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Detection of multiregion objects embedded in
nonoverlapping noise
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The concept of a statistical filter for objects that comprise several regions is introduced. The process is
optimal in the presence of nonoverlapping noise for the target and may perform independently of variations
in the mean value in every region. The basic performance of the filter is described, and a comparison with
other types of processing is made. © 2001 Optical Society of America
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The first optimal filters for pattern recognition were
matched filters1 and their optical implementations.
These f ilters produce the optimal signal-to-noise
ratio in the output in the presence of additive noise
and when the gray levels of the target are known.
Some heuristic pattern-recognition methods have
been introduced for cases when the gray levels of
the target are not completely specified3 or when the
noise is nonoverlapping.4 We have filters based
on statistical estimation theory, however, most of
which were obtained by the maximum-likelihood (ML)
approach, that optimize the probability of correct
detection relative to the probability of a false alarm.
The statistical methods where applied mainly for
simple objects that exhibit homogeneous statistics,5,6

although complete knowledge of the object’s gray
levels can also be introduced.7 The gap between
complete knowledge of the object and a simplified
model of a homogeneous target may be excessive
for some practical detection–recognition tasks. We
introduce partial knowledge of the object gleaned by a
definition of multiple regions and used in a statistical
filter approach.

It is likely that the target is composed of a few ho-
mogeneous regions but with relative mean value in
every region that may vary. A clear example is an ob-
ject under various kinds of illumination. Depending
on the direction of illumination or the number of light
sources, the mean value for every region of the target
will change. The inclusion of several regions in a ML
processor is natural for segmentation but seldom has
been introduced in pattern recognition. In Ref. 8 the
likelihood of existence of three regions is taken into ac-
count, but these regions (target bulk, border between
target and background, and background) are not part
of the target model but are the result of preprocessing
of the input scene.

Let us consider a scene image composed of N pixels,
s � �si j i [ �1,N��. We use one-dimensional nota-
tion without loss of generality. A similar definition
applies for the target r and for the background b.
We assume that the gray levels of the target and
the background are random, spatially uncorrelated,
and distributed with different probability-density
functions. The target is defined inside a support
window w , which takes a value of 1 for pixels inside
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the target and of 0 otherwise to determine the target
shape. One can boost the performance of a ML
filter by considering not the whole background of the
image but only a local background surrounding the
target. The corresponding algorithm, the ML ratio
test (MLRT),9 tests for every pixel shift the hypothesis
�H1� that a target with shape w is present and is
surrounded by background noise in a test window
F against the hypothesis �H0� that inside F there is
nothing but noise. For a test window F a few times
larger than the target, it has been shown10 that the
probability of correct location of the target is similar
to that obtained with a simple ML test, whereas the
MLRT filter performs much better with nonhomoge-
neous noise in the background. Denoting by uw �ub�
the parameters that define the probability-density
function of the gray-level statistical distribution of the
target (background) yields the MLRT expression

r � log P �uw , s� 1 log P �ub, s� 2 log P �uF , s� , (1)

where the two first terms correspond to the log like-
lihood of hypothesis H1, whereas while the third term
stands for the log likelihood of hypothesis H0. We de-
fine the MLRT for every pixel in the image merely by
shifting all windows.

To define the object regions we let L be the number
of regions and let �wk;k [ �0,L 2 1�� be a set of binary
nonoverlapping windows that defines the pixels that
belong to every region. The window set must fulfill
w �

PL21
k�0 wk. Assuming that the noise on the image

is uncorrelated and statistically independent in every
region and in the background, the probabilities can
be obtained as the product of the probability for every
pixel. Thus the MLRT becomes

r�L�
known �

L21X

k�0

X

i[wk

log P �uwk , si� 1
X

i[b
log P �ub, si�

2
X

i[F
log P �uF , si� , (2)

where the superscript L denotes the filter designed for
L regions.
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As a sample of application, for images corrupted with
exponential noise11 the parameters u are just the mean
values of every region. A little algebra shows that the
MLRT when the parameters are known is

r�L�
known �

L21X

k�0

Nk log uwk 2 Nb log ub 1 NF log uF

2

L21X

k�0

Nk ûwk

uwk
2 Nb

ûb

ub
1 NF

ûF

uF
, (3)

where the values marked with circumf lexes are the
actual estimates in the ML sense. Nk, Nb, and NF
are the numbers of pixels in the target regions, in
the local background, and in the test window, respec-
tively. The total number of pixels in the target is
Nt �

PL21
k�0 N

k. When the parameters are unknown,
they are simply replaced by their estimates in Eq. (3),
defining the following MLRT:

r�L�
unknown � 2

L21X

k�0

Nk log ûwk 2 Nb log ûb 1 NF log ûF .

(4)

The filters in Eqs. (3) and (4) will permit the detection
of objects composed of an arbitrary number of regions
with, respectively, unknown or known mean values in
every region.

In what follows, we evaluate the performance of
the new filter by means of several experiments. Fig-
ure 1a shows a synthetic test image used in the f irst
experiments. The use of a synthetic image allows
access to the true values of the gray levels before
noise corruption as well as controlling the contrast of
the image. The scene is composed of three versions
of the same object with different distribution of the
gray levels between the four possible regions. At left
is a single region object of mean 25; the other two
objects comprise four regions, the means of which are,
from darker to brighter, 5, 10, 30, and 35. The mean
of the background is 20, so the objects in the center
and the right parts of Fig. 1b present a low average
contrast with the background. The total number of
pixels within the target is 2568. Figure 1b shows the
same image corrupted by exponential noise.

Figure 2 illustrates the output of three versions of
MLRT applied to the images of Fig. 1b by means of
normalized profiles along the maximum value. In all
cases, the test window is a square of 91 3 91 pixels.
The evaluation of the new filter in relation to other
MLRT filters can be obtained from a simple ranking
of the available a priori information and contrasted
with these f igures. The performance of the single-re-
gion filter is superior for the one-region object but at
the price of losing detection capabilities for the four-re-
gion objects (Fig. 2a). The filter in Eq. (3) will per-
form if the object matches the multiregion model in
shapes and the mean values of the regions (the filter
was prepared for the true mean values of the second ob-
ject). It will fail if the object does not have the same
region description, either in number of regions or in
their mean values, as a result of incorrect a priori in-
formation (Fig. 2b).

The MLRT for four regions with unknown mean
values [Eq. (4)] can correctly detect instance of both
four-region objects and a single-region object (Fig. 2c).
In the latter case the performance is worse than that
of a one-region MLRT because the a priori information
is not complete.

It is worth noting that the background for the output
planes (Figs. 2b and 2c) exhibits a larger variation be-
cause of the smaller structures involved in the MLRT
for these cases. Actually, analyzing the statistics of a
homogeneous region through a patch of several small
areas instead of a single large region necessarily leads
to an additional f luctuation of the output. Such ap-
pears to be the case when the test window contains
only homogeneous background noise.

We tested the robustness and wide range of appli-
cation of the new filter in a second experiment in-
volving real images. The image, shown in Fig. 3a, is
a collection of low-light-level snapshots taken with a

Fig. 1. Input image used for the experiments: a, noise-
free image; b, image corrupted with exponential noise.

Fig. 2. Normalized prof iles of the output plane for a, a
single-region MLRT with an unknown mean; b, a four-
region MLRT with known mean values; and c, a four-
region MLRT with unknown mean values. Vertical lines
indicate the target locations.
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Fig. 3. a, Images from a CCD camera at low light lev-
els, showing five cases of a three-dimensional object under
different illumination conditions. b, Description of the ob-
ject’s regions, indicated with gray levels.

Fig. 4. a, Output for the one-region MLRT, b, output for
the f ive-region MLRT.

CCD camera of a three-dimensional object with dif-
ferent backgrounds and under different illumination
conditions. The object shows five planar facets to the
camera, which constitute the object regions (Fig. 3b).
Owing to the low number of photodetections, the noise
fits a Poisson model, for which the suff icient statistic
is the mean value. For real images with unknown il-
lumination, known parameters cannot be evaluated, as
the true values are not defined. The MLRT for Pois-
son noise with unknown parameters is

r0unknown �
L21X

k�0

Nkûwk log ûwk 1 Nbûb log ûb

2 NF ûF log ûF . (5)
Figure 4a shows the output obtained with the
conventional one-region MLRT. For the low-contrast
objects, a low maximum value of the MLRT is obtained
and the maximum is displaced from the true object
location. The filters tend to give high output values
in locations where large, high-contrast patches are
found in the image. Thus, for the first three objects a
double peak that corresponds to the two upper and
lower halves of the object is obtained.

The output for the MLRT designed for f ive re-
gions (Fig. 4b) behaves in a more robust way. It
can properly detect all the instances of the object.
The more-detailed structure of the five-region MLRT
increases the importance of sidelobes in the output
plane. As a result, the one-region filter provides for
the two last objects (which are basically homogeneous)
sharper correlation peaks than does the proposed new
filter. Nevertheless, the five-region filter provides
in all cases the location of the output peak that
corresponds to the true location.

In conclusion, a new statistical f ilter for pattern
detection that can cope with objects composed of
several regions has been introduced. This new filter
expands the variety of situations in which a MLRT can
be successfully used. Experiments performed on both
synthetic and real images, with two different noise
statistics, conf irm that the filter will perform even
when the number of regions has been overestimated.
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