [16] encoded with different reference beams
several daughter wavelets on a holographic filter.
The result is a multireference matched filter that
provides a simultaneous wavelet transform represen-
tation. The wavelet coefficients are spatially sepa-
rated of each other at the output plane. Nevertheless,
it can be problematic to multiplex wavelets overlap-
ping each other; the efficiency of the filter reduces
and crosstalk appears. So the number and the shape
of wavelets to be encoded is restricted. Also, an
interesting approach was made by Stolfuss et al. [18].

They obtain several coefficients simultaneously by
means of a multifunctional wavelet-filter element.
This filter is coded by iterative techniques as a
diffractive phase element. This way, the packing of
filter responses and the diffraction efficiency are
improved. In the output plane a nonoverlapping dis-
tribution of wavelet coefficients is obtained. A disad-
vantage of the iterative-coding techniques is their
high degree of computational complexity. Unlike this
parallel approach we have worked with a sequential
one. There are several reasons for this. If we work
with a bank of separate wavelet filters then the
wavelets are not multiplexed as in the parallel pro-
cess and the output distributions corresponding to the
correlations with the different wavelet coefficients
appear in the same spatial position. Thus, there is no
problem for centering the different outputs and the
pixel by pixel post-processig can be performed eas-
ily. Additionally, a bank of separate filters provides
more flexibility than a multireference wavelet filter.
We have not to decide which wavelets will be coded
in a multireference filter. We can have a large bank
of wavelets and introduce only those we think that
are interesting. If a wavelet provides no relevant
information we can simply remove it and introduce
another one. This is particularly interesting because
although we have implemented the wavelet compo-
nent of the matched filter as a photographic mask it
is also possible to do it by means of a spatial light
modulator. Finally, the problem of the overlapping
of different wavelets in the filter plane is avoided.
Anyway the sequential process is not intrinsically
better than the parallel one. It is only an alternative
with its advantages and disadvantages. For instance,
the sequentally approach may be problematic in real
time applications owing to the fact that applying
filters of a filter set needs a high computational
effort.

4, Computer simulations

In this section, results of numerical simulations of
the recognition process are presented. For testing the
performance of the sequentially wavelet matched
filtering we used the scene shown in Fig. 2. It
corresponds to a snapshot from a CCD camera, of a
real scene, on a 256 X 256 matrix, and with an
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Fig. 2. Input scene. The targets to be recognizeded are marked by
arrows.

increased contrast (quasi-binary). The target used to
perform the matched component of the filter is
marked with an arrow. We checked both classical
matched filter and phase-only filter. Regarding the
wavelet factor we made a bank of six Mexican-hat
wavelets. The more convenient analytical expression
actually used to compute the wavelet is

u v u? + v? ur+v?
H(—,—)=( 2 )exp(— 5 ] (7

s S s

Thus the scale parameter also represents the distance,
measured in pixels, from the coordinate origin to the
maximum of the wavelet (realize it has revolution
symmetry). Moreover, the normalization factor in-
cluding the scale parameter is removed, in order to
get an improvement in light efficiency. The scale
parameter lies in the interval [15, 50] pixels, thus any
zone of the Fourier transform of the target has at
least one wavelet filter acting on it. For clarity we
will refer to a matched filter combined with a wavelet
factor as wavelet coefficient matched filter (WCMF),
and to a phase-only filter combined with a wavelet
factor as wavelet coefficient phase-only filter
(WCPOF).

Some comments before the explanation of the
results must be done. We will compare the WCMF
and the WCPOF with some popular filters like the

classical matched filter, the phase-only filter and the
inverse filter (also named as non-wavelet filters in
the text). Each of these kinds of filters has its way of
working and we should be careful in their compari-
son. The non-wavelet filters act in one single step.
The correlation of the input object and the filter
yields an output that after a post-processing, for
example, a threshold process, leads to a recognition
response. Unlike this, in the WCMF and WCPOF we
have a bank of filters. The use of a bank of wavelets
means that we are splitting the information of the
input object in several channels, ie. its wavelet
coefficients. We should not compare the perfor-
mances of a single filter of the bank with those of a
non-wavelet filter. Before this, we need to blend the
different correlation outputs obtained with the
wavelet filters. It can be said that the recognition
procedure using a bank of wavelets includes not only
the generation of the filters but also the strategy of
post-processing the information provided by each
filter. In our case we have chosen the multiplication
pixel-by-pixel followed by thresholding of the final
output. Its is very important to remark that the
application of this post-processing over the correla-
tion output obtained with a non-wavelet filter does
not necessarily improve the performances; on the
contrary, the output could degrade. It is clear that if a
correlation signal has a false peak then, for instance
the multiplication process by itself does not remove
it. On the contrtary, the wavelet process splits the
information contained in the scene into several chan-
nels, i.e. the wavelet coefficients. The correlations
obtained for each wavelet coefficient are different. A
false object and a right one differ at least in one
wavelet coefficient (usually in more than one). So,
the false peak does not appear in all the correlations
and therefore the multiplication process removes it.
A similar explanation may be done in the case of
false peaks owing to noise in the scene. Some wavelet
coefficients are more affected by the noise than
others (depending on the spectral distribution of the
noise). So the influence of the noise in the correla-
tion varies according to the wavelet coefficient and
therefore the multiplication process improves the
noise tolerance. An example of this can be seen in
Fig. 3. The correlation intensity distribution between
the scene of Fig. 2 corrupted by additive Gaussian
noise (SNR = 0.64) and a POF is shown in Fig. 3(a).
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It is not possible a correct identification of the
targets. If we apply the post-processing algorithm to
the correlation obtained with the POF, the final
correlation never permits the recognition of the ob-
jects, as can be seen in Fig. 3(b). Nevertheless, in
Fig. 3(c) we can observe how the sequential correla-
tion with a bank of three wavelet coefficient phase-
only filters leads to a recognition of the targets and
the false peaks can be removed with a threshold of
58% (it should be noted that in one of the wavelets
channel false alarms also occur).

In a first step the correlations for each of the six
filters were calculated. They were normalized, in
order to equalize the maximum of the different corre-
lation outputs and be able to mix them, and stored in
memory. Later, was performed, as mentioned above,
the multiplication of these images, pixel by pixel.
Fig. 4(a) shows a 3-D plot of a representative exam-
ple of the correlation obtained with a single WCPOF
(s =30), whereas Fig. 4(b) shows the blending of
three correlation images (s =30, 40, 50) also for
WCPOFs. Before explaining the results it should be
mentioned, regarding non-wavelet filters, that the
classical matched filter does not permit the recogni-
tion of the target in the scene and the inverse filter
misses the recognition with scenes containing even a
low level of noise. So, we will stress the comparison

of results with the phase-only filter. Table 1(a) gives
the perfomance parameters of the POF.

The discrimination ability can be defined as one
minus the ratio of the maximum correlation peak
value obtained for any false target and the minimum
correlation peak value obtained for the true target.
The POF yields a discrimination of 0.89. The dis-
crimination ability obtained with the sequential filter-
ing in Fig. 4(b) is 1 (the highest possible value). The
necessary threshold to detect the true targets is as
low as 1% (for comparison, the threshold obtained
for a POF is 10%). This is due to the multiplication
of the different information carried in each correla-
tion output. A peak corresponding to a false target
will have a low intensity at least in one of the
correlations (probably in the greater part of them), so
the multiplication will make that the final value
drops to a very small quantity. However, there is a
risk. If the number of wavelets is very large perhaps
some of the peaks corresponding to a true target
could be diminished in excess. Thus the target could
not be detected. With additional computer and opti-
cal experiments we have found that a suitable num-
ber of wavelets is between three and six (alternative
post-processings that avoid this problem are actually
under study). Table 1(b) gives the evolution of the
minimum and maximum threshold allowed for a

Table 1

(a) Performance parameters of the phase-only filter

Discrimin. Min. Th. (%) Max. Th. (%) PCE (x 107 2) SNR,,,,
0.89 10 91 6.17 0.66

(b) Evolution of some performance parameters of the wavelet coefficient phase-only filter as a function of the number of wavelets used in

the recognition procedure

1 wav. 2 wav, 3 way. 4 wav. 5 wav, 6 wav.
Discrimin. 0.90 0.90 1.00 1.00 1.00 1.00
Maximum Thres. (%) 92 85 75 65 54 38
Minimum Thres. (%) 8 2 0 0 0 0
PCE (X 1072) 15.54 34.32 44 82 51.51 55.31 57.82
SNR 0.66 0.64 0.61 0.56 0.50 0.41

min

(c) Evolution of some performance parameters of the wavelet coefficient matched filter as a function of the number of wavelets used in

the recognition procedure

1 wav. 2 wav. 3 way. 4 wav. 5 wav. 6 wav.
Discrimin. 0.85 0.97 0.99 1.00 1.00 1.00
Maximum Thres. (%) 100 100 99 98 96 92
Minimum Thres. (%) 15 3 1 0 0 0
PCE(x107%) 2.66 11.09 16.01 19.42 21.48 22.87
SNR,;, 0.27 0.27 0.26 0.28 0.29 031
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correct recognition as a function of the number of
wavelets for the scene of Fig. 2. The minimum
threshold is very small in all cases and stable. How-
ever, the maximum allowed threshold drops from
92% down to 38%. Even though in all cases recogni-
tion is achieved (with a threshold of 10%, for exam-
ple) it would be desirable to have a security rank as
high as possible. A similar behaviour regarding dis-
crimination is reached with WCMFs as is illustrated
in Table 1(c). It is important to remark that the
stability of the peaks is very good. In the worse case
the maximun threshold only drops to 92%.

The peak-to-correlation energy (PCE), defined as
the ratio between the correlation peak energy and the
whole correlation plane energy, gives a measure of
sharpness of the correlation peaks. Again, Tables

(a)

1(b) and 1(c) give the values of this parameter for
WCPOF and WCMF respectively, as a function of
the number of wavelets used. As it was expected the
PCE increases with the number of wavelets. In this
example, the PCE increases from 15.54 X 1072 for
one wavelet up to 57.82 X 1072 for six wavelets in
the case of WCPOF and from 2.66 X 1072 up to
22.87 X 1072 in the case of WCMF. As a reference,
the POF (which is a standard filter that behaves well
in many cases) yields a PCE of 6.17 X 1072, It
should be mentioned that the value of the PCE grows
slowly after having made use of a few wavelets. This
is another reason to maintain between three and six
the number of wavelets in the initial set.

The Horner efficiency [27] (peak value over the
input object energy) gives a measure of the light

Fig. 3. Computer simulation results. Correlation intensity distribution between the scene of Fig. 2 corrupted with additive Gaussian noise
(SNR = 0.64) and (a) phase-only filter, (b) phase-only filter with post-processing of the output correlation, (c) bank of three wavelet

coefficient phase-only filters.
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efficiency of the filters. As it was expected, due to
the bandpass nature of the wavelets filters, the light
efficiency is reduced in comparison with non-wave-
lets filters. We have checked that typical values of
the Homer efficiency are between 0.1% and 1% for
WCMFs, and between 5% and 20% for WCPQFs.
Also, as different wavelet filters have different light
efficiencies, a normalization of the correlation sig-
nals registered by the CCD must be done before
combining them into the final correlation output.

To consider the sensitivity of the filter to noise,
we computed the minimum SNR (SNR ;) that al-
lows for the detection of the target. Gaussian addi-
tive noise is used for calculating this parameter. The
POF has a SNR ;, of 0.66 which can be considered

(b)

a good value. The inverse filter fails the recognition
with a very low noise level present in the scene
input. Its SNR . is as high as 1.95. For this reason
we have not mentioned it in the previous perfor-
mance parameters. Table 1(c) shows that the WCMF
is a very robust filter, with values of the SNR
between 0.27 and 0.31. The improvement of noise
tolerance is great. Regarding the WCPOF, its SNR |
is between 0.41 and 0.66. These results show a
behaviour of the same order or better than the POF.

Taking into account all the performance parame-
ters we can conclude that sequential matched filter-
ing of wavelet coefficients, both with WCMF and
WCPOF, permits a pattern recognition with high
discrimination ability and noise tolerance. It im-

Fig. 3 Continued.
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Table 2

Comparison between optical results and computer simulation results of the thresholds needed to detect the target for wavelet coefficient

phase-only filters

[ wavelet 3 wavelets

simulation optical simulation optical
Discrimin. 0.90 0.66 1.00 0.97
Upper thres. (%) 92 89 75 75
Lower thres. (%) g 30 0 2

proves the performance of the classical matched
filter, the phase-only filter and the inverse filter. The
bandpass nature of the wavelet filters implies re-
duced light efficiency in the WCMF, which may be
alleviated in the WCPOF by the use of a phase-only
filter as matched factor of the filter.

(©)

5. Optical experiments

In addition to the computer simulations we have
checked experimentally the capabilities of filtering.
The setup consisted of a conventional variable scale
correlator working under spherical wave illumina-

Fig. 3 Continued.
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tion. The input scene and target were the same as in
computer simulations and were recorded in high
contrast photographic film. The matched component

of the filter was a computer-generated hologram
calculated by the Burkhardt method [28], plotted
with a 300-dpi laser printer, and photoreduced onto a

(a)

Fig. 4. Computer simulation results. (a) Correlation intensity distribution with the wavelet coefficient phase-only filter (WCPOF) for s = 30.
(b) Product of the correlations obtained with three scale parameters, s = 30, 40, 50.
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(a)

Fig. 5. Optical results. (a) Correlation intensity distribution with the wavelet coefficient phase-only filter (WCPOF) for s = 30. (b) Product

of the correlations obtained with three scale parameters, s = 30, 40, 50.

lithographic film down to 10 mm size. The wavelet
component of the filter was generated by computer
and also photoreduced onto high contrast photo-
graphic film. Output images were taken in a frame
grabber with a CCD camera and stored in the com-
puter memory for later analysis.

An illustrative example is given in the following.
Fig. 5(a) shows the 3-D plot of the optical correla-
tion for the scene in Fig. 1 and a WCPOF with scale
parameter s = 30, and Fig. 5(b) shows the blending
of three optical correlations obtained with WCPOFs
(s =130, 40, 50). Taking as reference the Horner
efficiency of the POF (100%), the values of this
parameter for these filters are 9%, 13% ans 16%
respectively. Although light efficiency is reduced,
there was no problem in the detection process. Addi-

tionally, Table 2 compares some performance param-
eters of these optical results with those obtained in
computer simulations. One can clearly observe in
Fig. 5(a) the three high correlation peaks correspond-
ing to the three screws to be detected. The upper
threshold is 89% (92% for the simulated result). The
background is worse compared with that of the
computer simulation (lower thresholds of 30% for
the experimental result and only 10% for the simu-
lated one) because of the influence of the quantiza-
tion of the hologram and other sources of noise
inherent to optical setups. As is illustrated in Fig.
5(b), when the blending method is applied to the
optical results, the background decreases drastically
and the final correlation is similar to that obtained in
numerical simulation. The upper and lower thresh-
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(b)

Fig. 5 Continued.

olds are 75% and 2% respectively, thus the discrimi-
nation ability reached is very high (DA = 0.97).

6. Conclusions

We have presented a sequential wavelet matched
filtering for pattern recognition. The method pro-
posed is independent of the object. It uses a set of
wavelet functions with different scale parameters.
We have comproved that the suitable number of
wavelets in the bank is up to six. Each filter is
composed of a matched factor, i.e. a classical matched
filter or a phase-only filter, and a wavelet factor.
Changing the scale parameter of the latter and per-
forming the correlation for every wavelet one obtains
a set of correlation images. Each correlation contains
information of the matching between the wavelet

coefficient of the scene being analyzed and the
matched factor. The fact of splitting the initial target
into several wavelet coefficients provides more de-
tailed information than the analysis of the scene in
one single step. The blending of the correlation
images is made by means of a multiplication pixel
by pixel, and provides a unique correlation output
with high detection peaks and low sidelobes and
background. Both numerical and optical experiments
are presented. More research must be done in order
to improve the real time capabilities of the process.
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