
INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF OPTICS A: PURE AND APPLIED OPTICS

J. Opt. A: Pure Appl. Opt. 6 (2004) 36–42 PII: S1464-4258(04)63543-4

Bayesian pattern recognition in optically
degraded noisy images
Rafael Navarro, Oscar Nestares and Jose J Valles
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Abstract
We present a novel Bayesian method for pattern recognition in images
affected by unknown optical degradations and additive noise. The method is
based on a multiscale/multiorientation subband decomposition of both the
matched filter (original object) and the degraded images. Using this image
representation within the Bayesian framework, it is possible to make a
coarse estimation of the unknown optical transfer function, which strongly
simplifies the Bayesian estimation of the original pattern that most probably
generated the observed image. The method has been implemented and
compared to other previous methods through a realistic simulation. The
images are degraded by different levels of both random (atmospheric
turbulence) and deterministic (defocus) optical aberrations, as well as
additive white Gaussian noise. The Bayesian method proved to be highly
robust to both optical blur and noise, providing rates of correct responses
significantly better than previous methods.

Keywords: pattern recognition, optical degradations, Bayesian OTF
estimation, atmospheric turbulence, image processing

1. Introduction

Pattern recognition is an extremely useful technique in image
analysis, spanning a large variety of applications [1], from
object recognition to image retrieving and classification.
Traditional pattern recognition methods, based on matching
or correlation, are highly attractive, but their main drawback
is that they are strongly sensitive to optical degradations and
noise in the observed images. There is a large number of
references in the literature proposing correlation-based pattern
recognition methods to obtain invariant pattern recognition
against different transformations, distortions and all kinds of
degradation of the image [2]. Many studies have focused on
geometric distortions, such as scaling and rotation [3–5], and
also on pattern recognition or localization in the presence of
noise [6–10]. Less work has been done in optically degraded
images [11], where most of the published works deal with the
particular case of defocus [12, 13]. There is however a lack of
methods able to deal robustly with images doubly degraded by
the combined effect of optical aberrations (or scattering) and
noise.

In this work, we propose and test a novel Bayesian
approach, for pattern recognition robust to the combined effect

of optical degradations (aberrations, etc) and noise on the
image. The Bayesian approach consists of a probabilistic
formulation, classic in many estimation or decision-making
problems, which has also been used in pattern recognition [9].
In a previous publication, Vargas et al [13] obtained invariant
pattern recognition against defocus by first applying a subband
decomposition of the matched filter, and then combining
the correlation outputs of each channel in a multiplicative
way. This proved to be a highly efficient method to remove
potential false alarms, which otherwise would soon appear
with defocus. Based on that work, we have generalized the
method, by introducing a probabilistic Bayesian framework
that permits us to deal with a more general form for the optical
degradation (modelled as an optical transfer function (OTF)
linear filter) and to include additive noise. Here, we make
use of a subband decomposition, but instead of the multiscale
Laplacian pyramid [14] used in [13] to deal with pure
defocus, here we apply a multiscale/multiorientation Gabor
pyramid [15], which permits us to deal with more general non-
symmetric optical degradations.

There are situations where optical degradations are
constant or can be calibrated somehow, so that this a priori
knowledge can be available to the recognition algorithm.
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However, in the present study, we are interested in the
cases where the optical degradation is unknown, such as
image degradations introduced by random or unpredictable
motion, atmospheric turbulence, or turbid media in general.
The proposed Bayesian method implicitly estimates a coarse
approximation of the OTF to find the pattern that most probably
generated the observed image.

To test the different methods, including the one proposed
here, we have carried out a realistic simulation where the
task was to classify flying birds (different eagles and falcons
species) observed through a telescope in the presence of
atmospheric turbulence. The images were also affected
by additive Gaussian noise. Our method, which compares
favourably with other previous approaches, provided high
recognition rates even for large optical degradations and low
signal to noise ratios.

2. Methods

The Bayesian method consists of three main elements:

(1) an observation model consisting of linear filtering of the
object with the OTF and additive noise;

(2) a multiscale/multiorientation decomposition of the image
giving rise to a set of observed subbands; and

(3) a Bayesian framework to estimate the pattern that most
probably generated the observed image, as well as a
coarsely sampled estimate of the OTF.

The optical degradation is modelled as a generic complex
low-pass linear filter. Its modulus, the modulation transfer
function (MTF), causes contrast attenuation to the different
spatial frequencies in the object, while the phase transfer
function (PTF) produces a different shift to each spatial
frequency. The proposed method explicitly assumes that the
OTF is unknown, and the strategy is to implicitly estimate the
OTF during the recognition process. The blur in the image
domain is given by the point spread function (PSF) that is the
Fourier transform of the OTF.

Therefore, we have to consider that, for an optimal
recognition performance, we have to simultaneously estimate
two unknowns, the original pattern and the OTF. The
main problem with this general approach is that it is
not well constrained, and therefore to solve this double
estimation (or recognition) problem we need to include some
a priori information, which is straightforward in the Bayesian
framework.

Using a priori knowledge, we can make approximations
that permit us to constrain the recognition problem. First we
apply a most usual constraint, based on the assumption that
the object belongs to a finite set of possible objects. For
instance, in character recognition, the object belongs to the
alphabet. Regarding the second unknown, we also propose
to strongly constrain the space of possible degradations (or
OTFs). To this aim, we introduce the subband decomposition
of the image, by applying a bank of multiscale band-pass filters
tuned to different spatial frequencies and orientations. This
type of image decomposition provides a number of subbands,
which can be realized as a discrete coarse sampling of the
frequency domain [16]. Then, the key idea is to apply the
same coarse sampling to the OTF. This permits us to make a

strong simplification that is to assume that the OTF is constant
within each subband. This limits greatly the space of possible
OTFs, which can be approximated by a multiplicative constant
and a linear phase inside each subband. In our case, we apply a
multiscale/multiorientation Gabor decomposition [15], which
yields a log-polar sampling of the frequency domain, which has
proved to be highly convenient in many applications [16], and
has been described in [17], including implementation details.
In particular, this sampling is well adapted to typical OTFs,
which tend to change more steeply in the low-frequency range
and become shallower as the frequency increases.

However, such a coarse sampling cannot follow rapidly
varying OTFs, such as the undulating OTF produced by a
strong defocus, then providing a false (aliased) representation
of this type of degradation. Thus the method could fail for
large degradations, mainly for those presenting complicated
or wavy patterns in the OTF. This will be, in fact, its main
limitation, since it is guaranteed to work properly only when
the approximation of constant OTF within each subband holds
reasonably well, that is with moderate optical degradations
producing a smooth enough OTF. Nevertheless, the practical
performance and limitations of this method will be assessed
empirically in section 4.

Putting these ideas together, let us formulate the
observation model for the i th band-pass filtered version of the
image oi(x). According to this model, the observed image
oi (x) is the result of applying the i th filter gi (x) to the image.
The image itself is the convolution of the original pattern f (x)

with the impulse response of the unknown optical degradation,
h(x), plus noise, ηi(x) (here the noise is band-pass since it has
also been convolved by filter gi(x)):

oi(x) = (h(x) ∗ f (x)) ∗ gi(x) + ηi (x), i = 1, . . . , Nc (1)

where Nc is the number of channels, and ∗ means spatial
convolution.

Now, we make use of the main approximation as described
before, namely the OTF is constant within a channel (or
subband). Its effect upon the observed subband image is a
modulation hi plus a global shift ui :

oi (x) ≈ hi fi (x − ui) + ηi (x), i = 1, . . . , Nc (2)

where fi(x) = f (x) ∗ gi(x) is the i th subband of the original
pattern, that is filtered with the i th bandpass channel. The
parameters (hi , ui ) are, respectively, the modulation factor and
the global shift approximating the optical degradation within
the bandwidth of the i th filter. Ideally, one would need to
estimate (hi , ui) for a continuum of spatial frequencies, but
this would make the mathematical problem ill posed. Our
approach is equivalent to applying a coarse sampling of the
OTF in the frequency domain. The coarseness or smoothness
of the sampling would depend on the number of channels
(subbands) used.

Given this strongly simplified observation model, we can
now formulate the joint posterior probability for the original
input pattern f , and for the approximated linear degradation
model parameters {hi , ui}. Given the observations {oi } and
applying Bayes’ rule we obtain

p(f, {hi , ui }|{oi}) = K p({oi }|f, {hi , ui })p(f)p({hi , ui }) (3)
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where, for notational convenience, we have expressed images
as intensity vectors; K is a normalization constant. The
posterior probability is proportional to the likelihood (or
conditional probability of the observations, given the input
pattern and the degradation parameters) multiplied by the prior
probability. In the previous expression we have assumed that
the input pattern f is statistically independent of the linear
degradation model parameters {hi , ui}. If we further assume
a constant prior probability for the degradation parameters
{hi , ui}, then the posterior probability is finally

p(f, {hi , ui }|{oi}) = K ′ p({oi }|f, {hi , ui })p(f) (4)

where K ′ is another normalization constant. The maximum
a posteriori (MAP) estimator for the input pattern f̂ and
for the linear degradation parameters {ĥi , ûi} is the one that
maximizes the posterior probability in equation (4):

(f̂, {ĥi , ûi}) = arg max
(f,{hi ,ui })

p({oi }|f, {hi , ui })p(f) (5)

where the likelihood function p({oi }|f, {hi , ui}) is given by
the probability density function of the noise pηi , according to
the observation model in equation (2). If we further assume
conditional independence between channels and between
spatial locations inside the channels, the likelihood is then
given by

p({oi }|f, {hi , ui}) =
Nc∏

i=1

∏
x

pηi (oi (x) − hi fi(x − ui)). (6)

Now, we can incorporate all the a priori information as a prior
probability on the input image f . From the assumptions of the
recognition problem, we know that the input image belongs to a
finite set {f j }N

j=1, where N is the total number of patterns. The
assumption of having a limited set of possible patterns heavily
constrains the space of all the possible intensity configurations
of the input image, resulting in a posterior probability that is
different from zero only when f ∈ {f j }N

j=1:

p(f = f j , {hi , ui }|{oi}) ∝
Nc∏

i=1

∏
x

pηi (oi (x) − hi f j
i (x − ui)).

(7)
Here we have assumed that all the patterns f j are equiprobable
a priori, but if they were not equiprobable it would be
straightforward to include the appropriate probabilities as
simple weights in equation (7). Therefore, the recognition
of an input pattern consists of first choosing the degradation
parameters maximizing the probability in eqution (7) for every
pattern in the alphabet, and then choosing the pattern with the
largest probability, which will give us the global maximum
of the posterior probability distribution. Such maximization
can be done separately for each channel, and then multiplying
the maximum probability values afterwards. For channel i ,
and assuming white Gaussian noise, the maximization of the
probability is equivalent to the minimization of the following
error function:

E j
i =

∑
x

(oi (x) − hi f j
i (x − ui))

2. (8)

To minimize this error function we first expand the square of
the error function as follows:

E j
i =

∑
x

(oi (x))2 + (hi )
2
∑

x

( f j
i (x))2

− 2hi

∑
x

oi(x) f j
i (x − ui), (9)

and then we take partial derivatives with respect to the
parameters and equate to zero:

∂E j
i

∂hi
= 2hi K j

i − 2
∑

x

oi (x) f j
i (x − ui ) = 0 (10a)

∂E j
i

∂ui
= 2hi

∑
x

oi (x)
∂ f j

i (x − ui )

∂ui
= 0 (10b)

where K j
i = ∑

x ( f j
i (x))2. The second condition

(equation (10b)) is independent of hi , and it is exactly the
same condition that follows from maximizing the traditional
correlation function, corr j

i (ui) = ∑
x oi (x) f j

i (x − ui).
Therefore, once we find the û j

i maximizing the correlation,
it follows from equation (10a) that ĥ j

i = corr j
i (û

j
i )/K j

i .
This leads to the following maximum value of the posterior
probability for pattern j :

Pj = max{p(f = f j , {hi , ui }|{oi})}

∝ exp

(
1

2σ 2

Nc∑
i=1

ĥ j
i corr j

i (û
j
i )

)
. (11)

The correlation operators can be implemented efficiently, as
usual in the Fourier domain. The output of this recognition
procedure is a set of probabilities independent of the variance
of the noise σ 2, assigned to each pattern, from which we select
the pattern j with the largest Pj .

3. Implementation and numerical experiments

To test the model, we have conducted a realistic computer
simulation, in which the scenario consists of the problem of
identification of different species of eagles and falcons, viewed
through atmospheric turbulence, with added defocus and noise.
The outputs of these simulations are the input blurred images
used to test the proposed method, as shown in figure 1. Other
previous methods have also been implemented for comparison
purposes, as explained next.

3.1. Pattern recognition methods

3.1.1. Bayesian. To implement the Bayesian method,
one has to choose the subband decomposition. We have
used an efficient implementation of a Gabor multiscale/
multioriorientation pyramid. The parameters of the Gabor
filter bank have been chosen to provide a good sampling of the
Fourier domain while maintaining computational efficiency,
and are the following.

• Bandwidth (measured along the radial direction) of
1 octave.

• Form factor of unity (isotropic Gaussian envelope).
• Four scales distributed in octaves.
• Highest radial tuning frequency of 1/4 cycles/sample.
• Four principal orientations (0◦, 45◦, 90◦ and 135◦).

38



Bayesian pattern recognition in optically degraded noisy images

Figure 1. Schematic block diagram of the Bayesian pattern recognition method. A filter bank is applied to both the set of patterns and to the
input degraded image. Then the Bayesian method gives the probabilities that the input image corresponds to the different pattern. The
output response is the pattern with maximum probability.

With these parameters it is possible to implement the filter
bank very efficiently in the spatial domain, using separable
convolutions and a pyramidal strategy to obtain the coarser
scales.

The Bayesian method consists of computing the MAP for
each subband, using the classical method of computing the
cross-correlation between the input image and every possible
object or pattern. Using equation (11), it follows that the
probability that object j generated the observed image is
the exponential of a linear combination of the correlation
peaks, weighted by the modulus of the OTF for each subband
hi . These OTF values are estimated using conditions in
equation (10), as explained above.

3.1.2. Matched filter and POF. As a primary reference, we
have implemented the classical method of matched filtering,
based on computing the correlation peak between the input
scene and each of the possible objects. In the figures and
tables, we have labelled this method as ‘correlation’.

Alternatively, we have implemented the phase-only filter
(POF). It is usual to implement the cross-correlation in the
Fourier domain, applying the convolution theorem. This
method consists of substituting the Fourier modulus of the
cross-correlation by a constant (flat) one. This has several
advantages, including an improvement of the results in the
presence of optical degradations. In fact, the POF method
would be invariant to optical degradations that do not produce
phase distortions.

3.1.3. Subband decomposition methods. We have also
implemented the previous subband decomposition method
proposed by Vargas et al [13]. Nevertheless, we have
implemented two different versions of it. Version one
consisted of reproducing exactly that method, which used a
multiscale Laplacian pyramid subband decomposition. The
Laplacian pyramid only produces frequency, not orientation
subbands, so that it is multiscale, but not multiorientation.
We have labelled this version of the method as ‘Laplacian’.
For a more direct comparison with our Bayesian approach,
we have also implemented a second version of the subband

decomposition method, simply replacing the Laplacian by the
same Gabor pyramid as used in the Bayesian method. We use
the label Gabor for the resulting method. These two different
versions could show a rather different performance, because in
the subband method the combination of subbands consists of
computing the product of correlation [13], so that if we have a
significantly higher number of subbands, such as in the Gabor
case, this could strongly affect the performance.

Therefore, we have implemented five different methods:
Bayesian, correlation, POF, Laplacian and Gabor.

3.2. Simulation of atmospheric turbulence

A realistic simulation has been implemented, where the
objects are different types of flying eagle and falcon (see
figure 2(a)). The birds are highly similar in size and
overall shape, but exhibit differences mainly in the patterns
formed by the feathers, tail or wing shape, and other
details. Thus, the discrimination and identification of
each species is not straightforward even in optimal viewing
conditions. These objects are viewed through a telescope
from the ground in the presence of random aberrations
induced by atmospheric turbulence. We have considered
short-exposure or instantaneous images, in the sense that
each image corresponds to a single realization of the random
fluctuations. Here, the Zernike coefficients describing the
atmospheric optical aberrations are computed based on the
classic Kolmogorov model [18]. In particular, the data used
here were kindly provided by Cagigal and Canales from the
University of Cantabria (Spain), who used their own simulation
tool [19]. The statistics of the aberrations is determined by the
parameter D/r0, where D is the pupil diameter of the telescope
and r0 is the Fried parameter, or atmospheric correlation length.
As a simplification, we have considered monochromatic light,
with wavelength 550 nm. The scale of the different species has
been equalized so that the wingspan is about 1 m, and we have
considered two viewing distances, of about 90 m, and 180 m.
These viewing distances produce images with different scales.
In the figures, we refer by 100% scale to the case of 90 m
viewing distance, and 50% to the 180 m case, respectively.
The scale of the PSF has been adjusted to match these sizes,
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Figure 2. Realistic computer simulation: (a) the set of patterns
considered. They correspond to different eagle species. (b) One
realization of the optical degradation. The wave aberration (left) has
random (turbulence) and deterministic (defocus) parts. The
corresponding OTF and PSF are also shown. (c) Degraded images
obtained by filtering each pattern with the OTF and adding random
noise.

Table 1. Summary of all the conditions considered in the
simulations.

Objects (eagles and falcons) 8
Number of random
realizations of turbulence 10
D/r0 1 2 4
Defocus (λ units) 0 λ/4 λ/2 λ 3λ/2 2λ
SNR 20 10 1
Viewing distance (m) 90 180

considering D = 20 cm. In addition to turbulence, different
defocus and additive noise conditions have been simulated, as
shown in table 1. Each image is simulated by first computing
the OTF from the Zernike coefficients (wave aberration) of
the atmospheric turbulence, plus an added amount of defocus.
The input object is introduced as a 128 × 128 pixel image
(see figure 2), and is filtered by the simulated OTF, and finally
three different levels of random Gaussian noise are added to
the filtered image.

The complete set of conditions is summarized in table 1.
Thus, the total number of images generated in the simulation
is 8 (birds) ×10 (random realizations) ×3(D/r0)×6 (defocus
level) ×3 (SNR) ×2 (distance) = 8640. This large number of
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Figure 3. Percentage of correct responses as a function of defocus
for the five methods compared: Bayesian (black circles), Laplacian
(open triangles), Gabor (black triangles), POF (black squares) and
standard correlation (open squares).

images permits us to perform some statistics on the behaviour
of the five different methods. Figure 2(c) shows a typical
realization of observed images where the degradation suffered
by the original images is manifest, so that the recognition is
not easy even for a human observer. The conditions of this
particular example are D/r0 = 2, defocus = λ/2, SNR = 1,
full 100% size (90 m viewing distance).

4. Results

Figure 3 compares the global averages of the percentage of
correct responses provided by the different methods as a
function of defocus. In this case, only the highest SNR = 20
has been considered. If we take into account that for defocus
= 0 only the atmospheric turbulence is degrading the image,
it is clear that only the Bayesian and the Laplacian pyramid
methods show a high tolerance to this type of degradation.
The correlation and Gabor methods provide poor results just
above chance levels (chance level = 12.5%), whereas the POF
provides about 60% correct responses. This percentage of the
POF method mainly reflects an unequal behaviour: a high rate
of correct answers for the easier conditions (low turbulence,
and 100% scale) and a poor rate for the more difficult ones
(high turbulence and 50% scale), where the POF performance
drops rapidly. Regarding the evolution of the curves with
defocus, there is a small but important difference between the
two best methods. The Bayesian method ensures the 100%
correct responses, even in the presence of small amount of
defocus (λ/4). The Laplacian method goes basically parallel,
just below the Bayesian one, but reaches the chance level for
the maximum defocus (2λ). In contrast, the Bayesian method
does not decay to chance level even for this high defocus.

Figure 4 compares the percentage of correct responses
for three of the conditions tested. The first case corresponds
to the best or easiest condition (scale = 100%, defocus = 0,
SNR = 20); the second is a difficult condition, with far
distance and a very low SNR, but a moderately low defocus
(scale = 50%; defocus = λ/2, SNR = 1); the third
condition corresponds to a more serious defocus, with full
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Figure 4. Comparison of the performance of the methods for three
particular conditions: scale = 100%, defocus = 0 and SNR = 20
(dark); scale = 50%, defocus = λ/2 and SNR = 1 (grey);
scale = 100%, defocus = λ and SNR = 1 (light grey).

Table 2. Global average of the results obtained for each of the
different methods tested.

Methods Bayesian Laplacian Gabor POF Correlation

Global 71 60 15 33 15
percentage
correct

scale of the object and the same very low SNR (scale = 100%;
defocus = λ, SNR = 1). The Bayesian method always
provides percentage of correct responses above 60% (and
equals 100% for zero defocus). The Laplacian method shows a
high performance for small amounts of defocus, just below the
Bayesian one, but drops for important defocus amounts. The
POF does a good job when there is no defocus and the SNR
is high, but it hardly tolerates the combined effect of defocus
and noise. Again the Gabor and correlation methods perform
poorly.

The global percentage correct responses for the complete
set of conditions and realizations are listed in table 2 for
each method. The Bayesian method clearly performs better
than the other methods. This was true for all conditions
tested except for scale = 50%, and defocus = λ, where the
product of correlations of Laplacian channels was slightly
superior. The average result obtained with the proposed
Bayesian method confirms this (71% of correct responses,
in contrast to the 60% correct provided by the product of
Laplacian correlations). Apart from these two methods, both
the product of Gabor correlations, and the standard correlation
methods, only reached 15% of correct responses, that is a rather
poor performance just above chance level (12.5%). Only the
POF performed clearly above chance level, providing 33%
correct answers, but far from the two first methods.

5. Conclusions

We have presented a novel Bayesian method for pattern
recognition in images degraded by unknown general optical
degradations and additive noise. The results presented here
show that the proposed method is highly robust against optical
degradation and noise in the observed image. Our results
are consistent with previous works in the sense that the

standard correlation, or matched filter method, hardly supports
optical degradations. The POF method is much more robust
against optical degradations, but it fails when the optical
aberrations induce phase distortions in the OTF. The method
by Vargas et al [13], based on the product of correlations of
the Laplacian pyramid decomposition, performs much better
than those previous methods, but worse than the proposed
Bayesian method, especially for large degradations. The
Bayesian method is able to produce reasonable results for the
broad class of conditions tested. The coarse approximation
introduced for the optical degradation can be interpreted as
a regularization that gives a well conditioned problem from
the ill conditioned problem that would try to estimate the
full OTF of the degradation from the observed image. The
method will fail if the OTF changes rapidly or abruptly. In
this case, we would need to increase the number of channels to
sample more finely the Fourier domain, but there is a trade-off
between sampling finely the Fourier domain and regularizing
the ill posed problem. The main advantage is its generic
degradation model, which is not restricted to defocus, and
that includes naturally the noise in the Bayesian framework.
Finally, because the method is Bayesian it can be easily
adapted to introduce priors on the parameters of the coarse
approximation of the degradation’s OTF, as well as on the
relative abundance of each pattern. Moreover, we can also
introduce different costs or penalties when the method fails
to recognize the different patterns, which provides a great
flexibility for specific applications.
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