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Images taken in noncooperative environments do not always have targets under the same illumination
conditions. There is a need for methods to detect targets independently of the illumination. We
propose a technique that yields correlation peaks that are invariant under a linear intensity transfor-
mation of object intensity. The new locally adaptive contrast-invariant filter accomplishes this by
combining three correlations in a nonlinear way. This method is not only intensity invariant but also
has good discrimination and resistance to noise. We present simulation results for various intensity
transformations with and without random and correlated noise. When the noise is high enough to
threaten errors, the method trades off intensity invariance in order to achieve the optimum signal to noise
ratio, and the peak to sidelobe ratio in the presence of clutter is always greater than one. In the presence
of random disjoint noise, the signal to noise ratio is independent of the target contrast and of the level of
the noise. © 2002 Optical Society of America
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Introduction

Image recognition of unsegmented targets in a non-
cooperative environment is a difficult task. When
the illumination within a scene cannot be controlled,
the outputs for similar targets can be quite different.
For example, the matched filter yields an output that
is proportional to the target intensity. So there is a
need for methods that can detect targets under in-
tensity variations. Many pattern recognition tech-
niques use the correlation operation to detect
unsegmented targets. But correlation is a linear op-
eration, which mean that if we multiply a target by
an unknown constant factor, the correlation peak
height will change by the same amount. Because
detection is often determined by means of a threshold
on the correlation plane, dark objects can be missed.
However, high intensity image clutter can cause false
alarms.

One way to achieve intensity invariant recognition
with the correlation is to perform a preprocessing on
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images before attempting recognition or to combine
multiple correlations.

In this paper we consider two types of intensity
transformations: multiplicative and additive. The
former occurs when the light source intensity
changes, thus affecting in the same way the light
reflected from the object. Additive intensity trans-
formations may occur, for example, when different
camera settings are used or when scattered light en-
ters the camera. That may introduce a constant dif-
ference between the intensity distributions for two
identical objects. All the intensity transformations
considered here are uniform, i.e., every part of an
object is affected by the same intensity transforma-
tion.

Dickey and Romero1,2 introduced a method using
the Cauchy–Schwarz inequality to solve this prob-
lem: The method yields correlation peak values that
are invariant under a multiplicative factor. Kotyn-
ski and Chalasinska3,4 generalized this algorithm by
using the Hölder inequality, and ended up with a
whole new family of solutions of which the latter is a
special case. Arsenault et al.5 proved that it is pos-
sible to achieve additive intensity invariance using
only one correlation. They used a composite6 or syn-
thetic discriminant filter7 constructed to recognize
the target but to discriminate against the target sup-
port �a binary image equal to unity, where the target
is present and equal to zero everywhere else�. Ar-
senault and Belisle8 also developed a method invari-
ant to changes of orientation and multiplicative
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intensity by combining multiple correlation planes
resulting from correlations with different circular
harmonic components.9 Garcia-Martinez et al.10

proposed a method to achieve intensity-invariant rec-
ognition using the sliced orthogonal nonlinear gener-
alized correlation.11,12 Recently, Arsenault and
Lefebvre13 used a homomorphic transformation to
change a multiplicative-intensity problem to an
additive-intensity problem that can be addressed
with the synthetic discriminant filter mentioned
above. Zhang and Karim14 pointed out that the
morphological correlation is intensity invariant when
the object is brighter than the reference.
Chalasinska-Macukow et al.15,16 used pure phase cor-
relation to achieve linear-intensity invariance, but
this only works well for segmented images. Rah-
mati et al.17 invented a method that is distortion and
intensity invariant. It is also possible to alleviate
the problem of an additive constant with linear fil-
tering by setting the filter zero-order frequency to
zero.18

Intensity Transformations

A linear transformation of intensity over a target can
be expressed as

f�� x� � af � x� � b◊� x�, (1)

where ◊�x� is the binary object support which is equal
to unity over the support of target f �x�, and equal to
zero everywhere else, and a, b are unknown
constants—in other words ◊�x� is a binary version of
f �x�, so it has the same silhouette as the reference
f �x� and is equal to zero outside of this contour. We
use one-dimensional notation for simplicity, but the
results are easily generalized to two dimensions.

Intensity Invariant Recognition

From previous work done by Arsenault et al.5 it is
possible to obtain a correlation plane invariant against
a constant additive factor. This can be accomplished
by means of an synthetic discriminant function filter
h�x� that recognizes the object f �x�, but that discrimi-
nates against the object support ◊�x�. This filter was
originally conceived to detect objects in the presence of
non-zero-mean additive noise. The additive contribu-
tion for the case of Eq. �1� can be seen as additive noise
with zero variance. Using the composite filter theo-
ry6,7 we have the following constraints:

h� x� � �f � x� � �◊� x�,

� f � x� � h� x��x�0 � 1,

�◊� x� � h� x��x�0 � 0, (2)

Although � and � can be determined by means of
numerical techniques, this system can be solved an-
alytically:

� �
R◊◊

RffR◊◊ � Rf◊
2 ,

� � 	
R◊f

RffR◊◊ � Rf◊
2 , (3)

where

Rff � � f � x� � f � x��x�0,

R◊◊ � �◊� x� � ◊� x��x�0,

Rf◊ � R◊f � � f � x� � ◊� x��x�0. (4)

If we substitute those relations in the expression for
h�x� we obtain

h� x� �
R◊◊

RffR◊◊ � Rf◊
2 �f � x� �

R◊f

R◊◊
◊� x�� . (5)

The fraction in front of ◊�x� is the mean value f0 of f �x�
that yields:

h� x� 
 f � x� � �f◊� x� � f0� x�, (6)

where �f is the mean of f �x�. The filter h�x� is not
only invariant to an additive constant but is also very
discriminating.

This filter yields correlation plane values that are
proportional to the multiplicative constant a. To
eliminate that factor we divide the value of each point
of the correlation plane by a value proportional to the
multiplicative factor a. We propose to use the vari-
ance of the pixel values within the object support ◊�x�
for each point of the scene. This value will not de-
pend on b because the variance is calculated about
the mean and will be proportional to a2. The local
variance for each point over the scene s�x� is equal to

�s2� x� � ◊� x��

N
�

�s� x� � ◊� x��2

N 2 . (7)

Where N is the number of pixels in the support of the
object. Normalizing the zero mean filter correlation
plane by means of the variance leads to the final
expression for the locally adaptive contrast-invariant
filter �LACIF�:

C �
1

� f0 � f0�x�0
�

�s�x� � f0�x��2

�s2�x� � ◊�x�� � 1�N�s�x� � ◊�x��2 . (8)

We divided the expression by N� f0�x� � f0�x�� to
normalize the autocorrelation to one. In sum, the
value of invariant parameter C can be computed from
three correlations combined in a simple way. Note
that although the above expression implies a kind of
locally adaptive processing, the operations carried
out involve only the calculation of three correlations
and the calculation of their ratio for each point of the
output plane. No segmentation or identification of
regions of interest is involved.

Vector Interpretation for the Locally Adaptive
Contrast-Invariant Filter

In the previous section we showed how to construct a
recognition parameter that is invariant to the linear
intensity transformation of Eq. �1�. We now obtain
the same expression from a vector space analysis.
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As before, the intensity invariance problem that we
are trying to solve is to determine if an object is a
linear combination of the two components f �x� and
◊�x� of Eq. �1�, that is, whether or not an unknown
object g�x� belongs to the subspace spanned by f �x�
and ◊�x�. First, we need to find an orthogonal basis
for the subspace, which is a two-dimensional plane.
If we choose ◊�x� to be one of these two components,
it is clear that the other orthogonal component must
be proportional to f0�x�. The LACIF technique is
equivalent to projecting g�x� onto the subspace or-
thogonal to ◊�x� to obtain g0�x�, and to calculate the
cosine of the angle between g0�x� and f0�x�.

If g�x� is truly in the subspace, then the projection
yields a component proportional to f0�x�. And be-
cause the cosine of the angle between two colinear
unit vectors is always equal to one, the result will also
be equal to one. However, if g�x� is not in the sub-
space after the projection, g0�x� may have a f0�x�
component but will also have another component.
So the angle between g0�x� and f0�x� is greater than
zero, and its cosine is smaller than one. Mathemat-
ically speaking, we want to compute the relationship:

cos2 � �
� g0� x� � f0� x��2

� g0� x��2� f0� x��2
. (9)

But how can we compute this quantity when all we
know is g�x� and when we are dealing with unseg-
mented objects? In the numerator, g0�x� can be re-
placed by g�x� without affecting the result, because
f0�x� is orthogonal to ◊�x� and therefore the product of
the ◊�x� component of g�x� with f0�x� will be equal to
zero. Expressing g0�x� as a linear combination of
g�x� and ◊�x�, the squared modulus of g0�x� can be
rewritten as:

� g2� x� � ◊� x�� � 1�N� g� x� � ◊� x��2. (10)

Now changing the dot product to the correlation
operator to apply this to a scene with unsegmented
targets yields

cos2 � �
1

� f0� x� � f0� x��x�0

� � � g� x� � f0� x��2

� g2� x� � ◊� x�� � 1�N� g� x� � ◊� x��2� .

(11)

This result is identical to Eq. �8� of the last section.
The squared cosine ensures that the correlation plane
values will be between 0 and 1.

Signal to Noise Ratio

When the true object is present, the LACIF filter of
Eq. �8� was designed to yield a value of C equal to one.
But what is the value of C when there is only noise?
This may be found for stationary white noise by ob-
serving that the numerator of Eq. �8� is the output of
a linear filtering of the noise. For the output of a

linear filter with impulse response h�x�, the expected
value of the squared output is equal to19

E� y2� x�� � 
2E, (12)

where

E � �
	�

�

�h� x��2dx � Rf0 f0�0� (13)

and 
2 is the variance of the noise. So for areas
where there is only random noise, the numerator of
Eq. �8� is the output squared of the linear filter f0 that
yields the output 
2E and the denominator is the
variance of the noise multiplied by the normalizing
factor, which yields

C�0� �

2Rf0 f0

NRf0 f0

2 �

1
N

, (14)

where N is the number of pixels in the reference
target. Note that this value is independent of the
noise variance, so that for disjoint random noise, the
signal to noise ratio is independent of the target in-
tensity and of the noise level! When the additive
noise also degrades the target af �x�, the numerator of
Eq. �8� becomes

��af � n� � f0�
2 � �aRf0 f0 � Rfn�

2. (15)

If the number of pixels is large, the cross correla-
tion Rfn is much smaller than the autocorrelation and
can be neglected in the ratio of Eq. �8�. The denom-
inator contains the variance of the signal plus the
noise, and we use the fact that the sum of variances
of uncorrelated processes is the sum of their vari-
ances:


af�n
2 � a2
f

2 � 
n
2,

and Eq. �8� becomes

C �
a2Rf0 f0

2

NRf0 f0�a
2
f0

2 � 
n
2�

�
N 2a2
f0

4

N 2
f0
2 �a2
f0

2 � 
n
2�

, (16)

C �
a2
f

2

a2
f
2 � 
n

2 . (17)

It is easy to see from this expression that in the
absence of noise, as we already shown,


n
2 3 0

yields

C 3 1, (18)

and when


n
2

a2
f
2 �� 1,

C �
a2
f

2


n
2 . (19)
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So for a given true target, the correlation peak
decreases approximately with the inverse of the
noise, and for a given noise level, the correlation peak
is proportional to the intensity. This means that a
high level of random noise degrades the intensity
invariance of the method. We now show that for
high levels of noise, the method sacrifices intensity
invariance to attain a signal to noise ratio identical to
that of the matched filter.

For the matched filter, the normalized correlation
peak in the presence of signal plus noise has a value

Cm �
��af � x� � n� x�� � f0� x��2

Rf0 f0
2

�
�aRf0 f0 � Rf0 n�

2

Rf0 f0
2

� a2. (20)

When there is only noise, the value is

Cm �
�n � f �2

R2
f0 f0

�
R2

f0 n

R2
f0 f0

, (21)

so the signal to noise ratio �SNR� for the matched
filter is equal to

SNRm �
a2Rff


n
2 �

a2N
f
2


n
2 , (22)

where we have dropped the zero index from f0 as well
as the explicit dependence on the spatial variable x,
since we are only interested in the value for x � 0.

From our previous results, the signal to noise ratio
for the LACIF method is equal to

SNR �
a2N
f

2

a2
f
2 � 
n

2 . (23)

So the ratio of the signal to noise ratios is

R �
SNR
SNRm

�

n

2

a2
f
2 � 
n

2 �
1

1 �
a2
f

2


n
2

. (24)

When the noise is very small,


n
2 �� a2
f

2

R �

n

2

a2
f
2 (25)

and the signal to noise ratio of the LACIF is inferior
to that of the matched filter when it is not needed, but
intensity invariance is maintained as previously
shown. But when the noise increases, the ratio R
tends to one, which means that the signal to noise
ratio of the LACIF tends toward that of the matched
filter, at the cost of some loss of invariance. In the
next section we show that performance in the pres-
ence of correlated noise is another story altogether.

Peak to Sidelobe Ratio

In this section we consider disjoint correlated noise,
for which a good measure of performance is the peak-
to-sidelobe ratio �PSR�, which is the ratio of the value
of the correlation peak to the cross-correlation values
in the correlation plane. In general, for low-
intensity targets and high clutter, the cross correla-
tions can be higher than the autocorrelations.

For the LACIF we have shown that in the presence
of a true target, the correlation value is C � 1 inde-
pendently of the intensity of the target. For clutter
g�x�, the LACIF yields

Cg �
� g � f0�

2

NRff
g
2 �

Rf0 g
2

NRff
g
2 �

Rf0 g
2

RffRgg
. (26)

The PSR is equal to

PSRf �
C
Cg

�
RffRgg

Rfg
2 , (27)

where Rfg is the correlation between the true target
f �x� and the clutter g�x�. Note that this value is
independent of the target intensity, and it is easy to
show from the Schwartz inequality that the PSR is
always greater than one. This means that no corre-
lation peaks in the clutter can be higher than that of
a true target, even if the latter has a very low inten-
sity.

For the matched filter f0�x�, we have shown that
the normalized correlation peak value for a true tar-
get af �x� � b is Cmf � a2. For clutter g�x�, the
normalized correlation is equal to

Cmf �
� g � f0�

2

Rff
2 �

Rfg
2

Rff
2 , (28)

and the PSR is equal to

PSRm �
a2Rff

2

Rfg
2 . (29)

The ratio of the PSR for the LACIF to that of the
matched filter is equal to

Q �
PSR
PSRm

�
Rgg

a2Rff
. (30)

The worst case of clutter is false targets, in which
case Rgg � Rff, which yields

Q � 1�a2. (31)

For low-intensity targets in clutter, a2 �� 1, in
which case Eq. �30� shows that the performance of the
matched filter is strongly degraded with respect to
that of the LACIF.

In sum, compared to the matched filter, the LACIF
maintains intensity invariance in the presence of
weak random noise and has a signal to noise ratio
performance that tends to that of the zero-mean
matched filter as the random noise increases. For
correlated noise the LACIF maintains an excellent
PSR that is independent of the target intensity. The
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following experiments confirm those theoretical re-
sults, as well as the superiority of the LACIF to other
filters for which we have not carried out the theoret-
ical calculations, because it would require too much
space.

Results

To demonstrate the LACIF we have chosen two
slightly different vehicle images shown in Fig. 1,
which have gray-level values from 0 to 255, corre-
sponding to the output of an 8-bit camera �but note
that calculations were carried out in floating point�.
We pasted 16 replicas of each tank on a background
image that represents a natural environment �Fig. 2�.
Each replica has undergone an intensity transforma-
tion given by Table 1, where a and b are the param-
eters of Eq. �1�. In the bottom part of the image is a
set of replicas of the other false target vehicle with
the same corresponding intensity modifications.
The true targets are the ones in the upper part of the
image. The numbers beside each target were not
present during the identification process. Figure 3
shows the results of the first experiment using Eq. �8�
for this scene. The results are obtained by calculat-
ing the three correlations and then computing the
ratio as indicated in the expression. All 16 correla-
tion peaks are equal to 1 and are very sharp. The
rest of the correlation plane is lower than 0.3, which
demonstrates good discrimination capability against
correlated noise. The good performance can be un-

derstood from the vector space interpretation: All
images are intensity images and therefore every pixel
has a positive value. In a multidimensional space
this means that all vectors are in the first quadrant.
Therefore the angles between images are fairly small
and the squared cosine values are all close to one.
But when the vectors are projected onto the subspace
orthogonal to ◊�x� those vectors will be spread out in
the vector space thus increasing the angles between
them.

To determine the sensitivity of the LACIF to other
uncontrolled target variations, we also carried out a
simulation with the same scene using additive
Gaussian noise with a standard deviation of 27 as
shown in Fig. 4. Figure 5 shows that a threshold at
0.35 on the correlation plane still completely sepa-
rates the true targets from the false targets and from
the clutter. The same noisy image was used to com-
pare the performance of the LACIF with that of other
methods, that of Dickey et al.,1 the phase only filter,20

the homomorphic cameo filter,13 the zero-mean clas-
sical matched filter,21 and the pure phase correla-
tion.15 All of those methods have some degree of
intensity invariance. In Table 2 we list the number
of missed targets, the number of false alarms, and the
total number of errors for each method. Only the
LACIF yielded perfect performance, all others show-
ing missed targets. Most missed targets correspond
to darker objects, namely targets 1 through 6, for
whom both the signal level and the signal to noise
ratio are lower. As predicted, these results show
that the matched filter in particular is not very effec-
tive against correlated noise under changes of target
illumination, and this is also true of the other meth-
ods.

One might be impressed in spite of the fact that the
clutter statistics are not used in the filter design, the
correlation yields very low values in the correlation
plane outside of the true correlation peaks, which are
very sharp. In fact, we have shown above that the
correlation values do not depend at all on the statis-

Fig. 1. Target images: true and false targets.

Fig. 2. Scene containing true �top� and false �bottom� targets.
Objects in corresponding positions in the top and bottom halves
have similar intensities.

Table 1. Intensity Transformation Parametersa

Target Number Multiplicative Factor �a� Additive Term �b�

1 and 17 0.33 	25
2 and 18 0.33 0
3 and 19 0.33 �25
4 and 20 0.50 	25
5 and 21 0.50 0
6 and 22 0.50 �25
7 and 23 0.75 	50
8 and 24 0.75 	25
9 and 25 0.75 �25

10 and 26 0.75 �50
11 and 27 1.00 	50
12 and 28 1.00 0
13 and 29 1.00 �50
14 and 30 1.50 	25
15 and 31 1.50 0
16 and 32 1.50 �25

aFor each object.
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tics of the noise, and that the peak-to-sidelobe ratio
against clutter is always greater than one.

Conclusion

We have designed a recognition method that is in-
variant under linear-intensity transformations and
that uses three correlation operations involving local
statistics. It can be applied directly to scenes con-
taining unsegmented targets. The vector space in-
terpretation gives insights that could be useful to the

development of new algorithms invariant to more
general intensity transformations.

The LACIF is not only invariant to the intensity
transformation that we considered, but it also yields
very good discrimination against false targets and
against correlated and random noise.

Discrimination is also very good for dark objects,
which was a problem with other methods. When
high random noise or low contrast is enough to
threaten the performance of the LACIF, it sacrifices
intensity invariance to attain a signal to noise ratio
performance identical to that of the matched filter, a
filter that yields the maximum signal to noise ratio
against random Gaussian noise. When such perfor-
mance is not needed, the LACIF maintains invariant
correlation peaks against changes of intensity.

Pattern classification methods often use training
sets consisting of subsets of true targets and of false
targets. We have not used this approach here be-
cause there is only one true target and one false
target, and our purpose was to determine how well
the method can compensate for specific intensity
variations under conditions where the correlated and
random noise statistics are unknown. The results
show that the method is very robust while maintain-
ing a high degree of generalization under random
variations of the true target. Extension of the
method to cases of target classification with multiple
true and false targets or the determination of error
probabilities when the noise statistics are known are
beyond the scope of this paper.

We emphasize that although the method uses the
local statistics around a point to calculate the results,

Fig. 3. Correlation results with only disjoint correlated noise: All of the true correlation peaks are equal.

Fig. 4. Scene with additive Gaussian noise and disjoint correlated
noise.
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no segmentation is involved, and no a priori informa-
tion about the values of the unknown parameters a
and b is used. The whole process consists only of
calculating three correlations and their ratios.

Finally we note that this method will not work
when the training images are binary targets, because
in such cases, the support ◊�x� of f �x� is equal to f �x�.
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