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Abstract

We introduce a new rotation invariant pattern recognition method based on nonlinear correlation. The images are

decomposed into disjoint binary slices and then correlated using the common linear correlation. This operation is very

discriminant even when the target is embedded in strong noise. We extend our sliced orthogonal nonlinear generalized

correlation method to rotation invariant pattern recognition by combining the information of a circular harmonic (CH)

of each binary slice of the reference object with binary slices of the target. In addition to improved discrimination

capability, the method avoids the time-consuming process of ®nding proper centers for the CHs. Results are presented

including the study of the stability of the correlation peaks in the presence of background noise and overlapping

Gaussian noise. Ó 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Although the human eye is fairly good at rec-
ognizing objects that are distorted by changes of
orientation, scale and contrast, machines are better
at some tasks than at others: for example machines
are better at spotting targets buried in additive
noise, but are generally not very good at taking
scale changes into account.

The rotation problem has been extensively
studied, and methods have been put forward for
automatic recognition of targets under various
orientations, especially for the in-plane rotation
problem. The more general problem where the
target can be rotated about all three axes is still
unsolved except for special cases. In this paper we
consider only in-plane rotations.

Some of the most e�ective methods for pattern
recognition with in-plane rotations are based on
the circular harmonic (CH) decomposition [1,2].
Although good results have been obtained, the
constraint that only one circular harmonic com-
ponent (CHC) from the target can be used per
single ®lter has imposed performance limits. In
order to solve this limitation and to improve the
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discrimination capability (DC), many conven-
tional ®lters have been combined with the CH
decomposition [3±5]. However, some of those ®l-
ters have poor noise robustness and one main
drawback is that the performance depends on the
choice of harmonic expansion center, which can-
not be formulated in a systematic way.

In this paper we combine the use of multi-
ple CHCs with a binary decomposition method.
Moreover, the choice of the CH expansion centers
can be done easily taking the mass center of the
object. We are able to achieve rotation invariant
pattern recognition under condition where other
methods fail.

2. Binary decompositions and correlations

A two-dimensional (2D) image g�x; y� with
discrete gray levels can be decomposed into a sum
of disjoint elementary images em�g�x; y�� satisfying
the orthogonality property

em�g�x; y��en�g�x; y�� � 0 if m 6� n;
em�g�x; y��en�g�x; y�� � 1 if m � n:

�1�

Each sub-image em�g�x; y��f g represents a gray
level slice of the object [6]. The sliced orthogonal
nonlinear generalized (SONG) decomposition of
g�x; y� is [6]

g�x; y� �
XQÿ1

i�0

Giei�g�x; y��; �2�

where the coe�cients Gi are weights, and where Q
is the total number of gray levels in the image.

The elementary binary images have the prop-
erty

ei�g�x; y�� � 1 g�x; y� � i;
0 otherwise:

�
�3�

Note that each object point has only one gray
level, so each unshifted i-slice is disjoint and
therefore orthogonal to all of the others. For the
standard gray scale image representation, Gi � i.

The standard correlation between two objects
g�x; y� and f �x; y� can be written

g�x; y� 
 f �x; y� �
XQÿ1

i�0

XQÿ1

j�0

GiFjei�g�x; y��


 ej�f �x; y��; �4�
where 
 denotes the linear correlation and where
the coe�cients are equal to the gray levels, i.e.
Gi � i and Fj � j. Now the problem with this
correlation is that it puts higher weights on
brighter parts of the targets, but there is usually no
reason why brighter parts of the targets should be
more important than the others; that is why many
pattern recognition techniques binarize both the
reference and the target [7], thus giving equal
weights to all the gray levels by setting all the
weights equal to unity or some other constant
value. This is convenient when the target may be
segmented from the scene of which it is a part, but
in highly cluttered or very noisy scenes, it is often
not feasible to segment potential targets from the
scene, nor to binarize the whole scene.

The coe�cients Gi and Fj may be arranged into
a matrix with rows and columns �i; j�. We now
generalized this matrix by replacing the product
coe�cients Gi and Fj by generalized weights Wij.
So the correlation expression (Eq. (4)) becomes

SONGgf �x; y� �
XQÿ1

i�0

XQÿ1

j�0

Wijei�g�x; y��


 ej�f �x; y��: �5�
This is what we have called the SONG corre-

lation [6]. Setting di�erent values on the terms of
the matrix W allows the matrix to represent vari-
ous known correlation types such as standard
matched ®ltering, binary ®ltering, morphological
correlation [8], and so on; but it also allows us to
de®ne new kinds of correlation. The SONG cor-
relation that we have proposed is obtained by
setting

Wij � 0 for i 6� j;
Wij � 1 for i � j:

�6�

In this case, the double sum reduces to the
single sum and the correlation becomes

Xgf �x; y� �
XQÿ1

i�0

ei�g�x; y�� 
 ei�f �x; y��: �7�
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In this expression, only the gray levels in the
two images having the same values are correlated
together after having their values set equal to
unity, so the correlation is a sum of correlations
between binary images. This is the SONG corre-
lation as used in our previous papers [6,9]. In the
following, we shall consider for simplicity objects
located such that their correlation peaks appear at
the origin �0; 0�; because the correlation operation
is shift invariant, it is trivial to generalize to the
case of targets located at point �x; y�, and to the
presence of multiple target, since the correlation is
also additive.

Images are not usually digitized to fewer than
256 gray levels; but targets of interest in the scene
usually cover a smaller range of levels, let us say 64
for purposes of discussion. It is clear that if 64 gray
levels are maintained, expression shown in Eq. (7)
will require summing 64 correlations. In fact such
a large number of correlations is not required: it is
simple matter to add neighboring gray levels to-
gether in order to reduce the number of gray levels
to a more manageable number, say 4 or 8, which
are the numbers used in our previous experimental
results [6,8].

We have already shown some recognition re-
sults using the SONG method; we have also
shown how the method can be implemented op-
tically by means of a joint transform correlator
(JTC) using additive techniques developed for
morphological correlation [9]. So the SONG
correlation can be considered either as a digital
method in its own right or as an optical pattern
recognition method. Another advantage of the
SONG correlation is that if it is performed using
binary information and a JTC, then it is conve-
nient to implement it by a binary-valued SLM
such as ferroelectric liquid crystals spatial light
modulators (FLC SLMs) that can display 256�
256 pixel2 images at frame rates in excess of 1
kHz [10].

The SONG correlation, like the linear corre-
lation, is shift invariant. However like the linear
correlation, it is sensitive to object distortions
such as rotations. In this paper we combine the
SONG correlation with the CH decomposition in
order to obtain rotation invariant pattern recog-
nition.

3. Rotation invariant SONG correlation

The linear correlation between a scene g�r; h�
and a CHC of the reference object, fm�r; h� is ro-
tation invariant [1,2]:

cm�r; h� � g�r; h� 
 fm�r; h�; �8�
where �r; h� are the polar coordinates.

The circular harmonic ®lter (CHF) is a linear
®lter and is therefore shift invariant like the con-
ventional matched ®lter. The CHF matches a sin-
gle CHC of the target, resulting in rotation
invariance [1].

The performance of the CHF involves both the
order of the CHC and the expansion center chosen
for the change from Cartesian coordinates to polar
coordinates. Several methods have been intro-
duced to select the appropriate order and center,
called the proper center [11,12].

We apply the CH decomposition to each binary
elementary function �ei�f �x; y�� of Eq. (7), which
yields

Xgf �r; h� �
XQÿ1

i�0

ei�g�r; h�� 
 ei�f �r; h��

�
XQÿ1

i�0

ei�g�r; h�� 

X1

m�ÿ1
eim�f �r; h��

�
X1

m�ÿ1

XQÿ1

i�0

ei�g�r; h�� 
 eim�f �r; h��: �9�

Rotation invariant pattern recognition is
achieved by using only one component of the CH
decomposition and then performing the linear
correlation. If only one CHC is used for each i-
correlation in Eq. (9), the SONG correlation will
allow the detection of a target for any angular
orientation. So using only one m-order CHC in
Eq. (9), we de®ne a rotation invariant SONG
(RISONG) correlation as

Xm
gf �r; h� �

XQÿ1

i�0

ei�g�r; h�� 
 eim�f �r; h��: �10�

The correlation of Eq. (10) is also a nonlinear
correlation. The di�erence between the RISONG
and the SONG is that only part of the binary
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elementary slice �ei�f �x; y�� is used in the correla-
tion.

The RISONG can be implemented optically
using a JTC in a manner similar to that used for
the optical implementation of another rotation
invariant nonlinear correlation called the rotation
invariant morphological correlation (RIMC) [13].
The di�erent binary slices with the CHC of the
reference object and the input scene are displayed
in a SLM. All the joint power spectra (JPSs) are
obtained and added. This ®nal JPS distribution is
displayed again in the SLM, then a second Fourier
transformation will yield the RISONG correla-
tion, see Eq. (10). The main issue in this optical
implementation is to display the complex CHC in
the JTC. There are methods to display complex
functions in a SLM of the JTC [14,15]. For the
optical implementation of the RIMC [13], we used
the real m � 0 CHC of each binary slice reference
object. Although the zero-order CH order has
poor information about the object, the result
showed that the RIMC was satisfactory. However,
if the objects are quite similar, the method can give
a false detection. In order to obtain higher dis-
crimination, we propose the RISONG correlation.

4. Results

In this section we present some computer results
to determine the performance of the method for
rotation invariant pattern recognition and to
compare the performance with other linear CH
pattern recognition methods.

Fig. 1 shows an input scene that is made up of
di�erent vehicles: two rotated versions of the ref-
erence objects (0° and 90°) are marked with ar-
rows. The image has 16 gray levels.

The choice of the order and of the expansion
center are important for the RISONG case as it is
for the CHC in the linear case, but as discussed
below, the choice of expansion center for the RI-
SONG is much simpler than for the latter.

The function fm�x; y� in Eq. (8) takes into ac-
count the choice of the CH order and of the ex-
pansion center as discussed elsewhere [11,12]. For
the RISONG, the CHCs of the elementary binary
i-slices of the reference object are required. We

chose the same expansion order as for the linear
case, because that parameter is strongly dependent
on the geometry of the reference object as well as
on the shape of each binary slice which in turn is
strongly dependent on the shape of the reference
object. For the objects shown in Fig. 1 we used
m � 5 CHFs.

For the RISONG expansion center, we simply
chose the mass center of the reference object for all
the i-CHC binary slices, because the gray scale
distribution is related to that mass center of the
object, and it is important for all the CHs of the
slices to have the same expansion center. So for
the RISONG correlation the choice of expansion
center is trivial because the mass center is easy to
calculate, and we avoid the laborious task of
®nding the proper expansion center, which is a
prerequisite to obtain good performance in the
case of a single CHC ®lter.

We de®ne the DC as

DC � 1ÿ CrossCorr

AutoCorr
; �11�

where the AutoCorr and the CrossCorr are the
auto-correlation peak value and the cross-corre-
lation peak value. Taking into account that we

Fig. 1. Input scene with two reference objects rotated (0° and

90°).
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used many objects in the input scene, we will ob-
tain di�erent cross-correlation peak values. The
DC is calculated using the highest cross-correla-
tion peak value.

A high value of DC means that the value of the
cross-correlation is low compared to the auto-
correlation, which implies that good discrimina-
tion and good noise robustness are achieved. On
the other hand, a low value of the ratio means that
the energy of the cross-correlation has almost the
same value as that of the auto-correlation; so the
higher the better.

The linear correlation for an m � 5 CHF is
shown in Fig. 2(a). Note that this ®lter is unable to
detect the reference object, and a false alarm ap-
pears. On the other hand, if we use the same input
scene with the RISONG, we obtain the correlation
output shown in Fig. 2(b). The DC for this case is
0.93. We used the m � 5 CHC order for each bi-
nary slice.

The correlation peaks in Fig. 2(b) are much
sharper. Other linear ®lters that are more discri-
minant than the matched ®lter, for example the
CH phase only ®lter (POF) or CH inverse ®lter
(IF) do not yield better results. This superior per-
formance of the RISONG method can be under-
stood from the orthogonality property at the
origin of the binary elementary functions: al-
though the di�erent CHCs of the elementary
binary i-slices �eim�f �r; h��� are not disjoint or
orthogonal, they do not correlate well with each
other because they correspond to slices that are
very di�erent and that are disjoint (in the case of a
true target) or quasi-disjoint (in the case of a false
target). These computer results demonstrate the
improved performance of the RISONG over the
CHC linear correlation.

Although the performance of the SONG and of
the RISONG correlation is very good, both op-
erations are quite sensitive with respect to change
of illumination or changes of gray level distribu-
tion. A complete solution of this problem is be-
yond the scope of this paper, but we will introduce
solutions for a few cases. One such case is where
the illumination source is known, or may be de-
termined for example by knowledge of the illumi-
nation source or by examination of a known part
of the scene; it is rather trivial in such cases to

normalize the whole scene and to adjust either or
both the reference and the target scene so that they
have the same number of gray levels, after which
the SONG correlation and the RISONG correla-
tion may be applied as described above.

If the illumination parameter is unknown, then
the solution can be to quantize the image after
acquiring it with a camera. Real images have many
gray levels and those gray levels are not uniform

Fig. 2. (a) 3D plot of the CH linear correlation for Fig. 1. (b)

3D plot of the RISONG correlation for Fig. 1.
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distributions. In such cases, a variation in the gray
scale will not dramatically a�ect the correlation if
we quantize using a small number of quantization
levels. We are aware of the importance of quanti-
zation for both the SONG and the RISONG, this
is why we are studying it carefully; but we feel that
this illumination study is beyond the scope of this
rotation invariant pattern recognition paper, and
that there are many cases where illumination
changes is not a problem or can be dealt with
easily. This is especially the case when potential
targets may be segmented from the scene.

Here we will consider correlated disjoint noise
and additive Gaussian noise.

5. The e�ect of noise on performance

Correlated Gaussian disjoint noise and additive
Gaussian noise are two of the most important
types of noise that degrade images. We ®rst con-
sider the stability of the DC of the RISONG cor-
relation for the detection of targets in the presence
of disjoint correlated noise. Fig. 3 shows the scene
of Fig. 1 corrupted by correlated Gaussian disjoint

noise. The background is a Gaussian noise distri-
bution with a mean of zero and various values of
the standard deviation r; this parameter is a
measure of the energy of the noise pattern, where a
greater value of r represents a higher level of noise.

Table 1 shows the performance of the RISONG
DC for various values of the nonoverlapping
noise. Note that the RISONG is stable over a wide
range of noise levels. Standard detection methods
like the CH linear correlation, the CH POF or the
CH IF are unable to detect the targets over the
whole range of noise. All of them yield false
alarms.

We also studied the performance of the RI-
SONG for overlapping Gaussian Noise. In Fig. 4
is shown the same scene of Fig. 1 corrupted by
additive Gaussian Noise. The third column of
Table 1 gives the DC parameters for various values
of the noise for the RISONG, and the other col-
umns correspond to the CH linear and the CH
POF. Both of the latter ®lters detected the brighter
car, yielding a false detection (DC � 0).

Fig. 5 shows the RISONG correlation for
r � 1:9; although the two peaks are slightly dif-
ferent, they correspond to the two rotated versions
of the reference object, and there is plenty of lee-
way for a threshold detection.

6. Conclusion

We have introduced a rotation invariant pat-
tern recognition method that yields excellent re-
sults for cases where targets are di�cult to
recognize and that yields stable correlation peaks
over a wide range of high noise levels where other
methods fail. The method uses multiple ®lters, so
the price paid is an increase in processing time.
However this increase is more than compensated
by the removal of the need to calculate a proper
center for CHFs, a very time-consuming operation
and by the improved performance.

We do not claim that this method is superior to
every existing method, because there is no method
under the sun that can make that claim; some
methods perform better in some circumstances,
and less well in other cases. No doubt that will be
the case for this method, even after we ®nd a better

Fig. 3. Input scene corrupted with correlated Gaussian disjoint

noise.
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solution to the intensity invariance problem. For
doubtful readers, we are well on the way to ®nding
such a solution, but that is beyond the scope of
this paper.
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