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Detection of objects composed of several regions
by a region-configuration-estimation method
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The task of detection of objects composed of several regions by means of statistical filters is analyzed. The
target is assumed to have different unknown mean values in each of its regions. The detection is based on
likelihood estimation, after performing an estimation of the actual configuration of the mean values in the
target region. A simplified filter that reduces the computational complexity is also proposed. The statistical
performance is analyzed theoretically and tested in computer experiments. © 2002 Optical Society of America
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1. INTRODUCTION
The field of pattern recognition has been extensively in-
vestigated throughout the last decades. The major land-
mark in this research, from an optics point of view, is the
introduction of matched filters1 and the optical implemen-
tation due to VanderLugt.2 The basic operation that can
be performed in an optical system is the convolution/
correlation, which makes these systems especially suit-
able for real-time information processing and, in particu-
lar, to pattern recognition.

Several modifications of the classical matched filter
have been proposed to deal with different types of scenes.
Nevertheless, the linearity of the system limits the field of
application. Specific examples occur when there is an
implicit nonlinearity in the input image model, such as
nonadditive noise or background.3,4 Often the linear-
filtering techniques have been complemented by elec-
tronic or optical nonlinear steps to cope with these
cases.5–8 Aside from these linear approaches to pattern
recognition, in electrical engineering and computer sci-
ence a big effort has been devoted to techniques that rely
on Bayesian estimation theory.9 Many of the results ob-
tained by the application of this theory involve nonlinear
processing, although optoelectronic implementations are
feasible.10 The most widely used statistical methods are
related to the likelihood calculations. The theory can be
extended to a consideration of different situations for de-
scribing the background and the target, such as unknown
gray levels in the target and background, strongly noisy
images, or nonhomogeneous background.11–14 In gen-
eral, in most pattern recognition methods, the definition
of the object is very precise, including the shape and the
spatial intensity distribution of the object. Very often the
presence of strong noise in the images promotes the sim-
plification of the description of the target, because some
object characteristics are hidden by the noise. Along
these lines, a great effort has been devoted to the search
for optimal algorithms that can deal with homogeneous
objects with unknown gray-level values and in the pres-
ence of a nonoverlapping background. In this case the
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simplification of the target model reduces it to a single-
region description.12

Recently, a new concept of statistical filters adapted to
a target composed of several a priori known regions was
introduced.15 The basic idea was to split the object re-
gion into a set of regions that may exhibit different un-
known mean values. Thus this approach provided a
trade-off between a complete description of the spatial
gray-level distribution (typical for linear-filter design)
and a binary description of the target (as was produced by
statistical-pattern-recognition filters). This situation of
multiregion objects arises in many practical situations,
such as three-dimensional objects under varying illumi-
nation or thermal images.

In this paper, we analyze the advantages and draw-
backs of the multiregion statistical filters and propose a
filter that will automatically select the number of regions
that configure the object. This produces a filter more ro-
bust under the change in the gray levels of the target.
The problem of a full region-configuration selection is
studied, and a useful simplification is presented.

In Section 2 the basic theory for statistical pattern rec-
ognition is introduced, along with a description of the con-
ventional statistical filters. In Section 3 the performance
of the multiregion filter is compared with that of a single-
region conventional filter. In Section 4 a new filter con-
cept for region-configuration selection is introduced, and
in Section 5 a useful simplification of this filter is intro-
duced. Section 6 presents the experiments performed for
testing the new filters. Finally, in Section 7 we outline
the conclusions.

2. STATISTICAL FILTERS
The design of statistical filters for pattern recognition is
based on a comparison of the probability of different hy-
potheses that describe the expected content of the input
scene. In the absence of a priori knowledge of the dis-
tribution of probability among these hypotheses, the
usual description simplifies to a likelihood comparison.
2002 Optical Society of America
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A basic filter is that designed for locating a homogenous
object on a homogeneous background, where both the tar-
get and the background are corrupted by noise. In this
case the logarithm of the likelihood l is

l 5 log p~ur , s! 1 log p~uB ,s!, (1)

where s 5 $siui P @1,N#% is the input signal, N is the
number of pixels, r is a binary window that defines the
pixels that belong to the target, and B is the complemen-
tary window to r (and defines the pixels belonging to the
background). ur and uB are the statistical parameters
that describe the gray-level distributions of both the tar-
get and the background regions. A maximization of l for
different locations of the window r will produce a maxi-
mum in the location where the probability of presence of
the specified target in the specified background is maxi-
mum. This basic filter uses the full image for calculating
the likelihood of the presence of the target. A significant
step forward in the performance of statistical filters for
pattern recognition is obtained by the maximum-
likelihood-ratio test16–18 (MLRT). This procedure intro-
duces two major modifications. First, the estimation of
likelihood is performed in a local window, not in the whole
image. This reduces the influence of nonhomogeneities
in the background, making it especially appropriate for
detection tasks. Second, the magnitude that is being
measured is not a likelihood of the hypothesis of presence
of the target but the ratio between this value and the like-
lihood of the hypothesis of no target present in the test
window. The performance in target location is similar to
that with the ML filter, as long as the test window is suf-
ficiently large.18 To obtain the analytical expression of
the MLRT, we define the target window r as above, and
the local background window b in an analogous way.
The union of both windows define the test window, F
5 b 1 r. Then the MLRT is

r 5 log P~ur , s! 1 log P~ub , s! 2 log P~uF , s!. (2)

Note that the first two terms correspond to the likelihood
of the presence of the target on the local background,
while the third term corresponds to the likelihood of a
uniform background with parameters uF . If the image is
pixelated and the pixel gray levels are uncorrelated and
statistically independent in the different considered re-
gions, each probability becomes a product of the probabil-
ity for each pixel. The above expression assumes a uni-
form definition for the target and for the background. A
more complete description can be introduced by separat-
ing the target window into a set of nonoverlapping-region
windows, $r(k); k P @0, L 2 1#%. This allows for the tar-
get having distinct distribution parameters in each region
that defines it. The region windows fulfill r 5 (k50

L21r(k).
Thus the MLRT, rk

(L) , for testing the hypothesis of having
a target composed of L regions with parameters $u (k)% on
a background with parameters ub against the hypothesis
of a uniform patch with parameters uF is

rk
~L ! 5 (

k50

L21 H (
iPw~k !

log P@u@k#, si#J
1 (

iPb
log P~ub , si! 2 (

iPF
log P~uF , si!. (3)
The subindex k implies that the u parameters of the dis-
tributions are assumed to be known. If the parameters
are not known, a selection of the values based on maxi-
mizing rk

(L) must be performed, by obtaining the ML esti-
mates, and the resulting values must be substituted in
the previous expression.

As a simple clarifying example the MLRT for exponen-
tial noise, which appears, for instance, in synthetic-
aperture-radar images19–21,15 with unknown parameters,
is defined by

ru
~L ! 5 2(

k50

L21

N ~k ! logF 1

N ~k ! (
iPr~k !

siG
2 Nb logS 1

Nb
(
iPb

siD 1 NF logS 1

NF
(
iPF

siD ,

(4)

where N (k), Nb , and NF are the number of pixels in the
target regions, in the local background, and in the test
window, respectively. The total number of pixels in the
target is N 5 (k50

L21N (k). The filter design assumes a dif-
ferent gray level in every region, although it will also per-
form if some of the regions present the same gray level.

For comparison, the MLRT for a one-region description
will be

ru
~1 ! 5 2N logS 1

N (
iPr

siD
2 Nb logS 1

Nb
(
iPb

siD 1 NF logS 1

NF
(
iPF

siD .

(5)

It can be noted that the samples on the target in the one-
region MLRT are averaged in a single value, while for the
multiregion MLRT the samples are averaged in separate
values and nonlinearly added.

3. ANALYSIS OF THE MULTIREGION
MAXIMUM-LIKELIHOOD-RATIO TEST
The filter in Eq. 5 is designed for the detection of homog-
enous objects. It is expected that this filter will fail if the
object contains a higher number of regions. This can be
easily checked experimentally. In Fig. 1(a) an image
composed of three cases of the same object is shown.
Each of the objects satisfies the same four-region descrip-
tion, but with different gray levels in each region. As a
particular case, the rightmost object has one effective re-
gion, all regions having the same gray value. This image
has been corrupted with exponential noise [Fig. 1(b)].
The correlation obtained with a one-region filter [Fig.
2(a)] shows that the first two objects cannot be detected
with this filter. The filter designed for four-region de-
scription, according to Eq. (4), provides good correlation
peaks for all instances of the target.

Nevertheless, the use of a more complex model for the
object does not necessarily lead to better detection capa-
bilities. Several factors may occur that worsen the re-
sults. On the one hand, the finer details that make the
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Fig. 1. (a) Noise-free image showing three objects with different gray-level combinations. (b) Same image as in (a), but corrupted with
exponential noise.
object definition will tend to provide a higher signal even
in regions where there is nothing but noise. On the other
hand, the target itself may not convey the full-region defi-
nition. The introduction of a multiregion model is based
on the fact that some objects may exhibit different param-
eters in separate regions. One particular case occurs
when all the regions have the same parameters (that is,
the target is homogeneous) or, in general, when several
regions in the object definition have the same parameters
or are indistinguishable because of the uncertainty of the
estimation of the parameters. In this situation the num-
ber of regions has been overestimated. In this section we
analyze the loss of performance that may occur for these
reasons.

The effect of an increase in the order of the model (i.e.,
the number of regions) on the likelihood is, in the case of
uniform samples, a well-known problem in statistics
theory. Following Ref. 22 or Ref. 20, if the target-support
region contains only homogenous samples, the difference
in the output for a MLRT filter for L and P regions’ mod-
els is

ru
~ P !~uniform! 2 ru

~L !~uniform! 5 X/2, (6)

Fig. 2. Output profiles obtained for (a) one-region MLRT (b)
four region MLRT. Input image is shown in Fig. 1(a). Profiles
show the maximum of every column in the output MLRT images.
where X is a random variable that approaches a chi-
square (x2) distribution with P 2 L degrees of freedom
when the number of samples tend to infinity. The rela-
tion holds independently of the mean value in the uniform
patch where the filter is applied and independently of the
number of pixels in every region, provided that they are
large enough to fit the noise model. The quantification of
the minimum number of pixels in each region was
checked by a simple experiment. Figure 3 shows the re-
sults obtained for the difference between MLRT computed
with four and one regions, as defined by Eq. (4). The
probability density function (pdf) corresponding to a
third-degree x2-distribution random variable divided by 2
is shown along with the pdf ’s for the true difference ob-
tained for three different numbers of pixels in each re-
gion. This test shows that the fit between the theoretical
result and the true result is excellent for 20 pixels per re-
gion, although this condition could be relaxed further.

Equation (6) gives the key to the penalty introduced by
adding an arbitrary number of unnecessary regions to the
target definition. It shows that for the case of a uniform
target, the value of the output will increase with the com-
plexity of the model that is used in the filter design.

To disclose the transcendence of this concept for detec-
tion, let us assume a test object composed of one
homogenous-region target on a uniform background and
compare the output for a one-region and a P-region filter.
The homogenous object is just a particular case of a mul-
tiregion target, and thus the processing should be able to
detect it. When passing from a one-region filter to a
P-region filter, the output will suffer an addition of a
x2-distributed variable, with order P21, as corresponds
to the splitting of the target window in the P regions.
This addition to the output will occur for object locations
when the object is homogenous and for background loca-
tions that are assumed to be always homogenous areas.
Then the expected values of the output for both the target
and the background have suffered an increase with the
same statistical distribution. As a result the difference
of output mean values for target and background remains
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unchanged, whatever the number of regions is consid-
ered, preserving the absolute separation between the out-
put for the two classes. Nevertheless, the spread of the
values for the background and for the target around their
mean values is larger, as corresponds to adding a random
variable to the previous output. Therefore output values
for both background and target will become harder to
separate. A simple, although incomplete, way to charac-
terize this loss is by means of the Fisher ratio.9 Let us
call m1T , s1T

2 the mean and variance of the output when a
target is present, and m1B , s1B

2 the mean and variance of
the output when there is only background, in both cases
using a one-region filter. Then the Fisher ratio, which
describes the separability between the background and
the target classes, will be

F1 5
um1T 2 m1Bu2

s1T
2 1 s1B

2 . (7)

If the output distribution for the P-region filter is as-
sumed to be independent of the one-region filter output,

FP 5
umPT 2 mPBu2

sPT
2 1 sPB

2 5
um1T 2 m1Bu2

s1T
2 1 s1B

2 1 sX
2 /2

, (8)

where sX
2 is the variance of the x2 distribution. As can

be easily checked, the output for a single-region filter will
degrade as the number of regions in the model is in-
creased. In addition to this global parameter, given the
contrast target/background (ratio of means), the output
value pdf ’s for both the background and the target can be
estimated, provided that the noise model is known.

As an example, let us consider a scene corrupted by ex-
ponential noise. The object is composed of one homog-
enous region with mean value 10, and the background
has a mean of 13. The number of pixels for the target is
400 and the local background has 600 pixels. We will
consider the case of splitting the target into four regions

Fig. 3. Pdf of the difference between the MLRT for four region-
and MLRT for one region. The four regions are the same size,
taking values of 1, 3, and 20 points per region. Theoretical
asymptotic pdf is shown for comparison.
with 100 pixels each. This number was already shown to
provide a sufficient number of samples. Figure 4 depicts
the pdf ’s for the target and for the background for the
one- and four-region filters. As stated before, the pdf ’s
broaden as the number of regions is increased, although
they keep the same separation. Therefore the overlap-
ping of the output for target and background classes en-
larges, which increases the cases where the classes can be
confused.

For a more complete characterization of the detection
properties, Fig. 5 shows the plot of probability of correct
detection versus the probability of false alarm [receiver
operating characteristic (ROC) curve] for a one-region ob-
ject for a varying number of regions in the filter defini-
tions. It is obvious that the performance of the filter de-
creases, for this case, as the number of regions in the
filter design increases. The same argument is applicable
for the expected difference between the output of the
MLRT filters with different numbers of regions if the
number of regions have been overestimated in the filter
design. If the object fulfills an L-region definition, the
difference between the output of an L 1 P region’s filters
and an L region’s filter will obey a x2 pdf with order P.

On the other hand, if the splitting of one region really
matches the object definition, the expected value of the in-
crease will be much larger than the one predicted in Eq.
(6) (for instance, see Ref. 20 for the expression for one re-
gion split in exponential noise).

In the analysis of the filters throughout this paper, the
actual shapes of the regions are not relevant, as we do not
consider the spatial characteristics of the output MLRT
but only the central value. In a real case, the output of
the filters will also include points that are not located at
the center of the target or in a homogenous patch, giving
rise to sidelobes. The importance of sidelobes will de-
pend on the spatial characteristic of the regions. The in-

Fig. 4. Pdf ’s at target and background locations obtained with
one-region MLRT filter (upper graph) and four-region MLRT fil-
ter (lower graph). The mean values for background and target
are marked with vertical lines. Note that the separation of the
background target remains constant, but the variance of both
classes increases, as seen in the overlapping of the pdf ’s.
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crease in the number of regions will produce a smaller
size of the regions and, as a result, the spatial-frequency
contents of the filter will spread. The primary effect will
be the increase in partial matches, and therefore side-
lobes, outside the central location of the object. The
quantification of the effect is complex, as it depends on
the specific structure of the object.

We can summarize that the performance of the filter is
closely linked to the match between the region configura-
tion in the target definition used to prepare the filter and
in the actual object that is being processed. It is tempt-
ing to design a detection algorithm that will estimate the
region description and include this information in the de-
tection process. The difference in the behavior when
splitting a uniform or a nonhomogeneous region can serve
as the key for deciding the object definition that better fits
the actual object that is being inspected, as analyzed in
the Section 4.

4. REGION SELECTION MAXIMUM-
LIKELIHOOD-RATIO TEST
A problem similar to the one posed at the end of the pre-
vious section has been addressed in the fields of segmen-
tation,estimation, and classification. The basic problem
addressed is to decide whether a pair of regions are in-
deed the same region. Arising from different conceptual
points of view, the most common solution is to estimate
the best region description by maximizing a modified like-
lihood function. The modification uses a penalty term
that will penalize the increasing complexity of the
model.23,24

Following Ref. 23, the fundamental reason for this pen-
alty is the bias in the log likelihood according to the num-
ber of free parameters. This bias is found to be the num-
ber of parameters needed to describe the model of the
random process divided by 2. For the actual case, this
means that the likelihood ratio should be corrected by

Fig. 5. Losses in performance when the MLRT is evaluated with
an increasing number of regions of equal size for a homogeneous
object.
subtracting the number of regions of the target divided by
2. This correction is in accordance with the mean values
of the random variable added to the MLRT that was
shown above [see Eq. (6)].

A conceptually different approach is the minimum de-
scription length (MDL) concept. Here the penalty term
is directly connected to the complexity of the
description.24 The underlying philosophy is not to take a
more complicated model unless a net gain in the goal
function is achieved. The basic problem of MDL is the
definition of the complexity of the object. Although a ba-
sic trend is usually easy to estimate, the exact value of the
complexity of a configuration is, in general, complex to de-
rive.

Whatever the basic foundation is, the likelihood should
be biased by a penalty term, depending on the number of
regions of the object model. In most of the literature, this
penalty term is basically proportional to the number of re-
gions.

In the above discussion only the number of regions in
the model for the target have been considered. An object
may fulfill this model but with a number of distinct gray
levels smaller than the maximum number of regions.
Then some regions are fused, and the target presents a
lower number of effective regions. If the number of effec-
tive regions L is larger than one and smaller than the
maximum number of regions P, there are several possible
region configurations. Figure 6 shows this situation by
means of an example. A region configuration is described
by the number of distinct gray levels in the object and by
the actual gray level in each region. We will assume that
the penalty term is independent of the specific region con-
figuration, depending only on the effective number of re-
gions.

Thus we propose a detection filter, taking into account
the possibility of fused regions; the procedure is divided in
two steps. First, the MLRT of every configuration is
computed and a penalty term that depends on the num-
ber of effective regions is subtracted. This step gives the
estimation of the actual region configuration of the object

Fig. 6. Example of the different region configurations for a
given number of effective regions. (a) Four-region target model
defined by the spatial distribution and the maximum number of
regions. (b) Different region configurations with two effective re-
gions. The number of effective regions is defined by the number
of distinct gray levels. Every region configuration is defined by
four digits, where each digit is the index of the effective region,
and the order in the row is the region index in the target defini-
tion, using the order in the target model description.
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and, in particular, the number of estimated effective re-
gions in the object. The region-selection (RS) number of
regions is thus obtained as

LRS 5 arg max
M

$ru
~M ! 2 aM%. (9)

This operation is performed for each pixel displacement in
the image, so that the estimated number of regions may
vary pixelwise. In a second step, the output of the RS fil-
ter (RS-MLRT) is given by the MLRT of that configura-
tion which gives the maximum in the compensated
MLRT. The RS-MLRT is

R 5 ru
~LRS! . (10)

The detection process will conclude with a thresholding of
this output to separate the background and the target
classes.

The parameter a controls the penalty term. A high
value of a will tend to keep regions joined unless a large
difference exists, while a low value will tend to split re-
gions more frequently with a small or even null difference
in the likelihood.

As we can see, a delicate point is the selection of the a
parameter. The Akaike information criterion23 would
mean the use of a 5 0.5. In the MDL framework, the
value is selected according to the complexity of the defini-
tion of a region configuration. The complexity is evalu-
ated as the number of bits needed to describe the
configuration.24 For the case of gamma noise, a region is
described just by its mean value, and the standard devia-
tion of the estimated mean is the mean divided by the
square root of the number of pixels. Thus the number of
distinct values needed to describe the region mean equals
AN, the result of dividing the mean by its uncertainty.
Then the penalty term will be

aMDL 5 logAN. (11)

Nevertheless, note that this value does not take into ac-
count the spatial distribution of the regions.

An additional factor to be considered in the region-
estimation approach is the number of possible region con-
figurations. If the object is composed of P regions, we
have to consider in the test for region-configuration esti-
mation all possible combinations. The number of pos-
sible configurations that must be checked can be obtained
by combinatorial analysis. The number of possibilities of
partitioning a set of P regions into L subsets is given by
the Stirling number25 of the second kind, SP

(L) . The
number of possible configurations grows exponentially as
the number of regions increases, making the use of a
number of regions larger than 6 or 7 difficult in practice
(see Table 1 for the listing of the number of configurations
for the first ten values of the maximum number of re-
gions). For a sufficiently small number of regions in the
object definition, the algorithm for calculating the RS-
MLRT will consist of calculating the MLRT of every con-
figuration and subtracting the penalty term, depending
on the number of effective regions. The MLRT of the con-
figuration that gives the maximum value produces the de-
sired output.
The calculation of the RS-MLRT filter involves the es-
timation of the actual region configuration. The accuracy
of the estimation will depend on the number of pixels in
each region, because a larger number of pixels will make
the likelihood estimation more precise. It also depends
on the contrast among the target regions, because a well-
contrasted target is easier to discriminate. Finally, the a
value will strongly influence the estimation, because it
changes the tendency of the algorithm to select configura-
tions of higher or lower complexity. For a given detection
task the number of pixels in every region are known, but
the contrast may vary among different target instances.
Therefore the a value should be chosen without taking
the contrast into account.

A way of choosing the parameter a is to check the ac-
curacy in the estimation of region selection. In Fig. 7 the
average estimated number of regions is plotted for differ-
ent values of contrast and a. The object is composed of
two regions of equal size with 200 pixels each, and the re-
gion description is four equal regions 100 pixels in size.
The contrast is defined as the quotient between the mean
values in the two regions of the object. The behavior for
other region configurations has been observed to be simi-
lar. Several facts can be concluded from this figure. For
all values of the contrast, the estimated number of re-
gions decrease monotonically from four to one as a in-
creases. For a given a, increasing the contrast implies a
larger or equal estimated number of regions. For low
contrast, a continuous decay is observed while for higher
contrasts, the curve stabilizes at the right number of re-
gions (two in the example), eventually falling to one for
high enough a value. As a main conclusion from these
graphs, a low a value will tend to overestimate the num-
ber of regions, while a large a value will correctly esti-
mate it, provided that the contrast is high enough. To
keep the widest range of useful contrast, the lowest value
of a that brings a correct estimation of region number
should be considered. For the case depicted in the graph,
this means a value ;3. In Fig. 8, the same plot is shown
for three different numbers of regions in the target, for

Table 1. Number of Possible Region
Configurations for the First Ten Values of the

Maximum Number of Regionsa

Maximum
Number of

Regions

Number of
Region

Configurations

1 1
2 2
3 5
4 15
5 52
6 203
7 877
8 4,140
9 21,147
10 11,5975

a For a maximum number of regions the number of configurations is
given by NC(P) 5 (L51

P SP
(L) , where SP

(L) is the Stirling number of the sec-
ond kind.
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the case of infinite contrast. Albeit the position of the el-
bow of the curves is not exactly the same, a value of a
5 3 will perform properly for all cases.

The accuracy of the region-configuration estimation re-
lies on statistical considerations. In the case of segmen-
tation, a region is split into two, and the likelihoods before
and after the splitting are compared. The regions are dy-
namically modified (by exchanging a few pixels) and com-
pared, which produces a large amount of redundancy in
the checks because the theoretical number of checks in
every split-merge step is related to the number of pixels
in the region. In the RS-MLRT case, the regions are
fixed by the object definition, so a single check for every

Fig. 7. Estimated number of regions as a function of the param-
eter a for different contrasts. The object is formed by two re-
gions of equal size, and the RS-MLRT, filter model is four re-
gions.

Fig. 8. Estimated number of regions as a function of the param-
eter a for infinite contrast. Three object configurations are con-
sidered.
region configuration is performed. This may lead easily
to incorrect splitting of the regions in the target. That is,
the process of detection is based on a previous step of es-
timation of the region configuration that may have a large
uncertainty.

5. SIMPLIFIED REGION-SELECTION
ALGORITHM
As stated in Section 4, the selection of the proper configu-
ration for an unknown object can be too complex to be cal-
culated. A significant simplification of the algorithm can
be made, specially matched for detection, relaxing the re-
quirements of the region-estimation step. In the actual
posing of the problem, only two classes are considered to
be distinguished. One is the target, with an arbitrary
number of distinct regions taken from the complete region
description. The other is the background, which is as-
sumed to be uniform. A difficulty in the RS algorithm is
that the value of MLRT in every region configuration can
be evaluated only once. Therefore the possible increase
due to the unnecessary split of a region may be hidden by
the uncertainty of the MLRT. This problem can be re-
duced by considering not one splitting at a time, but the
total splitting between one region and the maximum
number of regions.

If the region is indeed uniform, the average of the dif-
ference in likelihood in all steps will be closer to the value
obtained from pdf ’s [Eq. (6)]. The same applies for a uni-
form target. On the contrary, if the target is multiregion,
there will be a significant increase of the likelihood in the
P-region’s MLRT with respect to the one-region MLRT, no
matter in what intermediate step (or steps) the increase
is significant. To take advantage of this fact, we propose
the following simplified-region-selection (SRS-MLRT) fil-
ter for detection of multiregion objects. First, the num-
ber of regions (LSRS) is estimated to be one or the maxi-
mum number of regions P just by the difference in
likelihoods:

LSRS 5 H P if ru
~P ! 2 ru

~1 ! . aSRS

1 otherwise
; (12)

then the SRS-MLRT is given by

RSRS 5 ru
~LSRS! . (13)

The selection between ru
(P) and ru

(1) is made independently
for every pixel in the input image. With a proper choice
of the parameter aSRS the filter should select one region
output for the background and P regions for the target.
An exception will occur if the target is indeed one region.
Then one region will be selected, as corresponds to the ob-
ject case. A thresholding of the output will yield the final
binary detection output.

The selection of the value of a for this filter is not as
critical as for the RS filter, as a much larger difference is
expected between the likelihoods for one and P regions
than in the stepwise region-selection method. In a uni-
form patch, the difference will be just a random variable
(divided by 2) with x2 distribution with P 2 1 degrees of
freedom. The probability of wrong splitting in the back-
ground can be easily obtained from this pdf.
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A value of

aSRS 5 ~P 2 1 !a, (14)

where a is the value used for RS-MLRT, is consistent with
the previous considerations.

Note the dramatic simplification in the computation of
the MLRT in this case in comparison with the RS-MLRT
filter. There is no need for calculating the MLRT for ev-
ery possible configuration, but only for two. Moreover,
the two configurations that must be calculated (namely
one region and P regions) are unique and directly deter-
mined by the target-model definition.

6. RESULTS
The performance of the two newly introduced algorithms
were tested by means of computer experiments. The tar-
get is in all cases made of four regions with 100 pixels
each. The tests were performed for the most significant
situations of contrast among the target regions and over-
all contrast between target and background.

Figure 9 shows the COR curves for the case of a four-
region object with mean values 10, 12.5, 17.5, and 20.
The background has a mean value of 15. Owing to the
null overall contrast between the target and the back-
ground, the one-region filter fails in the detection of the
target. The region definition matches a four-region de-
scription, which enables the four-region MLRT to perform
the best in the test. The RS-MLRT closely follows the
four-region filter, indicating that the number of regions
have been correctly estimated. The SRS-MLRT shows a
lower performance than the RS-MLRT, although it is still
valuable.

In Fig. 10 the case of a one-region object with poor con-
trast with the background is depicted. The target is ho-
mogenous with mean value 10, and the mean of the back-
ground is 12.5. It can be seen that the one-region filter
performs the best, similar to the SRS filter. The four-

Fig. 9. COR curves for one-region MLRT, four-region MLRT,
RS-MLRT, and SRS-MLRT. The object is a four-region object
with null contrast with the background.
region filter has a low performance due to the losses dis-
cussed in Section 2. The RS-MLRT exhibits a mixed be-
havior. For low thresholds (right-hand side of the
graph), it fits the one-region filter, while it is close to the
four-region filter for high thresholds (left-hand side of the
graph). This behavior is due to the separation that the
COR curve representation makes of the incorrect esti-
mated values. The low values of the output will, obvi-
ously, have a higher probability of producing a one-region
estimation, and for high values in the output the trend
will be to estimate a four-region object.

Finally, Fig. 11 is an intermediate case. The object is
composed of two regions of 200 pixels each, with mean
values 10 and 15. The background has a small contrast

Fig. 10. Same as Fig. 9, but the object is a one-region object
with low contrast with the background.

Fig. 11. Same as Fig. 9, but the object is a two-region object
with low contrast with the background.
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with the target (mean value 15.7). The COR curves show
a good performance for the four regions and RS-MLRT fil-
ters. The one-region filter is less effective, and the SRS
filter is in the middle.

Considering the above results, the RS-MLRT filter be-
haves the best in all cases except when the object is
purely one region. In this case the performance is bad
for low false-alarm probability but good for high detection
probability. The SRS-MLRT is a trade-off between one-
region and four-region MLRT, and exhibits good to me-
dium detection capabilities.

7. CONCLUSIONS
The performance of statistical filters that are designed for
multiregion objects has been studied. The gains of a
multiregion filter are shown to be maximal if the object
fulfills the multiregion definition and especially if the con-
trast between target and background is low. The conven-
tional MLRT filter, matched to one single region, will be-
have better only if the object fits into the one-region
definition. The loss of performance when an object is
tested with a number of regions higher than the effective
number of regions has been analyzed by means of the
Fisher ratio and with COR curves.

Two different ways of combining the output correspond-
ing to the possible region configurations of the target have
been tested. The first way is to use a penalty function
according to the number of regions and select the configu-
ration out of all possible ones that maximizes the cor-
rected likelihood. The strength and the weakness of this
approach is the need for an estimation of the configura-
tion of the regions in the target. If this intermediate step
does not provide accurate results, the final output will
have a reduced performance.

We proposed a second method for distinguishing be-
tween the target and the background: a selection be-
tween one-region and a maximum-region definition.
This considerably simplifies the computing of the filter
and produces a better estimation in the background re-
gions. Experiments show a good compromise in the de-
tection capabilities of the new proposed filters with re-
spect to the previously described filters, as they do not
present any severe failure for any type of objects, for
which where previous filters have failed.

The correct estimation of the region configuration has
shown to be the critical issue in the filter design. A
deeper investigation of this subject is to be developed.
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