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Abstract

A graphical representation of general non-absorbing polarization devices operating under normal plane-wave incidence is
presented. The representation is based on a four-dimensional spherical parametrization of the Jones matrix of this kind of
polarization devices. The graphical representation takes the form of a solid cylinder. The projection of the point representing
the device over the base of the cylinder gives the corresponding polarization eigenvectors represented in the complex plane,
while the height of the point in the cylinder is the phase of its eigenvalue. Some simple examples like wave-plates and
rotators are discussed. The representation may represent a useful tool to identify the operation regimes of polarization
modifying elements, for instance electro-optic devices. In this sense, the representation is also applied to the case of a
twisted nematic liquid crystal display. q 2000 Elsevier Science B.V. All rights reserved.

Ž .Keywords: Polarization; Anisotropic media crystal optics ; Birefringence; Liquid-crystal devices; Polarization-sensitive devices; Spatial
light modulators

1. Introduction

Polarization devices have been widely used as a
tool for generation, analysis and modulation of to-

w xtally polarized light 1–3 . Their mathematical de-
scription depends on the way that light polarization
is described. The usual methods are by means of
Jones vectors or Stokes parameters, the latter being
capable to describe also partially polarized and unpo-
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larized light. In these two descriptions, polarization
devices act as linear transformations, represented by
Jones or Mueller matrices, respectively.

The complex plane is a useful graphical represen-
tation for completely polarized states of light. On the
other hand, Poincare sphere is a graphical representa-´
tion of the light states through Stokes parameters.
However, a graphical representation of the devices is
lacking. In this paper we present a geometrical repre-
sentation of polarization devices, based on Jones
matrix formalism, which serves to identify non-ab-
sorbing polarization devices operating under normal
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plane-wave incidence. This definition includes sim-
ple devices like wave-plates and polarization rota-
tors, and any combination of these elements. The
graphical representation takes the form of a solid
cylinder. It can be a useful tool to identify the
operation mode when the device depends on a exter-

Žnal parameter typically an external voltage in elec-
.tro-optic displays . For instance liquid crystal dis-

Ž .plays LCD’s can be also represented in the cylinder
since they may be regarded as a stack of anysotropic

w xwave-plate layers 4,5
The plan of this paper is the following. In Section

2 we describe a general four-dimensional Cartesian
parametrization of the matrix representing the non-
absorbing polarization devices in Jones formalism, as
well as some of its general properties. In Section 3,
after a change to spherical variables, eigenvectors
and eigenvalues of this matrix are presented. This is
used to represent polarization devices in a solid
cylinder in Section 4. Section 5 presents the loci in
this cylinder corresponding to symmetry properties
of reciprocal polarization devices previously ana-

w xlyzed in Ref. 6 . In Section 6 we address the repre-
sentation of simple polarization devices, like wave-
plates, rotators and a combination of a centered
wave-plate and a 90 degrees rotation. This last exam-
ple represents the limit of operation of large bire-

w xfringence for a 90-twist LCD 4,5 . This device is
analyzed in detail in Section 7.

2. Cartesian parametrization of non-absorbing
polarization devices

Assuming Jones formalism, outgoing light from a
polarization device is represented by a 2=1 com-

Ž . tplex vector of the form V s E , E , where Eout x y x

and E are the complex components of the electricy

field in x and y directions in the laboratory frame,
respectively, and t means the transposed matrix.
Propagation is assumed in the positive z direction. If
V is the Jones vector representing the incomingin

light, both vectors are related by

V sM PV 1Ž .out d in

where M is the 2=2 Jones matrix of the device. Ifd

we assume that this device does not absorb light,

then M is a unitary matrix, i.e., it satisfies thed

condition M PM† sM† PM sI where the symbold d d d

† means the hermitic matrix, and I is the identity
w xmatrix 7 . In other words, M belongs to the two-di-d

Ž .mensional unitary group U 2 . Therefore, its deter-
Ž . Ž .minant is a pure phase, say det M sexp y2 ib ,d

w xand then M can be represented as 2–7 :d

M sexp yib MŽ .d

Xy iY Zy iWsexp yib , 2Ž . Ž .ž /yZy iW Xq iY

in terms of the global phase shift of the device, b ,
Ž .and four real parameters X, Y, Z, W such that

2 2 2 2 Ž .X qY qZ qW s1 so that det M s1, i.e. M
is an element of the two-dimensional special unitary

Ž .group SU 2 . This way of writing the matrix of Eq.
Ž . Ž .2 , in terms of the parameters X, Y, Z, W
represents a generalization of a previous existing
parametrization which has been applied to liquid

w xcrystal displays 8 . This representation uses three
Ž . 2 2parameters X, Y, Z with the restriction X qY

qZ 2 s1.
Ž .The overall phase in Eq. 2 is not of concern to

us, since the polarization transformation capabilities
of the device do not depend on b. Therefore, non-
absorbing polarization devices can be represented by

Ž .elements of the group SU 2 , parametrized by Carte-
Ž .sian coordinates X, Y, Z, W in a three-dimensional

sphere in four-dimensional Euclidean space. How-
Ž .ever, the general parametrization given by 2 is not

unique, if we allow constant phases to be factored
out. Indeed, if we assume a different decomposition

Ž X. Xof the same device as M sexp yib M withd
Ž X. Ž . Ž .det M s1, then, since det M sexp y2 ib , it isd

necessary that 2b
X s2bq2kp, for k any integer

number. This means that the original parametrization
of M is determined up to a minus sign:

M sexp yib Msexp yib" ip yM . 3Ž . Ž . Ž . Ž .d

ŽIf we restrict the study to the matrix M, points X,
. Ž .Y, Z, W and yX, yY, yZ, yW parametrize

Ž .matrices differing up to a constant phase exp "ip
and therefore, these points must represent the same
device. This observation will be used in the follow-
ing.

The Cartesian coordinates chosen to present the
Ž .matrix M in Eq. 2 are essentially the Cayley–Klein
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or Euler parameters describing rotations in terms of
w x2=2 complex matrices 9 . Let us recall that any

Ž .matrix M in SU 2 can be decomposed as:

Mse Iq i e s qe s qe s 4Ž . Ž .0 1 1 2 2 3 3

where s , s , and s are the Pauli matrices:1 2 3

0 1 0 yi 1 0
s s ,s s ,s s ,1 2 3ž / ž / ž /1 0 i 0 0 y1

5Ž .

and e , e , e and e are real numbers named the0 1 2 3

Cayley–Klein or Euler parameters. Therefore, from
Ž .Eq. 2 , it is easy to identify Xse , Ysye ,0 3

Zse and Wsye . These four real parameters are2 1

known to describe a rotation in three-dimensional
Euclidean space, up to an overall minus sign. This
equivalence between three-dimensional rotations and
polarization devices is easily visualized with the aid
of the Poincare’s sphere. If the device changes the
state of polarization of light, but maintains the de-
gree of polarization, the transformation induced in
the polarization is visualized as a rotation in the
Poincare sphere. This general transformation is de-´

Žscribed in Jones formalism, with the matrix M see,
for instance, the second proof of theorem I in Ref.
w x .11 and references therein .

3. Spherical parametrization of non-absorbing po-
larization devices

Ž .Since only three parameters of X, Y, Z, W in
Ž .Eq. 2 are independent, we seek for a three dimen-

sional graphical representation of the device. An
immediate idea consists in representing the device
inside a three-dimensional solid sphere with a vari-
able radius, for instance 1yW 2. However, this rep-
resentation does not give an easy identification of the

Žeigenstates of the device i.e., the incident polariza-
.tion states that leave the device without change . The

determination of the eigenstates of the device can be
useful to optimize modulation properties of electro-

w xoptical displays 10,11 .
Thus, we use a more convenient representation

based on four-dimensional spherical coordinates. This
will allow to parametrize the M matrices in a form

directly related to the Jones vector of the polarization
eigenstates of the device, and represent them in a
solid cylinder as it is described in the next section.

Ž .Since the four parameters X, Y, Z, W vary in
w xthe range y1,q1 we can set:

Xscos f 6aŽ . Ž .1

Yssin f cos f 6bŽ . Ž . Ž .1 2

Zssin f sin f cos f 6cŽ . Ž . Ž . Ž .1 2 3

Wssin f sin f sin f 6dŽ . Ž . Ž . Ž .1 2 3

w xwhere the angle f belongs to the range 0,2 p3

while the angles f and f belong to the range1 2
w x0,p . The inverse relations are

f scosy1 X 7aŽ . Ž .1

Y
y1f scos 7bŽ .2 2ž /'1yX

f sarg Zq iW 7cŽ . Ž .3

where arg stands for the argument of the complex
number.

Therefore, with this notation, polarization devices
are represented by three angles. Another parametriza-
tion of this kind was used in the early literature of

w xthe subject 12 . In that work, theorem I states that
the matrix M of a general non-absorbing polarization
device can be represented as a combination of two
rotators of angles u and u , represented by matrices1 2

( . ( .M u and M u , respectively, and a wave-ROT 1 ROT 2

plate introducing a phase-shift d which is centered
in the laboratory frame, represented by the matrix

Ž .M d ,0 , so that:WP

MsM u PM d ,0 PM u . 8Ž . Ž . Ž . Ž .ROT 1 WP ROT 2

This three-angle parametrization is different from the
spherical parametrization presented here, which is
adapted to the description of the polarization eigen-
states and eigenvalues.

The calculation of the eigenvectors of a polariza-
w xtion device has been extensively published 2–4,11 .

In the case of a non-absorbing polarization device,
the eigenvectors of the matrix M can be calculated
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Ž .from Eq. 2 . In terms of the spherical angles, the
ratios between the complex amplitudes E and E ofx y

" w xthe eigenvectors V take the following form 7
qE 1 pyqz s s exp i f q 9aŽ .3q ž /1E 2x tan f2ž /2
yE 1 pyyz s s tan f exp i f y 9bŽ .2 3y ž /ž /E 2 2x

and their corresponding eigenvalues l" are

l"sexp "if 10Ž . Ž .1

These equations show that the eigenvectors of the
device depend only on the angles f and f , while2 3

Žthe eigenvalues are phase-only values as expected
.for a non-absorbing device with phase equal to

"f . Notice that the above indetermination associ-1
Ž .ated to the constant phase exp "ip results only in

an indetermination of the sign of the eigenvalues,
" Ž ."l . We shall refer to the positive negative eigen-

Žvector to that one associated to the positive nega-
. Ž .tive value f in exponent of Eq. 10 .1

Once the eigenvalues and eigenvectors are known,
the original matrix M can be recovered by a simple
change of basis:

M X ,Y ,Z,W sU† f ,f PD f PU f ,fŽ . Ž . Ž . Ž .2 3 1 2 3

11Ž .
where

exp if 0Ž .1
D f s" 12aŽ . Ž .1 ž /0 exp y ifŽ 1

and
Ž .U f ,f2 3

f f2 2 Ž .sin yi cos exp yif3ž / ž /2 2
s

f f2 2� 0Ž .yi cos exp qif sin3ž / ž /2 2

12bŽ .

4. Solid cylinder representation

The complex plane is a useful graphical represen-
tation for completely polarized light, directly related

w xto the Jones vectors 1 . The state of polarization is
characterized by a complex number equal to the ratio

between the complex amplitudes of the Jones vector
zsE rE . Points lying in the pure imaginary axisy x

correspond to elliptical states where the major and
minor axes of the ellipse are parallel to the coordi-
nate system axes. Points lying in the pure real axis
correspond to linearly polarized light. In particular
the origin of the complex plane represents linear
polarized light oriented in x direction, while the
infinity corresponds to linear polarized light oriented
in y direction. Finally, those points located in the
unitary radius circle are polarized states where the
amplitudes in x and y direction have the same
modulus.

ŽThe representation of the two eigenstates Eqs.
Ž . Ž ..9a and 9b in the complex plane is shown in Fig.
1. Because they are two orthogonal states they lie in
opposite directions respect to the origin of the com-
plex plane. One modulus is the inverse of the other,

Ž .being equal to 1rtan f r2 for the case with eigen-2
q Ž . Ž .value l sexp qif while being tan f r2 for1 2

y Ž .the case with eigenvalue l sexp yif . Let us1

note that always one of the two eigenvectors lie
inside the circle of unity radius. In the limit case

Ž . Ž .where 1rtan f r2 s tan f r2 s"1 both states2 2

are in the border of the circle.
The proposed graphical representation for non-ab-

sorbing polarization devices consists in a three-di-
mensional representation in the form of a solid cylin-

Fig. 1. Complex representation of the two polarization eigenstates
of a non-absorbing device as a function of the two spherical
angles f and f .2 3
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der with unit radius and height p. This cylinder is
constructed as follows, see Fig. 2a. The base of the
cylinder rests on the complex z plane, that allows to
represent both eigenvectors, z ". Above and below
these two points we represent, as a third coordinate,
the phase of the corresponding eigenvalues. The
indetermination in the sign of M results in two
possibilities for each eigenvector. Associated to the
eigenvector zq we represent the values of qf and1

qf yp, and associated to zy the values yf1 1

and yf qp. These values are chosen in order to1
w xbe in the range yp,p . Then, it is straightforward

to notice that there exists at least one point in the
solid cylinder with unit radius and height p. This
single point in this cylinder contains the information

Fig. 2. Cylindrical representation for a non-absorbing polarization
Ž . Ž .device. a Relation with eigenvalues and eigenvectors. b Result-

ing solid cylinder and identifications.

necessary to reconstruct the Jones matrix for the
device, up to a global phase. The projection over the
base of the cylinder yields one eigenvector, so that it
is a direct task to compute the orthogonal state,
which is the other eigenvector of the device. Up to a
global minus sign, the eigenvalue of the first eigen-
vector is dictated by the height of the representative
point. The eigenvalue of the second eigenvector is
the complex conjugated phase. This procedure yields
one of the two possibilities for the matrix M, which

Žare equivalent up to a global phase shift see Eq.
Ž ..3 . Fig. 2b shows the scheme of the resulting
representation.

Some identifications of the representative points
occur in the borders of the cylinder. In the limit case
when both eigenvectors lie in the unitary circle, two
points in the surface of the cylinder represent the
same device, corresponding to heights f and py1

f . For instance, points P and P in Fig. 2b1 1 2

represent the same device. Moreover, all the points
in the base of the cylinder and in the plane f sp1

are equivalent, since they represent I and yI, re-
spectively. No identifications occur inside the solid
cylinder, so different points represent different de-
vices.

Notice that the proposed representation identifies
directly the form of the eigenstates in the complex
plane, which is a natural way of representation of
polarization states when they are expressed in Jones
matrix formalism.

5. Loci associated to symmetry properties of re-
ciprocal devices

Additional properties can be discussed if we as-
sume that M represents a reciprocal device. In Ref.d
w x2 Brosseau defines a reciprocal device as an optical
system which satisfies the principle of reciprocity. It
states that the input and output of any linear passive
optical system can be interchanged without altering
the response of the optical system. Optical reciproc-
ity can be applied to obtain some general properties

w xof the Jones matrix 13 . In order to do that, it is
necessary to provide a relation between the action of
the device under direct and backward illumination.
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˜Let M denote the matrix for the device underd
w xbackward illumination. It is related to M by 6 :d

˜ tM ss PM Ps 13Ž .d 3 d 3

˜In this equation, both M and M describe the actiond d

of the device when incoming light is expressed in
two different right-handed reference frames which
correspond to forward and backward propagation,
respectively. The use of two reference frames re-

Ž .quires the introduction of s in Eq. 13 to imple-3
Žment the relative inversion of axes for an applica-

w x.tion to reflective polarization systems see Ref. 14 .
The comparison of the action of the device under
forward or backward illumination, together with rela-

Ž .tion 13 , can be used to deduce the cancellation of
Ž . w xsome of the parameters X, Y, Z, W 6 , a fact that

reflects a symmetry property of the display. The
cancellation of one of these parameters defines par-
ticular regions on the cylinder, and they can be
summaryzed as follows:

1. If the response of the device under inverse
illumination is exactly equal to the response under
direct illumination, then Ws0 and consequently
f s0 if Z)0, or f sp if Z-0. These devices3 3

Ž .are represented in the cylinder by the plane Re z s
0 and the corresponding eigenvectors are always
ellipses with axes centered on the coordinate axis.

2. If the response of the device under inverse
illumination is equal to the response under direct
illumination, up to inversion in one of the two
transverse axes, then Zs0 and consequently f s3

pr2 if W)0, or f s3pr2 if W-0. In this case3

Ž .the devices are represented in the plane Im z s0
and the eigenvectors are always linearly polarized
states.

3. If the response of the device under inverse
illumination is equal to the response under direct
illumination, up to a rotation of "90 degrees, then

< "<Ys0. Consequently, f spr2 and thus z s1,2

so that the devices lie in the surface of the cylinder.
The eigenstates have the same modulus in x and y
directions.

Fig. 3a–Fig. 3c show the representation in the
cylinder of the regions corresponding to symmetry
properties 1, 2 and 3 respectively.

6. Examples

In this section we analyze some well known
polarization devices and their representation in the
cylinder.

6.1. Rotators

As a first example, we will consider a rotator of
angle u , whose Jones matrix is:

cos u ysin uM u s . 14Ž . Ž .ROT ž /sin u cosu

This is an example of reciprocal device that verifies
property 1. In this case, the parameters for the

< "<representation are f su , z s1 and f s0 if1 3

sin u-0, or f sp if sin u)0. Fig. 4 shows the3

Ž . Ž . Ž .Fig. 3. a Devices verifying symmetry property 1, b Devices verifying symmetry property 2, c Devices verifying symmetry property 3.
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Fig. 4. Cylinder representing rotators of angle u , varying from 0
to p.

points in the cylinder representing a rotator charac-
terized by a rotation angle u , taking values from
us0 up to usp. Notice that, since we have al-
lowed to factor out a minus sign, a rotation in the

w xrange p,2 p is equivalent to another rotation in the
w xrange 0,p . As expected, the projection over the

complex plane give the L- and R-circular polarized
eigenstates. Because the points lie in the border of
the cylinder, two points represent the device. The
continuous line in Fig. 4 corresponds to the eigen-
value with positive phase, while the dotted line
corresponds to the one with negative phase.

6.2. WaÕeplates

The second example is a wave-plate that intro-
duces a phase-shift d which is rotated an angle u

with respect to the laboratory coordinate axis,
Ž . w xM d ,u . The corresponding Jones matrix is 1 :WP

Ž .M d ,uWP

d d d
Ž . Ž .cos q i sin cos 2u i sin sin 2už / ž / ž /2 2 2

s .
d d d� 0Ž . Ž .i sin sin 2u cos y i sin cos 2už / ž / ž /2 2 2

15Ž .

This is a reciprocal revice verifying property 2. In
< y< < Ž . < < q< < Ž . <this case f sdr2, z s tan u , z s1r tan u1

Ž . Ž .and f spr2 if sin dr2 sin 2u -0, or f s3 3
Ž . Ž .3pr2 if sin dr2 sin 2u )0. The points represent-

Ž .ing the device lie always in the plane Im z s0 and
consequently the eigenvectors are linearly polarized,
corresponding to the directions of the neutral axes of

the waveplate. The height over the base of the
Ž .cylinder gives half the phase-shift dr2 and the

distance from the center depends only on the angle
u . In Fig. 5a and Fig. 5b we analyze the cases us0
and uspr4, respectively, when the phase of the
wave-plate changes from 0 to 2p. In the first case
Ž .Fig. 5a , the device follows the axis of the cylinder
as the phase-shift increases. The projection gives
always the origin of the complex plane, correspond-
ing to a horizontal linearly polarized light. The sec-
ond eigenvector is at infinity, corresponding to the
vertical linearly polarized light. Fig. 5b shows the
circuit for uspr4. In this case the device follows

Ž .the lines in the surface corresponding to Re z s
"1. The projection on the complex plane gives the

Fig. 5. Cylinder representing wave-plates with phase shift d

Ž .varying form 0 to 2p. a Wave-plates centered in reference axes.
Ž .b Wave-plates rotated an angle u spr4. The l’s refer to the
standard notation of wave-plates.
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Ž .two linearly polarized states oriented at " pr4 .
Again two lines are present in the graphic represent-

Žing the eigenvalues with positive phase continuous
. Ž .line and negative phase dotted line .

6.3. WaÕeplate plus a rotator

A third example consists in the combination of a
centered wave-plate and a rotation of 90 degrees. It
is given by the following matrix product

p
M sM PM d ,0Ž .WPqROT ROT WPž /2

d
0 yexp yiž /2

s .
d

qexp qi 0� 0ž /2

16Ž .

< "< Ž .In this case f spr2, z s1 and f s pr2 "1 3
w xpe 0,2 p . Fig. 6 shows the evolution of the device

as a function of d in the range from 0 to 2p. It
follows the border of the cylinder at height f s1

pr2. The projection over the complex plane gives
eigenstates which are always centered ellipses which
respect to the coordinate axes. This combination is
interesting because it represents the limit for a 90
degrees twisted nematic liquid crystal structure, when
the device is in the adiabatic following approxima-

Ž . w xtion or waveguiding limit 15 .

Fig. 6. Cylinder representing the combination of a wave-plate with
phase shift d varying form 0 to 2p, and a rotator of 90 degrees.

7. Representation of the operation regimes of a
90-twist LCD

We will apply this graphical representation to a
twisted anysotropic media. It consists on an
anysotropic media which neutral axes describe a 90
degrees twist from the incident to the back surface of
the crystal. Yariv and Yeh analyzed this structure in

w xref. 4 . This type of model has also been used in the
w xdescription of a 90-twist LCD 5,15 . The Jones

matrix of this device, assuming that the ordinary and
extraordinary axes at the input surface are oriented
parallel to the laboratory axes, is given by:

Ž . Ž .M b sexp yib90 Twist

=

p b
Ž . Ž . Ž .sin g cos g q i sin g

2g g
17Ž .

b p� 0Ž . Ž . Ž .ycos g q i sin g sin g
g 2g

where bG0 is the birefringence of the display, and
22(gs b q pr2 . Thus, it is obtainedŽ .

p p g
y1 y1f scos sin g scos sincŽ .1 ž /ž /ž /2g 2 p

18aŽ .

b
f sarg cos g y i sin g 18bŽ . Ž . Ž .3 ž /g

< "<and z s1. Their propagation eigenstates are el-
liptic polarized states, where the modulus of the
components of the electric field is equal for x and y
directions.

The representation of these devices for a range of
values b G0 is shown in Fig. 7, where only the
eigenvector with positive phase has been drawn for
clarity. The circuit lies in the border of the cylinder,
as it is expected owing to the form of its propagation

w xeigenstates 11 .
This representation may be useful to describe the

operation modes of the device. For b™0 the repre-
sentative point shows that the eigenvectors tend to be
linear states oriented at "458 as it is easy to show

Ž .by exploring the b™0 limit in f . As b or g3

increases, the values of the phase f are given by1

the composition of the decreasing function cosy1
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Fig. 7. Cylinder representing a 90-degrees twisted anysotropic
media with birefringence b G0. Only the positive eigenvector-ei-
genvalue is represented.

Ž Ž ..with the oscillating sinc function see Eq. 18a . The
eigenvectors are no longer linear, and the phase of
the eigenvalues oscillate around the value f s1
Ž .pr2 . Maximum and minimum values of f are1

reached whenever gs tan g , corresponding to the
minimum and maximum values of the sinc function,
respectively

Ž .For large values of b or g the device tends to
Ž .be located along the plane f s pr2 , since the1

sinc function tends to zero. In this situation, the
operation of the device tends to be equivalent to the
last example, the combination of a wave-plate and a
rotation of 90 degrees. This operation regime was
named by Yariv and Yeh as the adiabatic following

w xregime of the display 4 .
Points verifying gskp, where k is any positive

integer, correspond to zeroes of the sinc function,
and they occur always between maximum and mini-
mum values of this function. They give points lo-
cated at f s0 or f sp, so that the device oper-3 3

Ž .ates as a 90 degrees rotator see Fig. 4 . Their
representative points lie exactly in the plane f s1
Ž .pr2 . These points have been named as local adia-
batic points, in analogy with the previous terminol-
ogy of LCD’s, and they have been used for the
determination of the optical physical parameters of

w xthe display 16 .

8. Conclusions

A graphical representation for non-absorbing po-
larization devices has been presented. It takes the

form of a solid cylinder with the base of radius equal
to one, and a maximum height of p. The projection
of the point representing the device over the base
directly gives one of the eigenvectors of the Jones
matrix represented in the complex plane. Several
examples of well known devices have been pre-
sented. It has also been applied to a twisted nematic
liquid crystal display. This is an example of electro-
optical device, where the polarization properties de-
pend on an external parameter, typically an applied
voltage. For these electro-optical devices, the geo-
metrical representation may be used to visualize the
operation regimes of the display.
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