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Preface

This volume contains all the papers presented at SSPR 2000 and SPR 2000, held
at the University of Alicante, Spain, August 30 — September 1, 2000.

This was the second time these two technical workshops were held back-
to-back. SSPR 2000 was the eighth meeting of the international workshop on
Structural and Syntactic Pattern Recognition and SPR 2000 was the third in-
ternational workshop on Statistical Techniques in Pattern Recognition.

These workshops have been traditionally sponsored by two of the most re-
presentative technical committees of the International Association of Pattern
Recognition (IAPR}: the TC2 and TC1, respectively.

A total of 130 papers was received for consideration from alinost 40 different
countries. Both the submission and the reviewing process were carried out sepa-
rately for each workshop even though papers were distributed among reviewers
in both program committees according to their particular previously expressed
interests.

As a result of thi§ “joint” reviewing process, papers were distributed into
three categories: SSPR, SPR, and SSSPR. We designed the technical program
of the joint workshop according to the accepted papers and five oral sessions
were allocated for each of the two first categories and two oral sessions {eight
papers) for the third one.

The two poster sessions (one per workshop) were held at the same time and
were allocated a large amount of space and time to encourage discussion and
interaction among researchers. A total of 52 papers was selected for oral pre-
sentation and 35 papers were presented in the two poster sessions. In addition,
we invited five distinguished speakers, Jim Bezdek from the University of West
Florida, USA, Marco Gori from the Universitad di Siena, Italy, Colin de la Hi-
guera from the Université Jean Monnet, Saint Etienne, France, Sarunas Raudys
from the Institute of Mathematics and Informatics, Vilnius, Lithuania, and Josef
Kittler from the University of Surrey, UK.

SSPR.2000 and SPR 2000 were sponsored by the Conselleria d'Educacié de
la Generalitat Valenciana under grant RG00-01-22, the Departament de Llengu-
atges i Sistemes Informatics (DLSI) and the Escuela Politécnia Superior of the
Universitat d'Alacant, the Departament d’Informatica (DI) of the Universitat
de Valéncia, and the International Association of Pattern Recognition (IAPR).

We would like to express our gratitude to all our sponsors and, specially,
to the members of the two program committees who faced a really tough task
which has lead to a selection of papers of a very high quality.

Special thanks are due to Ricardo Ferris, Esther de Ves, and Elena Diaz of
the DI, Universitat de Valéncia, and Francisco Moreno-Seco, Jorge Calera-Rubio,
and Luisa Micé of the DLSI, Universitat d'Alacant, for their unbeatable effort in
the organization of the workshops and in the preparation of the proceedings. We
appreciate the help and understanding of the editorial staff of Springer-Verlag, in
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1 Introduction

In pattern recognition, the choice of features to be detected is a critical factor to
determine the success or failure of a methed; much research has gone into finding the
best features for particular tasks [1]. When images are detected by digital cameras,
they are usually acquired as rectangular arrays of pixels, so the initial features are
pixel values. Some methods use those pixel values directly for processing, for
instance in normal matched filtering [2], whereas other methods execute some degree
of pre-processing, such as binarizing the pixel values [3].

An important tool for pattern recognition is the correlation matrix between objects
and its zero-mean cousin, the covariance matrix. Because the curse of dimensionality
plagues so many pattern recognition procedures, a variety of methods for
dimensionality reduction have been proposed. One of the classical statistical
procedures is the principal component analysis [1]. This method (known in the
communication theory literature the Karhunen-Loéve expansion ) finds a lower-
dimensional representation that accounts for the variance of the features. The
diagonalization of the correlation or covariance matrix is significant for image
processing, because among other advantages, it implies the decomposition of images
into independent components, it minimizes entropy, it minimizes the mean squared
error when some terms are removed, and it is related to principal value decomposition
and to factor analysis. Unfortunately the diagonalization of large matrices
corresponding to the covariance matrices of images with many pixels is often beyond
the capacity of even today's powerful computers.

So it is clear that finding an image decomposition that easily diagonalizes a
correlation matrix is of interest; in this paper, we introduce such a decomposition,
which we then use in order to see some familiar pattern recognition techniques in a
new light, and to propose a new and powerful approach to pattern recognition. The
correlation matrix that we propose should not be confused with the classical
covariance matrix between objects. Our correlation matrix is between the non-linerly
transformed features of two objects.

F.J. Feri et al, (Eds.); SSPR&SPR 2000, LNCS 1876, pp. 816-822, 2000.
© Springer-Verlag Berlin Heidelberg 2000

2 Image Representation in Terms of the SONG Decomposition

Any two-dimensional quantized gray-scale image f(x,y) can be decomposed into a
sum of orthogonal elementary images {em(f)} having the orthogonal property

e, (flx,ye, (flx,y) =0 ifm#n )

e, (fx, e, (flxy)=1 ¥m=n

Each sub-image {em{f(x, y))} represents a gray level slice of the object. We define
the Sliced Orthogonal Nonlinear Generalized (SONG) decompositien of f(x, y) as

-1
Fny) =Y, qe,(f(x ) )
g=l
where Q is total number of gray levels in the image and the basis is defined as
1 flxy)=¢q 3)
g U= {0 otherwise

A more general definition will be introduced in Section 3. Note that each object point
is characterized by only one gray level, so each g-slice is orthogonal to all o_t the
others, as indicated by the orthogonal property. By considering a lhrw—dnmsnsronal
space with coordinates (x,y,g), the method can be interpreted as one of plzicu_lg p,]‘anes
parallel to the (xy) coordinate plane of the image; each pigne then §lices the
function in the area of intersection. All of these areas form disjoint sets of pixels. _

The function e (f(x, y)) is an eigenfunction of the image pixel matrix flx,y) with

eigenvalue g, because f(x, y)e, (f)=qe, (f(x.¥)). This property will be important
when we consider the correlation matrix.

3 Pattern Recognition in Terms of the SONG Decomposition: The
SONG Correlation Matrix

We shall define a SONG correlation [4] based on the new binary_ SONG
decomposition. We shall also relate this correlation to a cprrelation matrix. Each
coefficient of the matrix can be viewed as the cross-correlation between two binary
slices of the input scene and of the reference object binariged usin_g the SONG
decomposition. The general definition of the SONG cm_‘relatmn matrix allows }he
representation of common correlation operations as special cases of the correlation
matrix.

3.1 Definition of the SONG Correlation

A more general definition of the SONG correlation between an input function g{(x)

and an object prototype f(x) Is
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a2-i 2-1
Q,(x)=Y Wig, e, (g(x))® Y Wk, Pe, (f(x) (4)

=

where W(q,y) and W'(k, ) are weighed correlation factors and Y is a parameter

that may depend on detection functions or other metrics and & denotes the linear
correlation operation. For the sake of clarity, we use one-dimensional functions
although we will apply this correlation to two-dimensional images. We introduce a
general modified representation of any image as

-1
f =Y, Wg, e, (f(x) (5)

Note that if the weight factors are equal to the gray level values, we reconstruct the
original function f{x). Then the correlation of Eq. (4) can be expressed in matrix terms
as

R R R

1 Iz =t 4 -1y
. @-1 o=t :
Q=Y YR, = 8. : (6)
gul kel s L
R(Q—I]I REQ-IJZ RlQ—JKQ—I)

where R, =W(g, W'k, D)le, (8(x)®e, (f ()} =W(g, )W (k, )LC®. The
term LC :f represents the linear sub-correlation between the g-slice of g{x) and the k-

slice of f{x); the operator & means the summation of all the terms of the matrix. It
can be viewed as the norm of the matrix, but, the norm of a matrix is defined as

Q] =7r{2"Q} where Tr{} is the trace of a matrix, where the sum of the squared

coefficients is used instead of the sum of the amplitudes. So our operator © can be
viewed as the norm of the matrix in the absolute value sense. '

In the following, we shall consider for simplicity objects located such that their
correlation peaks appear at the origin (0,0) because the correlation operation is shift
invariant, it is trivial to generalize to the case of targets located at any point (x,y) and
to the presence of multiple targets, since the correlation is also additive

For the case of autocorrelation where g(x) = f(x), the matrix of Eq. (6) becomes a
diagonal matrix because of the orthogonality between the slices, and
A, 0

A :
g,&um =9 : e} ;s : (7)

0 0 T A‘Q-H[Q—I}
The autocorrelation coefficients of the matrix are A, =W?¥(g, ¥)LC/ . Note that we

do not need the squared values of the coefficients because the slices are binary
functions.

AR AL RIS AL & VLR bk A A MAMALALI AL AL A LAl s s dasEaeas -

In the absence of any a priori information about the input scene, there is no reason to
put any different weights on the binary slices. So the SONG correlation definition that

we shall consider is
a-1

@-1
Q, (0= [e,(sN®e, (F:D]=D R, 8)

g=1
where W(g,x) =W’'(k,x)=1. We are considering only the corresponding g-gray

level binary slices for the g(x) and for the f{x) functions. This can be viewed as the
summation of the diagonal terms. A similar interpretation is to set to zero all the oft-
diagonal terms the SONG correlation matrix.

The definition of the SONG correlation of Eq. (8) means that this operation can be
viewed as a function that counts the total number of non-zero pixels (or points) in an
image at the origin. Indeed, the SONG correlation process consists of separately
correlating each binary slice from the image with each binary slice of the prototype
corresponding to the same pray level, and then summing the correlation values.
Because the base {eq (f )} is orthogonal in the f(x) domain, each correlation value is

proportional to the number of pixels that are common to both slices. For the auto-
correlation, the sum for all the gray levels yields the total number of pixels in the
object. So the SONG auto-correlation at the origin is equivalent to a counting
operation: the height of the auto-correlation peak (in the absence of noise) is equal to
the number of pixels in the object, and in the case of false targets, the height of the
correlation peak is equal to the number of pixels that have the same gray level values
in the target and in the prototype. Note that there could be objects that have the same
number of pixels but that look totally different from the reference object. But the
counting operation that results from our cross-correlation measures the number of
equal-valued pixels that are in the same locations for both objects, which is a good
measure of similarity.

So coming back to what we pointed out in the introduction, we introduce a diagonal
correlation matrix representation for pattern recognition. This can be viewed as a
dimensionality reduction of the data, because we used the sum of only the diagonal
terms. Moreover, this choice of terms is best because the autocorrelation values ( A -
from Eq. (7)) are found only along the diagonal, where the correlations of the
corresponding gray level slices are found. Other off-diagonal terms correspond to the
correlations between different gray level slices, and they add a background to the final
result without improving the discrimination.

3.2 Common Linear Correlation in Terms of the SONG Matrix

The linear correlation, LC,, , between two quantized gray level functions g{x) and f{x)
can be defined in terms of the SONG decomposition as

g-1 -l

VY ke =Rt

{-1 &-1
LC,(x,y)= [2 ge,(g(x, yn}@{z ke, (f(x. y))] =
=1 k=l g=1 k=1
©)
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The subindex indicates that we express the LC as a particular case of the SONG
correlation ( € ). So linear correlation can be expressed by means of the SONG matrix

using the particular weights as: W,*” =g’ and W™ = gk . Note that the dimensions

of the matrix are [Q —le—I]. So (@-1)" sub-correlations are needed to express
the normal linear correlation {(which, when done in the usual manner, are all carried
out in parallel). The same number of sub-correlations are required for the SONG
correlation, and the difference between both correlations are the weight factors.
However, because we shall use the particular case of the SONG correlation
corresponding to Eq. (8), we need only (Q-1) sub-correlations. The SONG

correlation has a significant advantage in discrimination capability because only slices
corresponding to the same gray levels are compared.

4 Noise Robustness of the SONG Correlation

One might expect that because the SONG correlation is very selective for object
detection and discrimination, it might have poor noise robustness. In this section we
consider images that are degraded by very strong Gaussian noise. We prove that
whereas other common detection methods like common matched filtering and Phase
Only Filtering (POF) are not able to detect the correct object, the SONG correlation
will succeed. Moreover, the discrimination capability (DC), measured in terms of one
minus the ratio between the cross-correlation and the autocorrelation, will be more
stable than for the other methods over a wide range of Gaussian noise levels.

The input scene is shown in Fig. 1. It consists of two objects, the reference object
being the one in the lower part of the image. This image has 8 gray levels.

Fig. 1. Input scene with the reference object, placed in the lower part of the figure, and another
object lo be rejected

Figure 2 is the input scene of Fig. 1 degraded by white additive Gaussian noise
{0=1.9). The visual pattern information is wiped out by the noise, but as long as some
pixels of the image remain unaffected, the SONG correlation will yield a high signal.
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Fig. 2. Input scene highly degraded with Gaussian (=1.9) noise

Table 1 shows the di_scriminalion capability (DC) for the SONG correlation and for
other common de_tectlon methods. A high value of DC, means that the value of the
c{oss:c-:_)rre!atlon is low con}pared to the autocorrelation, which means that a good
d:sicr:mt{r:;tlon _and good noise robustness are achieved. On the other hand, a low

value ol the ration means that the energy of the cross-correlation h ;
value that of the auto-correlation, SR
_\;’}e generatt;,d white Gaussian input noise patterns with various standard deviations o
ree correlations were considered: the SONG correlation, the line i !

1 _ , ar correlat
the LC using a phase-only filter (POF). onand
gable 1 shows that forbhighl)‘x dcgrz_nded images, only the SONG correlation is able to
I;ﬂcct the reference_ ol:uc_ct with a high degree of discrimination. Note that the DC for
the SONG method is a high stable value for all the noise levels. On the contrary, none

of the other methods yield high values of the DC, which imnli
. » which implies poo it
correctly detecting the reference object. R ey

GAUSSIAN NOISE
Mean=0 SONG Correlation Linear Phase Only

Stand. Dev. (o) Correlation Filter
0.2 0.95 0.05 0.80

0.25 0.95 0.00 0.70

0.5 0.95 0.00 0.3

0.75 0.95 0.00 0.2

1 0.95 0.00 0.2

1.2 0.95 0.00 0.1

1.9 0.95 0.00 0.1

']abl . h in tion CﬂpabIl ¥ D i pe &
e 1 The di munal it C 0l several pattern recognilion o rations alld the
( ) ] p 3 gnihi

5 Conclusion

We have introduced a sliced orthogonal nonlinear generalized (SONG) marrix
representation that allows a representation of common linear and nonlinear
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correlations. The SONG correlation can be expr;zsse@ in terms of 3 ;?n; :‘;ff el::jg;
i i level slices of an input scene an
correlation between the binary gray i : Arcteree
j i tor | i d in the definition to allow a m g
object. A weight factor is considere f ‘
de-}inition. The discrimination ability and the noise robustness in the presence of
Gaussian noise are superior for the SONG method.
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A Fast Approximately k—Nearest-Neighbour
Search Algorithm for Classification Tasks
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Abstract. The k-nearest-neighbour (k-N N} search algorithm is widely
used in pattern classification tasks. A large set of fast k~NN search al-
gorithms have been developed in order to obtain lower error rates. Most
of them are extensions of fast NN search algorithms where the condi-
tion of finding exactly the k nearest neighbours is imposed. All these
algorithms calculate a number of distances that increases with k. Also,
a vector-space representation is usually needed in these algorithms.

If the condition of finding exactly the k nearest neighbours is relaxed,
further reductions on the number of distance computations can be ob-
tained. In this work we propose a modification of the LAESA (Linear
Approximating and Eliminating Search Algorithm, a fast NN search al-
gorithm for metric spaces) in order to use a certain neighbourhood for
lowering error rates and reduce the number of distance com putations at
the same time.

Keywords: Nearest Neighbour, Metric Spaces, Pattern Recognition.

1 Introduction

Non-parametric classification is one of the most widely used techniques in pattern
recognition [2]. One of the simplest techniques (and one of the most popular) is
to use the nearest—neighbour (NN) classifier which, given an unknown sample =,
finds the prototype p in the training set which is closest to x, then it classifies =
in the same class as p, The NN classifier usually obtains acceptable error rates,
but it is possible to obtain better (lower) error rates using a number £ of nearest
neighbours. Thus, a A-nearest-neighbour (k-NN) classifier finds the & nearest
neighbours of the sample z, and then, through a voting process, it classifies z in
the class which has most representatives among those k nearest neighbours.
Usually, these classifiers are implemented through an exhaustive search; that
is, all the distances between the sample and the prototypes in the training set are
calculated. When the representation space is an Euclidean space, this exhaustive
search is usually not very time-consuming. On the other hand, when working

* The authors wish to thank the Spanish CICyT for partial support of this work
through project TIC97-0041.
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