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Shift- and scale-invariant recognition of contour
objects with logarithmic radial harmonic filters

Antonio Moya, José J. Esteve-Taboada, Javier Garcı́a, and Carlos Ferreira

The phase-only logarithmic radial harmonic ~LRH! filter has been shown to be suitable for scale-invariant
block object recognition. However, an important set of objects is the collection of contour functions that
results from a digital edge extraction of the original block objects. These contour functions have a
constant width that is independent of the scale of the original object. Therefore, since the energy of the
contour objects decreases more slowly with the scale factor than does the energy of the block objects, the
phase-only LRH filter has difficulties in the recognition tasks when these contour objects are used. We
propose a modified LRH filter that permits the realization of a shift- and scale-invariant optical recog-
nition of contour objects. The modified LRH filter is a complex filter that compensates the energy
variation resulting from the scaling of contour objects. Optical results validate the theory and show the
utility of the newly proposed method. © 2000 Optical Society of America
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1. Introduction

In recent years one of the main trends in optics has
been pattern recognition, owing to the ability of op-
tical systems to perform a correlation in real time.
Most of the optical implementations are based either
on the VanderLugt correlator1 ~by means of filtering
in the Fourier domain! or on the joint transform cor-
relator2 ~by means of processing in the image plane!.
n both cases the method is based on obtaining the
orrelation between the input scene, which contains
he object to be detected, and the target or a function
elated to it. The correlation provides a measure of
imilarity connected with the mean-squared differ-
nce between the patterns to be correlated. How-
ver, correlation has one main drawback: high
ensitivity to deformations of the object to be de-
ected.

In many applications it would be desirable to find
ethods that could provide some distortion-invariant

ecognition. Typically two deformations are consid-
red: scale and rotation changes of the target.
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everal methods have been proposed for obtaining
ifferent kinds of distortion invariance, most of them
ased on the use of filters partially matched to the
arget.

In a first attempt Casasent and Psaltis3,4 obtained
scale and rotation invariance with a method based on
the Mellin transform but at the price of loosing the
shift invariance. Later, Duvernoy,5 describing the
optical Fourier spectra with statistical descriptors,
Sheng and Duvernoy,6 Sheng and Lejeune,7 and

heng and Arsenault,8 using circular-Fourier–radial-
Mellin transform descriptors, obtained invariance to
translation, rotation, and scale; the recognition of the
target was implemented as a classification in a mul-
tidimensional feature space. More recently the rec-
ognition with these three main invariances was
obtained by Fang and Häusler,9 using an original
transformation.

Another different approach to the problem is based
on the decomposition of the function representing the
target into orthogonal components. Instead of mod-
ifying the input image, several modifications of the
matched filter are introduced. So the rotation prob-
lem has been overcome with the circular-harmonic
expansion.10 A single circular-harmonic component
~CHC! is used as impulse response of the matched

lter,11,12 providing shift and rotation invariance in
the correlation plane. Since each CHC is multiplied
by a function exp~ima! when the object to be detected
otates an angle a ~m being the order of the CHC!, the
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intensity of the correlation peak does not change if a
single CHC is used in the filter plane.

The scale-invariance problem is more complicated
than the rotation one, because rotation is a periodic
function, whereas scale may in principle change with-
out any limit. Thus complete rotation invariance is
possible, whereas scale invariance must be limited to
a given range. Apart from the methods concerning
transformations of the input plane, much research
has been done with different kinds of filters. Szop-
lik13 and Szoplik and Arsenault14 obtained partial
cale invariance in an anamorphic Fourier correlator
nd with multiple circular-harmonic filters. To
vercome some difficulties of the previous filters,
oordinate-transformed phase-only filters have been
roposed.15,16 Unlike anamorphic filters, for which

a given frequency ~u, v! changes its radial and angu-
lar positions with respect to a symmetrical system,
with the filters proposed in Refs. 15 and 16 only the
radial position shifts, keeping the same angular po-
sition.15 The radial stretching of the filters depends
on the cumulative angular distribution of the energy
of the target spectrum.16 These filters are partially
matched to the object in different angular sectors of
the filter. It is also possible to obtain a match for
different scales by use of the scaling introduced by
different wavelengths.17,18

In a way analogous to the circular-harmonic de-
composition method used for obtaining shift- and
rotation-invariant recognition, Mendlovic et al.19

applied an orthogonal decomposition of the target
into Mellin radial harmonics to obtain shift and scale
invariance. The filter is matched to a single compo-
nent of the expansion. The scale invariance, how-
ever, should be interpreted in the sense that the
correlation intensity distribution is scaled with the
same factor as the input pattern. For block objects
the output intensity is not strictly invariant but de-
pends quadratically on the scale factor of the object.

The variation of the correlation-peak intensity with
the scale factor can be avoided in part by means of
employing a filter derived from the previous idea and
proposed by Rosen and Shamir.20 Using an expan-
ion analogous to the Mellin radial harmonics, al-
hough not orthogonal, into logarithmic radial
armonics ~LRH! in the Fourier plane, they proposed

a phase filter that provided good results in a broad
range of scales. Moya et al.21 extended this study to
obtain projection-invariant ~one-dimensional scaling!
pattern recognition with a phase-only logarithmic-
harmonic-derived filter with good performance.

Up to now, in all these methods, the input objects
were conventional two-dimensional block objects.
Nevertheless, an important set of objects is the one
that results, for instance, from an edge extraction of
the original block objects ~see, for instance, Refs.
22–24!. This collection is formed by the contour
functions, which have a constant width that is in-
dependent of the scale of the original object. Thus
it can be expected that the behavior under the scale-
invariance problem of this type of object will be
different from the one for block objects described,
348 APPLIED OPTICS y Vol. 39, No. 29 y 10 October 2000
for instance, in Refs. 4, 16, 17, 19, and 20. The
contour images resulting from edge detection can be
described and analyzed digitally, for example, by
chain-code methods ~see Ref. 25, for instance!. Op-
tical methods, however, provide an opportunity for
parallel and real-time processing.

Therefore in this paper we introduce a new ap-
proach to the scale-invariance problem for contour
objects, using the LRH expansion. In Section 2 we
review the main features of the scale-invariant opti-
cal correlators, using LRH decomposition. In Sec-
tion 3 we extend the previously reported theory to the
case of contour objects. In Section 4 experimental
results show the utility of the newly proposed tech-
nique, and in Section 5 the main conclusions are out-
lined.

2. Scale Invariance with Logarithmic Radial Harmonics
Decomposition

Given an input object function f ~r, u! and its scaled
ersion with factor b, f ~br, u! ~both expressed in polar
oordinates, considering the same origin for simplic-
ty!, the relation between their Fourier transforms
FT’s! can be written as

G~r, f! 5
1
b2 FSr

b
, fD , (1)

F~r, f! and G~r, f! being the FT of the functions f ~r,
u! and f ~br, u!, respectively. This equation indicates
that the FT of a scaled function is proportional to the
scaled FT of the original function. Rosen and
Shamir20 used this property to define a new filter in
the Fourier plane of an optical correlator, which al-
lowed for scale-invariant pattern recognition. The
general structure of the filter is H~r, f! 5 R~r!S~f!.
Considering the input object function f ~r, u! in an
optical system with this filter in its Fourier plane, the
value of the obtained correlation center can be writ-
ten as

Cf,h 5 *
d

D

*
0

2p

F~r, f!R*~r!S*~f!rdrdf, (2)

where D is the maximum radius of the filter, d is the
radius of a high-pass filter, and the asterisk denotes
a complex conjugate. If we consider the input object
function as a scaled version f ~br, u! of the original
one, the correlation center value can be expressed as

Cf,h
b 5 *

dyb

Dyb

*
0

2p

F~t, f!R*~bt!S*~f!tdtdf, (3)

where the parameter t denotes ryb.
To have a scale-invariant filter, the relation be-

tween Eqs. ~2! and ~3! must be

Cf,h
b 5 Cf,h exp@is~b!#, (4)

s~b! being a real function depending only on the scale
factor b. This condition allows us to define the scale-
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invariant filter, known as the phase-only LRH filter,
as20

H*~r, f! 5 exp@iV~f!#~ryd!i~ pyw!, (5)

where p is the LRH frequency, w is a normalization
constant defined by

w 5
1

2p
lnSD

dD , (6)

and V~f! is an angular phase function that carries all
he angular information contained in the phase of the
bject function

V~f! 5 2argF*
d

D

F~r, f!Sr

dDi~ pyw!

rdrG . (7)

Thus the correlation value Cf,h
b yields

Cf,h;p
b 5 Sb

dDi~ pyw!

*
0

2p

exp@iV~f!#

3 F*
dyb

Dyb

F~t, f!ti~ pyw!tdtGdf, (8)

and in the particular case in which the scale factor
b 5 1:

uCf,h;p
1 u 5 *

0

2p U*
d

D

F~t, f!ti~ pyw!tdtUdf. (9)

As we can see by comparing Eqs. ~8! and ~9!, expres-
sion ~8! exactly satisfies relation ~4! only when the
scale factor b 5 1. In any other case, as explained in
Ref. 20, relation ~4! is accomplished approximately
for a certain scale range because of the b dependence
on the integration limits.

3. Logarithmic Radial Harmonics Decomposition for
Contour Objects

As stated above, an important set of objects is the
collection of contour functions that results from a
digital edge extraction of the original objects. These
contour functions have a constant width that is inde-
pendent of the scale of the original object. Therefore
the energy of the contour objects decreases more
slowly with the scale factor than the energy of the
block objects. Thus this type of object does not sat-
isfy Eq. ~1!. To obtain the relation equivalent to Eq.
1! for contour objects, let us consider Fig. 1, in which
or the sake of simplicity we have considered two
ircular objects. The object in Fig. 1~a!, which rep-

resents a circular crown of average radius r0 and
width D, is different from zero ~and equal to a real
constant A! only when r [ @r0 2 ~Dy2!, r0 1 ~Dy2!#.
Its FT can be easily calculated as

F~r, f! 5 A *
r02Dy2

r01Dy2

*
0

2p

exp@2i2prr cos~f 2 u!#rdrdu.

(10)
Analogously, the object in Fig. 1~b!, which is a
scaled version with factor b of the previous object, is
different from zero only when r [ @~r0yb! 2 ~Dy2!,
~r0yb! 1 ~Dy2!#. Now, its FT can be written as

G~r, f! 5 A *
r0yb2Dy2

r0yb1Dy2

*
0

2p

exp@2i2prr

3 cos~f 2 u!#rdrdu. (11)

Considering that usually r0 .. D, we can obtain an
accurate relation between the FT of the original ob-
ject and the FT of its scaled version as

G~r, f! 5
1
b

FSr

b
, fD . (12)

This relation, although not completely exact, satisfies
the real case better than the relation in Eq. ~1!. For

general contour object, without any circular sym-
etry, the result in Eq. ~12! holds as well, because the

nly difference is that now the value of r0 in the
ntegration limits of Eq. ~10! is dependent on the

azimuthal angle u. In this case the minimum value
of r0~u!, r0~u!min, must fulfill r0~u!min .. D. To test
his property experimentally, we consider objects A1
nd A2 shown in Fig. 2. We digitally calculated the
odulus of their FT, and in Fig. 3 we represent their
orizontal profiles with a curve that contains the cen-
ral maximum. In this figure we can see the perfor-
ance given by the relation 12. Specifically, the

entral maximum values for the FT of the objects are
2,620 arbitrary units for A1 and 39,270 arbitrary
nits for A2. These values approximately fulfill re-

ation ~12!, considering that the scale factor between
bjects A1 and A2 is b 5 2.
Assuming the relation given in Eq. ~12!, we can

alculate the value of the obtained correlation center
hen we use contour objects

Cf,h
b 5 b *

Dyb

Dyb

*
0

2p

F~t, f!R*~bt!S*~f!tdtdf. (13)

Once more the presence of the scale factor b in this
equation impedes the LRH filter from being scale

Fig. 1. Circular crown of average radius r0 and width D: ~a!
ithout scaling, ~b! with scale factor b.
10 October 2000 y Vol. 39, No. 29 y APPLIED OPTICS 5349
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invariant, because the intensity of the correlation
peak depends on the scale factor.

Thus, to retrieve the ideal performance of the filter
@see Eq. ~4!#, we define a new filter, which will be valid
or contour objects. This new modified LRH
MLRH! filter has the form

H*~r, f! 5 exp@iV~f!#~ryd!i~ pyw!21, (14)

p, w, and V~f! being the functions previously defined.
Now, the filter leaves its only phase performance.
Introducing this filter in Eq. ~13!, we can easily obtain

Cf,h;p
b 5 Sb

dDi~ pyw!

d *
0

2p

exp@iV~f!#

3 F*
dyb

Dyb

F~t, f!ti~ pyw!dtdfG , (15)

and in the particular case in which the scale factor
b 5 1:

uCf,h;p
1 u 5 d *

0

2p U*
d

D

F~t, f!ti~ pyw!dtUdf. (16)

Thus we have eliminated the dependence on the scale
factor b in the intensity of the correlation peak, but
still it remains a dependence on the integration lim-
its. The behavior of the new filter defined for con-
tour objects is similar to the filter for block objects
proposed by Rosen and Shamir.20

4. Simulated and Optical Results

We used the contour objects shown in Fig. 2. With
these contour objects we digitally tested the behavior
of the phase-only LRH filter and the MLRH filter.

Fig. 2. Contour functions used as input objects in experiments.
Objects A2 and B2 are two scaled versions with scale factor b 5 2
f objects A1 and B1, respectively.
350 APPLIED OPTICS y Vol. 39, No. 29 y 10 October 2000
First, we made the correlation between the phase-
only LRH filter matched to object A2 with objects A1
and A2. We used the values D 5 70 pixels and d 5
5 pixels. In Fig. 4 we represent the intensity of the
correlation centers in terms of the frequency of the
LRH filter. Second, we made the same correlation
but with the MLRH filter matched to object A2. The
results for this case are represented in Fig. 5. Com-
paring Figs. 4 and 5, we can see the scale-invariant
property present in the case of the MLRH filter. Be-
cause the intensity of the two correlations in Fig. 5
coincide for the frequency filter p 5 2.3, we used this
value to make the filters. To prove the discrimina-
tion capability of the newly proposed MLRH filter, we
digitally made the correlation of the phase-only LRH
Fig. 3. Horizontal profile through a curve that contains the cen-
tral maximum of the modulus of the Fourier transform for objects
A1 and A2.
Fig. 4. Intensity of correlation centers in terms of frequency p of
phase-only LRH filter matched to object A2 during correlation with
object A1 ~A2–A1! and object A2 ~A2–A2!.
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filter and the MLRH filter ~both matched to object A2
nd with p 5 2.3! with the complete scene shown in
ig. 2. The correlation planes are shown in Fig. 6

for the phase-only LRH filter! and in Fig. 7 ~for the
LRH filter!. These results reveal both the dis-

rimination capability of the filters and the scale-
nvariant property in the case of the MLRH filter.

Finally, using a classical convergent correlator, we
ptically obtained these last correlations. To do
hat, the scene shown in Fig. 2 and the filters gener-
ted by computer ~calculated with the Lohmann de-
our phase method26 in 256 3 256 cells with a

resolution of 17 3 17 pixelsycell and plotted with a
600-dotyin. laser printer! were photoreduced27 on a
lithographic film. The final correlation plane was
captured with a Pulnix Model TM-765 CCD camera.
The results obtained are shown in Fig. 8 ~for the
phase-only LRH filter! and in Fig. 9 ~for the MLRH
filter!. For this last case, since the MLRH filter has
eft its phase-only performance, the background noise
evel is greater than in the phase-only LRH filter
ase. It is important to note that the correlation
eak that corresponds to the detection of object A1 in
ig. 9 is greater than we could expect. This is due to
elation ~12!, which overloads the energy of object A2
hen in fact its energy is smaller. Even so, these
ptical results confirm those obtained digitally and
alidate the newly proposed approach.
Fig. 5. Intensity of the correlation centers in terms of frequency
p of MLRH filter matched to object A2 during correlation with
bject A1 ~A2–A1! and object A2 ~A2–A2!.
Fig. 6. Simulated correlation between input scene shown in Fig.
2 and phase-only LRH filter matched to object A2 with frequency
p 5 2.3.
Fig. 7. Simulated correlation between input scene shown in Fig.
2 and MLRH filter matched to object A2 with frequency p 5 2.3.
Fig. 8. Optical correlation between input scene shown in Fig. 2
and phase-only LRH filter matched to object A2 with frequency p 5
2.3.
10 October 2000 y Vol. 39, No. 29 y APPLIED OPTICS 5351
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5. Conclusions

The phase-only LRH filter is suitable for scale-
invariant block object recognition. Nevertheless, an
important set of objects is that formed by the contour
objects resulting, for instance, from an edge-
extraction operation. These objects have a constant
width that is independent of the scale of the original
object. As a consequence, since the energy of the
contour objects diminishes more slowly with the scale
factor than does the energy of the block objects, the
phase-only LRH filter presents some difficulties in
pattern-recognition tasks with this type of object.
Thus we have proposed a modified LRH filter that
permits the realization of a scale-invariant optical
correlator for contour objects. The modified LRH fil-
ter is a complex filter that compensates the energy
variation during scaling of contour objects. Even so,
this compensation is approximate, because we as-
sume that the relation given in Eq. ~12!, which over-
oads the energy of the object when in fact its value is
maller. However, optical results validate the the-
ry and show the utility of the newly proposed
ethod.
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