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Maximum likelihood for target location in the
presence of substitutive noise

Pascuala Garcia-Martinez, Philippe Réfrégier, Henri H. Arsenault, and Carlos Ferreira

We consider the optimal likelihood algorithm for the estimation of a target location when the images are
corrupted by substitutive noise. We show the relationship between the optimal algorithm and the sliced
orthogonal nonlinear generalized ~SONG! correlation. The SONG correlation is based on the application
of a linear correlation to corresponding binary slices of both the input scene and the reference object with
appropriate weight factors. For a particular case, we show that the optimal strategy is a function of only
the number of pixels for which the gray values in the noisy image match the ones of the reference image
when the substitutive noise is uniformly distributed. This is exactly what a particular definition of the
SONG correlation does. © 2001 Optical Society of America
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1. Introduction

Nonlinear digital filtering has had an impressive
growth in the past three decades.1 However, one of
the main problems in digital image filtering applica-
tions is the bulk of the image data and the large
number of operations per pixel. Usually the opera-
tions involve several additions, multiplications, com-
parisons, and nonlinear function evaluations. So
the computational complexity required is relatively
high. For many applications real-time image pro-
cessing is required. Optics, specifically, parallel pro-
cessing, can provide an alternative for such cases in
that operations carried out at the speed of light and
the inherent parallelism of optical processors are ad-
vantages offered by the use of optics. Convolution
and correlation are well-known examples of opera-
tions that may be performed with device technologies
such as high-speed spatial light modulators and de-
tectors. Nonlinear filtering involve the combination
of nonlinear functions with common linear correla-
tion or convolution.
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An image can be decomposed by means of elemen-
tary binary decompositions, and because those slices
are binary, the complexity of the process is reduced
significantly. Threshold decomposition is a widely
used binarization method that has been applied to
nonlinear image processing.2 Recently Garcia-
Martinez and Arsenault3 have proposed an orthogo-
nal binary-sliced image decomposition. The authors
showed how the slices obtained with threshold de-
composition can be defined in terms of the sliced or-
thogonal nonlinear generalized ~SONG! elementary
inary functions.3 The motivation of finding differ-

ent binary decompositions is to define new nonlinear
correlations to achieve higher discrimination capabil-
ities for pattern recognition compared with conven-
tional linear filtering. Two nonlinear correlations
have been defined by means of linear correlations
between binary decompositions of the input scene
and the target. The threshold-decomposition point
of view leads to the morphological correlation,4,5

whereas the SONG decomposition leads to the SONG
correlation.3,6 Both nonlinear correlations have
been implemented optically with a joint transform
correlator ~JTC!: Each pair of elementary binary
oint input slices ~one slice from the target and one
rom the input scene! are placed next to each other in
he input plane. For each pair, the joint power spec-
rum is performed. The sum of the joint power spec-
ra of all the slices is stored and then fed back at the
nput plane for a second Fourier transform to produce
he morphological correlation or the SONG correla-
ion. Other papers describe a way to binarize the
oint power spectrum in a JTC to achieve pattern-
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recognition robustness to noise and to distortion.
Those nonlinear correlations are extremely selective
for pattern recognition compared with common linear
filtering methods.

Furthermore, the SONG correlation is robust when
the image is corrupted by substitutive noise. This
noise is often considered in communication theory.1
This noise is viewed as an impulsive noise or outliers
from a statistical point of view. The noise will de-
stroy part of an image, whereas other parts remain
unaffected. So an optimum detection solution may
be to find a technique for which only this unaffected
part will be considered. This is indeed what a spe-
cific definition of the SONG correlation3 states, be-
cause the SONG correlation counts the number of
pixels of an image that remain unaffected by the
noise. Although we have shown recently that the
SONG correlation is robust to substitutive noise,3,6

we had not demonstrated that it is optimal. This
will be accomplished in this paper by use of the
maximum-likelihood criteria.

For optical pattern recognition, one can determine
the filter by optimizing heuristic criteria or by using
a decision theory approach. The decision theory ap-
proach consists of the maximization of a likelihood
function or the minimization of a probability of error.
Classical linear filters are optimum in the presence of
some particular additive noise sources.9,10 How-
ever, such filters are suboptimum when different
noise models are considered. Nonlinear global fil-
tering techniques are a natural extension of basic
linear filters when different noise sources are consid-
ered.11 Moreover, nonlinear filters based on deci-
ion theory can be applied to the well-known
onlinear JTCs.7,8,12

In this maximum-likelihood approach, we shall de-
termine the statistical model for substitutive noise
and we shall obtain the maximum-likelihood expres-
sion for target location. We show that this function
is related to the nonlinear SONG correlation. As an
example, we show that the optimum strategy is a
function only of the number of pixels for which the
gray values in the noisy image match the gray values
in the reference image when the substitutive noise is
random and uniformly distributed. This is exactly
what a particular definition of the SONG correlation
states. Experimental results are given to illustrate
this result.

2. SONG Decomposition and SONG Correlation

A two-dimensional image f ~x, y! with discrete gray
levels can be decomposed into a sum of disjoint ele-
mentary images em@ f ~x, y!# satisfying the orthogonal-
ity property

em@ f ~ x, y!#en@ f ~ x, y!# 5 0 if m Þ n,

em@ f ~ x, y!#en@ f ~ x, y!# 5 1 if m 5 n. (1)
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ach subimage $em@ f ~x, y!#% represents a gray-level
slice of the object.6 The SONG decomposition of f ~x,
y! is3

f ~ x, y! 5 (
i50

Q21

Fiei@ f ~ x, y!#, (2)

here the coefficients Fi are weights and Q is the
total number of gray levels in the image.

The elementary binary images have the property

ei@ f ~ x, y!# 5 H1 f ~ x, y! 5 i
0 otherwise . (3)

Note that each object point has only one gray level,
o each unshifted i slice is disjoint and therefore or-
hogonal to all the others. For the standard gray-
cale image representation, Fi 5 i.
The standard correlation between two objects g~x,

y! and f ~x, y! can be written as

g~ x, y! ^ f ~ x, y! 5 (
i50

Q21

(
j50

Q21

GiFj ei@ g~ x, y!#

^ ej@ f ~ x, y!#, (4)

here R denotes the linear correlation and the coef-
ficients are equal to the gray levels, i. e., Gi 5 i and
Fj 5 j. Now the problem with this correlation is that
it puts higher weights on brighter parts of the tar-
gets, but there is usually no reason that brighter
parts of a target should be more important than the
others; that is the reason that many pattern-
recognition techniques binarize both the reference
and the target, thus giving equal weights to all the
gray levels by settings all the weights equal to unity
or some other constant value. This is convenient
when the target may be segmented from the scene of
which it is a part, but in highly cluttered or noisy
scenes it is often not feasible to segment potential
targets from the scene or to binarize the whole scene.

The coefficients Gi and Fj may be arranged into a
matrix with rows and columns ~i, j!. We now gen-
ralized this matrix by replacing the product coeffi-
ients Gi and Fj by generalized weights Wij. So the

correlation expression Eq. ~4! becomes

Vgf~ x, y! 5 (
i50

Q21

(
j50

Q21

Wijei@ g~ x, y!# ^ ej@ f ~ x, y!#. (5)

This is what we have called SONG correlation.3
Setting different values on the terms of the matrix W
allows the matrix to represent various known corre-
lation types such as standard matched filtering, bi-
nary filtering, morphological correlation,5 but it also
allows us to define new kinds of correlation. The
SONG correlation that we have proposed is obtained
by setting

Wij 5 0 for i Þ j,

Wij 5 1 for i 5 j. (6)
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In this case, the double sum reduces to the single
sum and the correlation becomes

Vgf
P~ x, y! 5 (

i50

Q21

ei@ g~ x, y!# ^ ei@ f ~ x, y!#. (7)

In this expression, only the gray levels in the two
mages having the same values are correlated to-
ether after having their values set equal to unity, so
he correlation is a sum of correlations between bi-
ary images. This is the SONG correlation as used

n our previous papers.3,6 In the following, we shall
consider for simplicity objects located such that their
correlation peaks appear at the origin ~0, 0!; because
he correlation operation is shift invariant, it is trivial
o generalize to the case of targets located at point ~x,
! and to the presence of multiple targets because the
orrelation is also additive.

Images are rarely digitized to fewer than 256 gray
evels, but targets of interest in the scene usually
over a smaller range of levels, say, 64 for the purpose
f discussion. It is clear that if 64 gray levels are
aintained, the expression shown in Eq. ~7! will re-

uire the summing of 64 correlations. In fact, such
large number of correlations is not required: It is
simple matter to add neighboring gray levels to-

ether to reduce the number of gray levels to a more
anageable number, say, 4 or 8, which are the num-

ers used in our previous experimental results.3,6

One of the additional advantages of defining the
SONG correlation as a sum of linear correlations is
the possibility of implementing this operation opti-
cally6 with a JTC. The JTC carries out a Fourier
transformation, which is a linear operation, so the
sum of Eq. ~7! is performed on the joint power spec-
rum, which is the intensity output detected in an
ntermediate step of the JTC operation. This idea
as been used for the optical implementation of non-

inear morphological correlation.5
The SONG correlation is extremely discriminating

because we are counting the number of points in the
reference object and in the image that have the same
gray levels at the same locations. However, owing
to the selectivity, if the aspect of the object changes a
little bit because of a slight rotation or a change in
scale, the SONG correlation can be more sensitive.
To alleviate this we have satisfactorily applied the
circular harmonic decomposition to the SONG corre-
lation to achieve rotation-invariant pattern recogni-
tion.13 A change of illumination or gray-level
changes will affect the SONG correlation. A com-
plete solution to this problem is beyond the scope of
this paper, but we are aware of the importance of the
question which is the reason that we are carefully
studying the gray-level quantization and the opti-
mum weights to control the tolerance to illumination.

As was shown in Ref. 3, the correlation VP is ex-
remely good when the images are corrupted by sub-
titutive noise because the pixels that remain
naffected are the only information that is considered

n the correlation process. Although the results are
here,3 we have not given the exact mathematical
theory for that location estimation. In Section 3 we
show the relation between the optimal approach for
location estimation with substitutive noise and the
SONG correlation.

3. Noise Robustness of the SONG Correlation Against
Substitutive Noise

We now consider the performance of this SONG cor-
relation for images that are degraded by substitutive
noise. This noise is known as impulsive noise or
outliers from a statistical point of view. In this sec-
tion we analyze the optimum likelihood algorithm for
object location estimation, so the statistics of the
noise are required.

A. Noise Model and Likelihood Expression

Let fi be the reference image. We assume that this
reference has been corrupted by substitutive noise.
This noise is modeled in the following way.

1. For each pixel the value of the gray level is
modified with probability p and not modified with
probability q ~so p 1 q 5 1!. One may introduce a

ernoulli random variable bi whose probability law is
PB~0! 5 q and PB~1! 5 p.

2. If the gray-level value is modified, a new random
alue xi is affected to the value of this pixel. The

probability density function of this random variable
xi will be denoted Px~x!.

The statistical model for the corrupted image gi is

gi 5 ~1 2 bi! fi 1 bixi. (8)

If there is no a priori information on the reference
object fi one can consider that P~ fi! 5 constant.

oreover, using the Bayes law one can show with the
posteriori probability P@ fiugi# that the reference ob-

ject present in the scene is equivalent to maximizing
the a priori probability, P@giu fi#, which corresponds to
the likelihood of the observed image gi:

L 5 P@ gi u fi#. (9)

oreover, because the random value for each pixel is
ssumed to be chosen independently of the others,
he logarithm of the likelihood ~log likelihood! is

l 5 (
i51

N

ln~P@ gi u fi#!, (10)

where P@giu fi# is the probability that at pixel i the
gray-level value is gi for the noisy image; we know
that it is equal to fi for the reference image. Using
Bayes relations we show that the log-likelihood ex-
pression is ~see Appendix A!

l 5 (
i51

N

d@ gi 2 fi#G~ fi! 1 Bg, (11)

here the functions G~ fi! and Bg, are defined in Ap-
endix A. We have used the definition of the Kro-
ecker function, d~y!. The expression shown in Eq.

11! has two distinct responses that are due to the
10 August 2001 y Vol. 40, No. 23 y APPLIED OPTICS 3857
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Kronecker function: one when the corresponding
pixels in the observed image and in the reference
image have the same gray-level values at the same
positions and another when they are different. We
will apply in Subsection 3.B this expression to the
location estimation problem.

B. Location Estimation Problem

1. General Case
Now assume that the reference image has been trans-
lated by an unknown quantity k and that we want to
estimate this value from the noisy image gi. The
image model is now

gi 5 ~1 2 bi! fi2k 1 bixi. (12)

The log likelihood is now dependent on the hypothe-
sis for the unknown location k:

l~k! 5 (
i51

N

ln~P@ gi u fi2k#!. (13)

The maximum likelihood kML of k is obtained by
choosing the value of k that maximizes l~k!.

It is straightforward to generalize the previous re-
sults of Eq. ~11!:

l~k! 5 (
i51

N

d@ gi 2 fi2k#G~ fi2k! 1 Bg. (14)

ote that Bg is independent of k and that kML is
obtained by maximizing

l9~k! 5 (
i51

N

d@ gi 2 fi2k#G~ fi2k!. (15)

omparing the maximum-likelihood expression, Eq.
15!, with the general SONG correlation in Eq. ~5!, we
ee that both expressions are similar if the correla-
ion weight factors are identified with the function
~ fi2k! and if we perform the correlations using only

he diagonal terms of the SONG correlation matrix.
o, the optimum solution for the location estimation

n a maximum-likelihood sense in the presence of
ubstitutive noise is a nonlinear correlation in which
nly the corresponding gray levels for the two images
g and f !, having the same gray levels at the same
ositions and after having their values weighted by
he function G~ fi2k!, are correlated together. It is

worth noting that G~ fi2k! depends on p ~or q! in a
nontrivial way. So if p is unknown, it is difficult to
estimate it. We will study the particular case of
when the probability density function is a uniformly
distributed random function.

2. Case of a Uniformly Distributed
Random Variable
To go beyond the previous result, we need to consider
a particular probability density function for the ran-
dom variable xi. Let us consider the case where xi is
858 APPLIED OPTICS y Vol. 40, No. 23 y 10 August 2001
uniformly distributed random variable. For that
ase Px~x! 5 a and so

G~ fi! 5 ln~q 1 pa! 2 ln~ pa!, (16)

nd maximizing l9~k! is equivalent to maximizing

l̃~k! 5 (
i51

N

d@ gi 2 fi2k#, (17)

hich is equivalent to maximizing the number of
ixels whose value perfectly matches the pixel of the
eference. This operation is done by the definition of
he SONG correlation given in Eq. ~7!.

4. Analysis of the Experimental Results

We compare the noise robustness of the particular
definition of Eq. ~7! for the SONG correlation in the
presence of substitutive noise, with linear correla-
tion, nonlinear morphological correlation5 and the
phase-only filter. The input scene is shown in Fig. 1.
It consists of two objects, the reference object being
the one in the lower part of the image. The images
have eight gray levels.

We corrupt the noise-free image shown in Fig. 1
with substitutive noise in a uniformly random way.
This consists of randomly picking one pixel from the
image with a probability of changing that pixel value
or to leave the original image as it was. The noisy
image is shown in Fig. 2.

To estimate the amount of noise in the image, we
define a parameter for the signal-to-noise ratio as

SNR 5 NiyNc 2 1, (18)

where Ni is the number of pixels of the original image
and Nc is the number of pixels corrupted. If the
image is a noise-free image, then Nc 5 0, so SNR 5 `.
In contrast, if the image is totally corrupted, then Ni
> Nc, so SNR > 0. Then low values of signal to noise

ill mean that the image is highly degraded.

Fig. 1. Input scene with the reference object, located in the lower
part of the figure, and another object to be rejected.



We define the discrimination capability ~DC! as

DC 5 1 2
CrossCorr
AutoCorr

. (19)

A high value of DC means that the value of the
cross correlation is low compared with the autocorre-
lation, which means that good discrimination and
good noise robustness are achieved. However, a low
value of the ratio means that the energy of the cross
correlation has almost the same value as that of the
autocorrelation.

Table 1 shows the DC of the VP correlation and of
other common detection methods. What is repre-
sented in the table is how the noise level affects the
cross correlation; so, we measure the discrimination
capability, which in this case is connected with the
noise robustness.

From Table 1, when images are highly degraded,
only the VP correlation is able to detect the reference
object ~DC 5 0.94!; note that for the phase-only filter,
the matched filters and the nonlinear morphological
correlation, the value is DC 5 0, which corresponds to
a false alarm detection or a nondetection of the tar-
get. In contrast, the VP correlation is stable for dis-
crimination over the whole range of noise.

Those results can be understood from the definition
of the VP correlation. It implies the counting of all
the pixels that have the same gray levels at the same
positions for both the input image and the reference
object. Then if the image is highly degraded to the
extent that the gray-scale information of only a few

Fig. 2. Input scene highly degraded with uniform distribution
random noise.

Table 1. Discrimination Capability ~DC! of Several Pattern-Recognition
Operations and the New SONG Correlation When Different Noise

Degrees Are Considered

Signal-to-Noise
Ratio VP

Linear
Correlation

Morphological
Correlation

Phase-Only
Filter

5.70 0.97 0.10 0.40 0.95
1.70 0.97 0.13 0.36 0.93
0.57 0.96 0.01 0.29 0.70
0.30 0.95 0 0.18 0.45
0.13 0.94 0 0 0
pixels remains, the VP correlation will still give a
signal. This is not the case for other linear filtering
techniques. Those filters have been shown to be
highly discriminant but not particularly robust
against substitutive noise. Similar considerations
apply to matched filters and for the nonlinear mor-
phological correlation.5

Figure 2 is the input scene of Fig. 1 degraded with a
SNR 5 0.13. The visual pattern information is wiped
out by the noise, but if some pixels of the image remain
unaffected, we will still get a high signal when the VP

correlation is applied. Figure 3 shows the correlation
outputs for noisy image detection. Figure 3~a! shows
the three-dimensional plots for the SONG output cor-
relation plane. Note that we detect the image with
the same DC as for the noise-free image. However, in
the correlation plot of Fig. 3~b! for the phase-only filter,
the reference object cannot be extracted from the noise.
For the classical matched filter, the morphological cor-
relation yields similar, poor results.

5. Final Remarks

In conclusion, for location estimation with substitu-
tive noise, the optimum strategy is in general not only

Fig. 3. ~a! Three-dimensional plot of the SONG ~VP! correlation.
~b! Three-dimensional plot of the common phase-only filter. This
method is not able to detect the reference object.
10 August 2001 y Vol. 40, No. 23 y APPLIED OPTICS 3859
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a function of the number of pixels for which the gray
values in the noisy image match the ones of the ref-
erence image but also of other complex functions.
However, those functions may be related with the
correlation weights in the SONG correlation defini-
tion. When the substitutive noise is uniformly dis-
tributed, the optimum strategy for location
estimation is dependent only on the number of pixels
for which the gray values in the noisy image match
the ones in the reference image. This is also what a
particular definition of the SONG correlation states.
Obviously, counting the number of image pixels that
remain unaffected by substitutive noise is the same
as counting the gray values in the observed image
that match the corresponding pixels of the reference
object. Different probability density functions for
the noise are under consideration to establish differ-
ent weights for the SONG correlation.

Appendix A

Consider the expression for the log-likelihood expres-
sion @see Eq. ~9!# that uses the Bayes relations:

P@ gi u fi# 5 P@ gi, bi 5 0u fi# 1 P@ gi, bi 5 1u fi#. (A1)

urthermore,

P@ gi, bi u fi# 5 P@ gi u fi, bi#PB@bi#, (A2)

and because PB~0! 5 q and PB~1! 5 p, one can write

P@ gi u fi# 5 qP@ gi u fi, bi 5 0# 1 pP@ gi u fi, bi 5 1#.

(A3)

ecause bi 5 1 means that the gray-level value of fi
has been changed into a random variable xi, then

P@ gi u fi, bi 5 1# 5 PX~ gi!. (A4)

owever, bi 5 0 means that the gray-level value of fi
has not been changed. In that case we must have
gi 5 fi and

P@ gi u fi, bi 5 0# 5 d~ gi 2 fi!, (A5)

here d~y! is the Kronecker symbol:

d~ y! 5 H1 if y 5 0
0 otherwise . (A6)

One obtains

P@ gi u fi# 5 qd@ gi 2 fi# 1 pPX@ gi# (A7)

and

l 5 (
i51

N

ln~qd@ gi 2 fi# 1 pPX@ gi#!. (A8)

We note that

ln~qd@ gi 2 fi# 1 pPX@ gi#! 5 d@ gi 2 fi#ln~q 1 pPX@ gi#!

1 ~1 2 d@ gi 2 fi#!ln~ pPX@ gi#!, (A9)
860 APPLIED OPTICS y Vol. 40, No. 23 y 10 August 2001
which can also be written as

ln~qd@ gi 2 fi# 1 pPX@ gi#! 5 d@ gi 2 fi#[ln~q

1 pPX@ fi#! 2 ln~ pPX@ fi#!] 1 ln~ pPX@ gi#!. (A10)

Let us define

G~ fi! 5 ln~q 1 pPX@ fi#! 2 ln~ pPX@ fi#! (A11)

and

Bg 5 (
i51

N

ln~ pPX@ gi#!, (A12)

so

l 5 (
i51

N

d@ gi 2 fi#G~ fi! 1 Bg. (A13)
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