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Abstract

Here we present a fast algorithm for Fresnel integral calculation. Some fast algorithms using the fast Fourier transform
are analysed and their performance has been checked. These methods are of easy implementation, but are only valid for a
specific range of distances. Fast algorithms based on the Fractional Fourier transform allow accurate evaluation of the
Fresnel integral from object to Fraunhofer domain in a single step. q 1999 Published by Elsevier Science B.V. All rights
reserved.
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1. Introduction

Fresnel diffraction is a classical topic in wave
optics since this formalism describes beam propaga-
tion between object and Fourier domain. Although
most practical problems may be treated in those two
domains, in many cases it is interesting a more
general Fresnel diffraction treatment. Unfortunately,
accurate evaluation of diffraction patterns is not an
easy task. Among the different diffraction domains,
only two admit a clear analytic or numerical treat-
ment: one of them is the object domain, which
corresponds to the trivial case. The other one is the
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Fraunhofer domain, that can be evaluated by means
of the Fourier Transform. Under some general as-

Ž w x .sumptions see Ref. 1 , for instance , the Fourier
transform can be numerically evaluated through the

Ž .Discrete Fourier Transform DFT . Efficient imple-
mentation of the DFT can be performed through the

Ž . w xFast Fourier Transform FFT algorithm 2 .
For the most general case of Fresnel patterns

calculation, the solution is not so clear. Analytical
calculation of the Fresnel integral is not always
possible, and, in any case, this calculation does not
always ensure an accurate sampling of the output.
Furthermore, calculation of diffraction integrals is

Ž .usually very inefficient time consuming and thus
direct evaluation methods are not suitable for inten-
sive calculation of Fresnel patterns.

The Fresnel pattern produced by an object u at a0

distance z when it is illuminated by a monochro-
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matic plane wave whose wavelength is l can be
expressed as:

p
2u x su x )exp i xŽ . Ž .z z 0 z zž /l z

q`p p
2 2sexp i x u x exp i xŽ .Hz 0 0 0ž / ž /l z l zy`

=
2p

exp yi x x d x 1Ž .z 0 0ž /l z

where constant factors have been dropped. In this
expression, and in the remainder of the paper, we
will use 1-D formulation. Extension to 2-D is
straightforward.

Ž .Let us consider the input object u x being of0

finite extent D x and let us assume that its fre-0

quency content is negligible outside a band of exten-
sion Dn . This last assumption implies that the0

frequency extent of the output signal Dn remainsz

invariant while the pattern propagates. This can be
Ž .checked by taking the Fourier transform of Eq. 1 :

w x 2FF u su su =exp yipl znŽ .˜ ˜z z 0

n
2f rect =u =exp yipl zn 2Ž . Ž .˜0ž /Dn 0

with n being the variable in the frequency domain.
w xFrom Nyquist theorem 3 , good sampling of a pat-

tern requires that the sampling rate, d x fulfills:z

1 1
d x F ' 3Ž .z

Dn Dnz 0max

and thus, it will remain constant independently of the
considered distance. On the other hand, note that the
physical extension of the diffracted pattern, D x z

enlarges with the distance:

D x sD x ql zDn 4Ž .z 0 0

Therefore, accurate evaluation of a propagated pat-
tern requires an increasing number of sampling points
N at the output plane. It is worth to point that this
limitation is imposed by the integral itself and not by
the evaluation method.

At this point we have three different ways of
evaluating Fresnel patterns:
Ø Increasing N with z, and thus, maintaining con-

stant d x . This option is not operative for z™`.z

Ø Maintaining d x and N as constants. Thus, forz

z™`, the relative portion of the output plane
that is being sampled goes to zero.

Ø Increasing the sampling period d x with the dis-z

tance while the number of samples in each pattern
will remain the same.
Dealing with specific digital calculation methods,

several numerical techniques have been proposed for
w xdiffraction integral computations 4–7 . Unfortu-

nately, the techniques there proposed do not lead to
easy algorithms of immediate and simple analysis
and implementation.

w xFourier transform-based methods 8,9 provide
facile implementation and understanding since DFT
algorithm is of wide-use in signal processing tasks.
The main drawback of these methods is the require-
ment of two different algorithms for Fresnel pattern
calculation: one for near-field patterns and another
for the far-field case.

An alternative formalism for dealing with do-
mains between object plane and Fourier domain is

Ž . w xthe fractional Fourier transform FRT 10–12 .
Methods for calculating the FRT through the fast

w xFourier transform algorithm are also available 8,13 .
These methods allow the calculation of FRT patterns
for all the range of orders between object an Fourier
domain in one single step, by using one simple
algorithm.

The relationship between Fresnel diffraction pat-
terns and FRT patterns has been shown in many

w xpapers by different methods 14–19 . This relation
may be exploited here to calculate the Fresnel
diffraction patterns through a fast FRT algorithm.

The motivation of this paper is to analyze FFT-
based algorithms for Fresnel integral calculation.
Taking into account the inherent limitations of the

w xFresnel integral calculation, direct methods 8,9 will
be analyzed and their restrictions will be clearly
stated. These direct methods do not cover all the
range of propagation distances from zero to infinite.
We will show here that FRT-based methods over-
come this problem and, to our knowledge, permit the
calculation of Fresnel patterns up to theoretical lim-
its. Furthermore, the final algorithm that will be
presented here is of easy implementation and under-
standing, and will allow the calculation of a Fresnel
pattern in FFT time.

In Section 2 FFT-based methods presented in
w xRefs. 8,9 for diffraction patterns calculation will be
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reviewed. In Section 3, FRT based for Fresnel calcu-
lation algorithms will be introduced, and their perfor-
mance will be studied in Section 4. Some numerical
simulation, in Section 5, will show the performance
of the different methods here discussed. Finally, the
main conclusions will be outlined in Section 6.

2. FFT-based algorithms for Fresnel diffraction
calculation

Ž .From Eq. 1 it is clear that Fresnel diffraction
integral can be interpreted as the Fourier transform
of the product of the input signal and a quadratic
phase factor. The whole result is also multiplied by a
quadratic phase factor.

Ž .Expression 1 can be calculated by means of the
DFT, just by proper sampling of the integral. Let us
consider D x and D x the sampling extensions at0 z

object and Fresnel domain, and N the number of
samples in both domains. Therefore, by imposing the
following relation:

D x D x sl z N 5Ž .0 z

Ž .the sampled version of Eq. 1 results into:

l z
X 2

Xu sexp ip mŽ .z m 2ž /D x0

2mD x D x0 0 2=DFT u exp ip m0 2ž / ž /N l z N

6Ž .
where

x smd x , x smd x 7Ž .0 0 z z

d x sD x rN and d x sD x rN are the sampling0 0 z z

periods in the object and Fresnel domain, and m and
X w xm are integers 8 .

Ž .The expression written in Eq. 6 will provide a
good evaluation of the Fresnel pattern if the Nyquist

w xsampling condition is fulfilled 3 . Assuming that the
Ž .object u x has frequencies smaller than those in0 0

the quadratic phase factors, the main problem when
Ž .calculating Eq. 6 comes from an adequate sampling

of those exponential functions. Admitting sampling
just in the Nyquist limit, the range of distances
where the Fresnel patterns are evaluable results:

D x 2
0

zG 8Ž .
lN

The same argument can be applied to the global
Ž .phase factor, multiplying the DFT in expression 6

giving the condition:

D x 2
0

zF 9Ž .
lN

A good sampling of the Fresnel pattern is accom-
plished only if the equality is assumed in both
conditions.

Ž .Note that, from Eq. 5 , if D x and N are input0

parameters, for z tending to zero, the output sam-
pling area will tend to zero, and thus, no near-field
patterns can be evaluated. As z increases, the output
area that is being sampled, i.e. D x wides linearlyz

Ž .with the distance, as can be deduced from Eq. 5 :

l z N
D x s 10Ž .z

D x0

For large values of z, notice that the direct algorithm
we just exposed provides the whole extent of the
final diffraction pattern. Nevertheless, this result is

Ž .only compatible with condition 8 , coming from
appropriate sampling of intensity Fresnel patterns.

As we said in the Introduction, maintaining the
number of samples N as a constant leads to methods
that provide bad-sampled patterns. Since for long
distances the phase has a very rapid variation, this
information in the pattern cannot be retrieved be-
cause very strong aliasing effects. In a general case,
intensity profiles are of soft variation, and thus of
easier evaluation than the phase. Because all these
reasons the direct-evaluation method is valid for just
far-field amplitude evaluation.

An alternative way of evaluating Fresnel diffrac-
tion patterns is through the calculation of the propa-

w xgated angular spectrum 8,9 . The Fourier transform
Ž .of Eq. 1 can be written as:

u j Au j exp yipl zj 2 11Ž . Ž . Ž .Ž .˜ ˜z 0

where the dependence on z of the quadratic phase
factor is now just the contrary than in the previous
case.

The alternative algorithm will consist of taking
the Fourier transform of the input signal, multiplying
it by the sampled version of the quadratic phase
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Ž .factor in Eq. 11 , and then performing an inverse
Fourier transform, i.e.:

mD x0y1u ADFT DFT uŽ . mz 0½ ž /N

=
l z

2exp yip m 12Ž .˜2 5ž /D x0

Now, the Nyquist sampling condition over the
quadratic phase factor will provide the following
condition:

D x 2
0

zF 13Ž .
lN

which holds for both amplitude and phase evalua-
tion, and the method is valid for near-field Fresnel
patterns calculation.

There is an apparent contradiction between the
two methods explained here. Note that both of them
provide an evaluation of the same integral, but they
lead to completely different results. The keypoint of
all the process is the different use of the DFT
algorithm to perform the calculation:

Let us remember that, as we said in the first
section, good evaluation of Fresnel patterns requires
that the sampling period remains constant for every
pattern; i.e. d x sd x , independently of the evalua-0 z

tion method. Otherwise, the scaling condition that is
imposed by the DFT, when the diffraction pattern is

Ž .evaluated through Eq. 6 can be derived from Eq.
Ž .5 :

l z
d x s 14Ž .z Nd x0

and N is an input parameter that will remain con-
stant for every pattern. Thus, we are under the third
assumption that was stated in the Introduction, and
d x must increase with the distance in order that thez

whole extent of the pattern is sampled.
When angular-spectrum propagation is used in-

stead, the use of two DFT’s cancels the scale factor
between the input and the output, and finally:
d x sd x 15Ž .0 z

Thus, the method works under the second assump-
Žtion d x and N are constants in the propagationz
.process . Since the method is valid for near-dis-

tances, we can assume that the algorithm is valid
while the size of the pattern does not change signifi-
cantly.

Note that, in the Nyquist limit, both methods
provide the same result. Just by taking the equality in

Ž . Ž .Eqs. 8 and 13 , and substituting the result into Eq.
Ž .14 , we obtain that the sampling there obtained

Ž .coincides with the one obtained in Eq. 15 .
From all this reasoning, we can conclude that

every calculation method imposes its own contour
conditions over the Fresnel integral that affect the
final result. Usually, these contour conditions are
imposed at the beginning, and then, a specific algo-
rithm is constructed. In our case, we have followed
the inverse way, and thus, an apparent contradiction
has appeared.

Summarizing, we have one direct method that
allows far-field diffraction patterns calculation, and
one method that permits the calculation in the near-
field case. Since both methods overlap at a certain
distance, the calculation of any distance Fresnel pat-
tern, up to the theoretical limit imposed by the
Fresnel integral, is permitted, but not in a single
way.

3. Fractional Fourier transform versus Fresnel
diffraction integral

< <The FRT of order 0- p -2 of an input function
Ž . Žu x provided by a Lohmann Type II system see0 0

.Fig. 1 can be expressed as:

ip
2u x sexp xŽ .p p pž /l f tanf1

=
` ip

2u x exp xŽ .H 0 0ž /l f tanfy` 1

ip
=exp y x x d x 16Ž .0 p 0ž /l f sinf1

being fsppr2, l the illuminating light wave-
length and f an arbitrary fixed length.1

Comparing the Fresnel diffraction expression in
Ž . Ž .Eq. 1 and the FRT expression in Eq. 16 , one can

notice that they are quite similar: both have quadratic
phase factors that can not be immediately sampled

Ž . w xfor all the distances or p order range 8 . Neverthe-
less, calculation of FRT patterns can be done by
using one single algorithm for the whole range of

w xp-orders from zero to one, as was shown in Ref. 8
w xand 13 . Thus, it is interesting to perform a transfor-

mation on the Fresnel integral and convert it into a
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Fig. 1. Lohmann’s Type II bulk-optic system for obtaining the
Ž .FRT pattern of order ps2frp of the input object u x .0 0

FRT integral. Doing so, Fresnel calculation algo-
rithms can be reduced to one compact method imply-
ing one or two discrete Fourier transforms, which
will be applicable in all the range of distances.

w xIn Ref. 17 it is shown, through a formal solution
of the wave equation, that the field distribution at
any distance from the object can be expressed as an
FRT of the input distribution corrected by a scaling
function, depending on the distance, and by an addi-
tional phase factor. From there, it can be deduced
that the final expression for a Fresnel pattern at a
distance zs f tanf in terms of an FRT distribution1

results:
2x ip xp p

u sexpz ž /b l f sinfcosf1

=
` ip

2u x exp xŽ .H 0 0 0ž /l f tanfy` 1

i2p
=exp y x x d x0 p 0ž /l f sinf1

tanf
2 psexp ip x F u x 17Ž . Ž .p 0 0ž /l f1

with bscosf. Numerical evaluation of the above
written expressions needs numerical calculation of
an FRT integral and sampling of an additional
quadratic phase factor. For the FRT patterns calcula-
tion two different methods will be considered here
w x Ž .8,13 . We will call them Single-FFT S-FFT and

Ž .Double-FFT D-FFT method, according to the num-
ber of FFTs that must be performed to obtain a final
FRT distribution.

Note that, aside from other considerations, both
methods were based on calculating the FRT integral

itself, and sampling the phase factor outside the
integral. In the case we are interested in, the ampli-

Ž .tude of the scaled Fresnel pattern in Eq. 17 is just
Ž .the amplitude of the FRT in Eq. 16 . Thus, ampli-

tude sampling conditions for the Fresnel case are
inherited from the fast-FRT algorithms, and only the
phase evaluation will give new sampling conditions.

4. Fresnel diffraction calculation through FRT
algorithm

By now, two different algorithms for FRT calcu-
lation through the DFT are described in the bibliog-

w xraphy 8,13 . The most recent one, that we coined
S-FFT, is based on a direct evaluation of the frac-
tional Fourier transform integral. When this algo-
rithm is transformed into a Fresnel calculation method

Ž .following Eq. 17 , it is easy to show that this
algorithm is converted into the direct evaluation
method we explained in Section 2. Thus, although
S-FFT method provides good results when it is
applied to the calculation of the FRT integral, it does
not provide additional advantages when it is used for
Fresnel diffraction calculation.

w xOn the other hand, D-FFT method 8 consists of
breaking the FRT integral into different cascaded
processes, and not on a direct evaluation of the
integral. This particularity will allow us to obtain
convenient sampling conditions when the D-FFT
algorithm is converted into a Fresnel calculation
method.

The D-FFT algorithm is based on Lohmann’s
Ž .Type II configuration, see Fig. 1 . In this method,

the different elements affecting the light distribution,
i.e. lens, free-space propagation and a second lens,
are numerically evaluated and their effect applied to
the input distribution. Free space propagation is ac-
complished, by convenience, in the Fourier domain
w x8 .

The final discrete expression for the FRT obtained
through this method is:

w xyp sgn sinf q2fqp
U sexp iŽ .p m 4

=

2pm
y1 � 4exp yi tan fr2 =DFT PPPŽ .

N
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2p m mD x˜ 0� 4PPP s exp yi sinf =DFT u0 ž /½½ N N

=

2p m
exp yi tan fr2 18Ž . Ž .5 5N

were the relations that have to be fulfilled between
input and output sampling areas, coming from the
DFT theory are:

D x D x sl f N 19Ž .0 p 1

where the subindex p refers to the fractional do-
main. From the free space propagation in the Fourier

w xdomain, we obtain 8 :

D x sD x s l f N 20Ž .(0 p 1

As it was done for the Fresnel calculation algo-
rithms, we will assume that conditions for a fair

Ž .sampling of expression 18 are obtained from the
application of the Nyquist theorem only on the
quadratic phase factors affecting the signal. These
conditions are:

a sin f F1 b tan fr2 F1 21Ž . Ž . Ž . Ž . Ž .
Ž . Ž .Condition 21a is always fulfilled, while 21b will

hold only for fFpr2, or equivalently, pF1. Any-
way, this range covers all domains between object
and Fourier domain, and convenient application of
the properties of the FRT will permit the extension

w xof the algorithm to any arbitrary range 10 .
If we are interested on the calculation of Fresnel

patterns, a new condition over the outer phase factor
multiplying the fractional Fourier transform in Eq.
Ž . Ž .17 has to be added to those expressed in Eq. 21 ,
which remain valid for amplitude sampling. Having

Ž .in mind Eq. 20 , and applying the Nyquist theorem
over the exponential factor multiplying the FRT in

Ž .Eq. 17 , the new condition that must be fulfilled is:

D x 2
0

tanfFN ´ tanfF1 22Ž .
l f1

which only holds for fFpr4 or equivalently, since
zs f tanf, and zF f . Therefore the phase of the1 1

corresponding Fresnel diffraction pattern cannot be
accurately evaluated through the D-FFT method for
all distances z, although it can be done for intensity

patterns. For the sake of clarity a schematic diagram
of the algorithm has been depicted in Fig. 2.

Ž .Let us recall that the method described in Eq. 17
will provide a scaled version of a Fresnel distribu-
tion. This scaling is inherent to the algorithm. More-
over this ‘‘convenient’’ scaling helps to the accuracy
of the algorithm, since it impedes the divergence of
the field for large z values. The real size of the
diffraction pattern obtained through the D-FFT
method must be calculated ‘‘a posteriori’’, and it
results into:

D x lNp 2 2(D x s s z q f 23Ž .z 1
b D x0

For short distances z can be neglected in front of f .1

In this case, we can consider than the pattern propa-
gates without changing its size and thus, we are
under the same conditions that the spectrum-propa-
gation method: the number of samples N and the

Fig. 2. Schematic representation of the Fresnel-through-FRT algo-
rithm here introduced. The distance z, the wavelength l and the
number of samples N are given as input parameters, together with
the optical signal and the input sampling area D x . f can be0

Ž . Ž .derived from Eqs. 17 and 20 .
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Fig. 3. Extension of the diffracted field obtained through exact
calculation, direct method, spectrum propagation method and
Fresnel-through-FRT method. The areas hatched inside the lines
correspond to each of the methods.

sampling interval d x remain constant. Note also,z

that in this case, both amplitude and phase compo-
nents of the diffracted field can be calculated.

When z becomes much larger than f , the size of1

the calculated pattern depends linearly with the dis-
tance. This is just what happened with the direct

Ževaluation method explained in Section 2 see Eq.
Ž ..5 . In this case, N is constant and d x increasesz

with the distance, and thus, the global phase factor is
not well sampled anymore.

Note that the method just described provides a
numerical evaluation of a Fresnel pattern for any
distance considered. The results for near and far-field
are compatible with the methods obtained in Section
2. What has been gained with the use of the FRT
algorithms is the continuity of the z-domain for
Fresnel patterns calculation. With the new algorithm,
there is no need of splitting the space in two zones,
since a continuous transition between object and
Fourier domain is obtained.

Summarizing, if one is only interested in obtain-
Ž .ing amplitude Fresnel patterns, condition 22 does

not apply. In this case, the modulus of the diffraction
integral can be evaluated for all the range of dis-
tances from object plane to Fourier domain. On the
other hand, if we are interested in obtaining the full
diffracted pattern, we found some sampling restric-
tions, imposed by the inherent structure of the
diffraction integral. Thus the full Fresnel pattern only

can be well sampled in near and medium-field do-
mains. For the far-field case, one have to sacrifice
the phase in order to obtain the diffracted pattern in
all its extension.

In Fig. 3 we present a schematic representation of
the obtained extension of the diffracted field with the
methods here presented. As can be appreciated there,
the direct method fails when short propagation dis-
tances are considered. On the other hand, the spec-
trum propagation method, is not capable of providing
a complete view of the diffracted field when dealing
with long distances. Finally, note that the Fresnel-
through-FRT method allows a complete reproduction
of the diffracted field at any distance, provided that
only amplitude is considered.

5. Computer simulations

Some computer simulations have been presented
to test the performance of the algorithms here intro-
duced. In Fig. 4 we represent several diffraction

Fig. 4. Object and exact Fresnel diffraction patterns of a rectangle
Ž .with width as0.4 mm calculated through Eq. 17 . The patterns

correspond to the object itself, near, medium and far-field. p
values are provided only for later comparisons.
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Ž .patterns near, medium and far-field corresponding
to a rectangle of width 0.4 mm. The patterns have
been exactly calculated through mathematica. Only
the amplitude is represented, since the phase distribu-
tion does not add any relevant visual information.
The patterns in Fig. 4 will serve as a reference for
checking the accuracy of the numerical methods
described along the paper.

In Figs. 5–7 the distributions obtained with the
algorithms here discussed are depicted. For every
distance we have plot the amplitude distribution. The
comparison between exact and calculated field for
every sample is also provided. These diagrams are
calculated for amplitude and phase distribution. In
some of them we have marked some relevant sam-
ples that will be analyzed in what follows.

In Fig. 5 we have presented the obtained results
for the direct calculation method. Note that, as it was
explained before, this algorithm only reproduces a
small area of the diffraction pattern when short

Ž .distances are considered see Fig. 3 . Regarding the
accuracy of the obtained results, note that the ampli-
tude is well evaluated for medium and large dis-
tances, while for the phase this occurs for short and
medium values of z. These results agree with Eqs.
Ž . Ž .8 and 9 which established the conditions for a
well sampled pattern. For the cases not fulfilling

Žthese conditions near-field amplitude and far-field
.phase distributions , the aliasing effect is the respon-

sible of the calculation error. If we point our atten-
tion on the central samples of the calculated pattern
Ž .these points are marked in the diagrams , we can
see that the direct calculation algorithm is capable of
reproducing the theoretical results in amplitude and
phase for all the considered distances. Summarizing,
the direct calculation algorithm allows the calcula-
tion of near, medium and far-field diffraction pattern
but affected with aliasing effects. Nevertheless, the

Žsampling area near the object goes to zero see Fig.

.3 , and thus the method is not operative for complete
diffraction fields calculations.

Regarding the diffraction patterns calculation al-
Ž .gorithm through spectrum propagation, see Fig. 6

let us remember that the method is valid if condition
Ž .13 is fulfilled. Thus, far field patterns will not be
accurately sampled. Furthermore, this algorithm pro-
vides, for all distances, the same extension of the
output area. Hence, the Fourier distribution provided
by it will only reproduce a small central area of the
total pattern. In the case we are considering here, this
area corresponds to the central lobe of a sinc func-
tion, which does not go to zero at the border of the
sampling window, and thus, aliasing effects will

w xdestroy completely the signal 1 , as can be seen in
Fig. 6. For near and medium field patterns, the
method reproduces, more or less accurately the am-
plitude and phase of the considered distribution. It is

Ž .worth noting that, although Eq. 13 is fulfilled, we
can easily appreciate some reconstruction errors in
the amplitude distribution for the near field case.
These errors become more evident when phase dis-
tributions are considered. The problem does not ap-
pear because an aliasing effect but a vignetting effect
and it is caused by an inappropriate evaluation of the
quadratic phase factors. Since short distances imply a
very soft variation of the quadratic phase factor in

Ž .Eq. 12 , the fast oscillations go out of the sampling
area, and the effective factor acts no more like a
quadratic phase exponential. As z enlarges, the ef-
fect becomes less noticeable, although it does exist
for any distance, provided that the evaluation win-
dow is always of finite extension. It is worth noting
that in any case, phase distributions are much more
sensible to this cut-off effect that amplitude distribu-
tions. Since the last ones usually present low values
at the borders of the window, the final effect will not
be important, in terms of absolute error. On the other
hand, in the border of the window, the phase tends to

Fig. 5. Fresnel diffraction patterns of a rectangle with width as0.4 mm calculated through the direct method. Calculated amplitude fields
and comparative results with the exact field. p values are provided only for later comparisons.

Fig. 6. Fresnel diffraction patterns of a rectangle with width as0.4 mm calculated through the spectrum propagation method. Calculated
amplitude fields and comparative results with the exact field. p values are provided only for later comparisons.

Fig. 7. Fresnel diffraction patterns of a rectangle with width as0.4 mm calculated through the fast FRT algorithm. Calculated amplitude
fields and comparative results with the exact field.
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oscillate very fast, and thus, any sampling error in
this part,will contribute dramatically to increment the
calculation error.

In Fig. 7, we plot the results obtained through the
algorithm we have introduced. Note that, with this
algorithm, the sampling area wides conveniently with
the distance as it is depicted in Fig. 3. Regarding the
performance of this method, let us recall that there
are not restrictions about the sampling rate of ampli-

Ž .tude distributions 21 , but there are for the phase
Ž .components 22 . This assertion agrees with the ob-

tained results. For amplitude distributions we obtain
an accurate reproduction of the theoretical result and
only the near field pattern is affected by the vi-
gnetting effect we explained previously. Concerning
the phase results, one can see that the vignetting
effect affects the near-field distribution, although the
central points are correctly evaluated. For far-field

Ž .distributions, condition 22 is not fulfilled, and thus,
aliasing effects will distort the final result.

As an application of the algorithm here intro-
duced, we present in Fig. 8 the diffraction field
obtained for a double aperture. Each row of the
figure represents a different diffraction pattern. The
whole field consists of 256 diffraction patterns of a
vector of Ns256 samples. We can easily see how
the interferences appear as the field propagates, and
the typical interference fringes at the Fourier plane.

Ž .Note that this plot needs O N log N operations,
Ž 2 .while the exact calculation will need O N opera-

tions, and thus, much more computation time. Note

Fig. 8. Example of application of the algorithm here introduced.
Diffraction field of a double slit, plotted from zs0 to zs`.

also that this kind of plots can only be done with the
Fresnel-through-FRT algorithm, since the other
methods here described present serious problems of
aliasing and inadequate sampling areas for amplitude
calculations.

6. Conclusions

Some topics regarding the numerical calculation
of the Fresnel integral have been discussed here. The
special form of this integral does not lead to easy
sampling conditions. It is demonstrated here that,
independently of the evaluation method, it is not
possible to obtain a well sampled Fresnel pattern in
its whole spatial extent for every distance, and thus,
in most cases a compromise result has to be applied.

Some fast algorithms using the FFT for diffrac-
tion patterns calculation have been analysed here,
and their performance has been checked. These
methods are of easy implementation, but are only
valid for a specific range of distances: near-field or
far-field. Nevertheless, those methods are compatible
when medium distances are considered, permitting
the calculation of the Fresnel integral in all the range
of distances, but not in a single way.

Fast algorithms for FRT calculation allow the
evaluation of this integral from object to Fourier
domain in a single step, providing accurate results.
The resemblances between the FRT integral and the
Fresnel integral have been exploited here to design a
fast Fresnel through FRT algorithm. The obtained
algorithm results are accurate and of easy implemen-
tation. Although the calculated patterns are affected
by aliasing and vignetting effects, the method pro-
vides very good results in reproducing amplitude
patterns. Some numerical simulations demonstrate
the feasibility of the algorithm here introduced.
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