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Spontaneous transverse pattern formation is experimentally studied in a BaTiO3 photorefractive oscillator
under degenerate four-wave mixing conditions. A near self-imaging resonator of high Fresnel number and
quasi-one-dimensional in the transverse plane is used. A fine control technique of the cavity detuning,V, is
described. It allows a precise study of the relation ofV with the transverse wave numberk' of the roll patterns
selected by the system. The lawk'

2 =−V /a is verified, which evidences that wave-number selection is mainly
dictated by the cavity geometry. The experimentally obtained value of the diffraction parametera matches the
theoretical prediction within the error intervals. The bifurcation diagram obtained by varyingV shows homo-
geneous states and domain walls for positiveV, roll patterns for negativeV, and nonperiodic patterns for
intermediate, negative detuning values. The latter are interpreted also in the frame of the cavity selection
mechanism by taking into account the finesse of the cavity.
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I. INTRODUCTION

Spontaneous pattern formation is common to many dissi-
pative, nonlinear systems[1–3]. The interplay between dis-
sipation, nonlinearity, spatial coupling, and the feed of en-
ergy into the system can provide by itself an ordering in the
form of periodic patterns. These patterns are characterized by
their wave number and their symmetries. Nonlinear optics
offers a rich variety of systems where pattern formation takes
place[4–6]. In large aspect ratio(high Fresnel number) non-
linear optical resonators, the cavity is mainly responsible for
wave-number selection while the symmetries of the patterns
depend on the form of the nonlinearity. The mechanism of
wave-number selection in these oscillators is based on the
resonance of tilted waves with respect to the cavity axis
[7,8]. It is in fact a consequence of the spatial filtering
brought about by the passive resonator(interferometer)
which also manifests, e.g., in the off-axis, spontaneously
emitted photons by an atom in a microcavity, properly de-
tuned from the atomic resonance[9].

In the paraxial approximation, the spontaneously selected
transverse wave numberk' is predicted to follow the law

k'
2 = − V/a, s1d

whereV=vc−v is the cavity detuning parameter,v is the
frequency of the light,vc is the frequency of the closest
cavity mode, anda is a diffraction parameter that depends on
the geometry. For negativeV, Eq. s1d can be fulfilled and
tilted wave emission is predicted ask'Þ0. On the contrary
for positiveV no transverse wave number can satisfy Eq.s1d
and on-axis emission is expected. This mechanism is of gen-
eral validity provided that one takes into account the shift of

the cavity frequencyvc caused by possibly existing linear
and nonlinear dispersionsf5g.

Law (1) is found in theoretical studies of many different
nonlinear optical systems[4–6]. From the experimental side
some studies have reported qualitative results on the depen-
dence of the transverse wave number on the detuning
[10–13]; experimental quantitative verifications of those pre-
dictions are however almost lacking. In particular, Ackemann
et al. [14] have demonstrated Eq.(1) in a broad-area vertical-
cavity regenerative amplifier by varying the frequency of the
external master oscillator(the cavity frequency was constant
by construction of the device); Bortolozzo, Villoresi, and Ra-
mazza[15] have evidenced law(1) in a nondegenerate four-
wave mixing photorefractive oscillator by varying the cavity
frequency. Nondegeneracy is a key feature in Ref.[15] as it
allows to fix the cavity resonances by beating the signal with
the pump. As a drawback, their system does not support
stable patterns, and law(1) was inferred from transients.

Here we report the experimental study of Eq.(1) in a
degenerate four-wave mixing photorefractive oscillator. The
frequency degeneracy between pump and signal entails a
phase sensitivity of the system that favors pattern stability.
As a drawback, this degeneracy forbids to measure the cavity
detuning by beating, as in Ref.[15], and a new technique is
used, which is described. The agreement between our mea-
surements and law(1), as theoretically evaluated, is remark-
able. For negative detunings rolls are found, while for posi-
tive detunings homogeneous(on-axis) emission as well as
domain walls are observed. For small and negative detunings
the system shows nonperiodic stripe patterns, which are also
interpreted in the frame of the commented cavity selection
mechanism when the finite linewidth of the cavity is taken
into account.

II. EXPERIMENTAL SETUP

The system under study is a photorefractive oscillator in a
degenerate four-wave mixing configuration. Two counter-*Email address: adolfo.esteban@uv.es
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propagating pump beams illuminate a BaTiO3 crystal which
produces scattered light, part of which seeds the oscillation
in a Fabry-Perot resonator. Starting from this random seed
the emission along the resonator is dynamically ruled by the
gain (that gives the fraction of light that is diverted from the
pumps to the resonator), the losses, the detuning, and the
diffraction (defined by the resonator geometry). Each of
these parameters can be, to a certain extent, controlled ex-
perimentally. The gain can be modified by the relative orien-
tation among the crystal C+ axis, the pumping direction, and
the cavity axis. The losses are biased by the scattering in the
crystal, the reflectivity of the mirrors, and the Fresnel reflec-
tion at the crystal facets, but can be modified by means of
apertures. The detuning can be modified by fine adjustment
of the cavity length, as described below. Finally, using a near
self-imaging resonator[16] the effective length of the reso-
nator can take any desired value(in magnitude and sign,
including zero), allowing the control of the diffraction.

A scheme of the setup is shown in Fig. 1. Pump beams
(P1 and P2), from a single frequency Ar+ laser at 514.5 nm
and typical intensities of 100 mW/cm2, illuminate the
BaTiO3 crystal s53535 mm3d. From the operational point
of view the system is composed of the nearly self-imaging
active resonator(similar to those used in Refs.[12,17]), the
stabilization resonator[18], and the observation and mea-
surement systems.

The active Fabry-Perot resonator is formed by mirrors M1
and PM4, both of 95 % reflectivity. The C+ axis of the crystal
is oriented to maximize the coupling efficiency of the pumps
inside the resonator, keeping it in the horizontal plane.

The pump beams are horizontally polarized(in the plane
of the drawing), and are extraordinarily polarized in the crys-
tal. As a result, the generated field will also be horizontally
polarized and will pass through the polarizing beam splitters
PBS1 and PBS2. The high reflectivity piezomirror PM2
bends the path to complete the resonator. Self-imaging con-
dition is achieved by means of two telescopes(lenses L1-L2
and L3-L4), which image mirrors M1 and PM4 onto(or very
closely to) the crystal location. The effective cavity length
can be varied by coarse axial displacement of piezomirror
PM4. This telescopic arrangement also provides easy access
to the far-field (Fourier) pattern in the intermediate focal
planes FP1 and FP2. In our experiments, in order to permit
transverse modes, the mirror PM4 is shifted 4.50 cm from
the self-imaging position. The finesse of the active resonator
is really small: The transmissionT of the resonator was mea-
sured as a function of the driving voltage applied to PM2,
and the data were fitted to an Airy function,T=1/f1
+F sin2sd /2dg, with the resultF=0.23±0.04(see Fig. 2).

The other polarization(perpendicular to the plane of the
drawing) is used for optical length stabilization purposes,
feeding a small amplitude signal(REF) through mirror M1.

FIG. 1. Scheme of the experimental setup. See Sec. II for an explanation of the symbols.
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Light is reflected on both polarizing beam splitters(PBS1
and PBS2), and the high reflectivity piezomirror PM3 com-
pletes the control resonator. The finesse of this resonator
(over 10) is appropriate for fine adjustment of the cavity
length. Piezomirror PM3 is driven by a periodic voltage and
the variation of the resonator transmission, measured by pho-
todetector PD2, is then used in a feedback loop to drive
mirror PM4 and correct the resonator length variations. Fi-
nally, the piezomirror PM2 allows fine variation of the active
cavity length without interfering with the stabilization. It can
be modulated as well with a periodic voltage in order to use
the resonances of the active cavity(including the crystal)
detected in PD1 to measure the drift of the active cavity with
respect to the control one. The subsystem formed by PBS1,
PBS2, PM3, PM2, and the crystal is held on a rigid
and stable Invar plate which is also shielded from air currents
so that the optical path difference between active and stabi-
lization resonators is kept constant except for small drifts.
The stability of the system is very good, although in rare
occasions we found drifts in the cavity frequency on the
order of 0.2 MHz/min. In any case we checked that our
measurements were not affected by this drift, as we will
discuss.

In order to simplify the study, the transverse dimensions
are reduced to one. This simplification permits the descrip-
tion with a lower number of parameters and avoids curvature
effects that may mask the results. The system is made one
dimensional by means of slits S2 and S3, 100mm width,
located at both Fourier planes. The length of the slits in the
Fourier planes is adjusted in order to avoid multiconical
emission corresponding to different longitudinal modes. The
insertion of the slits should produce a one-dimensional field
in the crystal plane, without variation in the direction perpen-
dicular to the slit. Nevertheless, owing to crystal inhomoge-
neities, the effective cavity length may vary for different
transverse areas of the crystal. Additional broader slits(S1
and S2) of 400 mm are then located in the primary mirrors
that select a sufficiently uniform portion of the active me-
dium.

The system is complemented with the image acquisition
subsystem(at the left of the figure). Lenses L5–L7 are used

to image the crystal exit face and the Fourier plane FP2 onto
charge-coupled device cameras CCD1 and CCD2.

III. EXPERIMENTAL PROCEDURE

Once the system is stabilized, we are able to change de-
tuning by means of a dc voltage applied to the piezomirror
PM2 which modifies the optical length of the active resona-
tor. As the cavity length is very large as compared to the tiny
displacements of PM2(of the order of the light wavelength),
which are admittedly linear on the dc voltage variations, the
cavity eigenfrequencies also depend linearly on this voltage.

The voltage was changed in 1 V steps in order to study
the behavior of the spatial patterns with detuning. Recording
time was about 1 min to avoid the possible detuning shift due
to the drift of the active resonator. An example of the so-
obtained patterns is shown in Fig. 3 corresponding to de-
creasing voltage values(decreasing cavity frequencies) from
(a) to (k). A homogeneous state(a), a domain wall(b), and
periodic stripes(g)–(j) are shown, which are connected by a
series of nonperiodic striped patterns(c)–(f). All these pat-
terns are steady, except the transient competition between
rolls of high spatial frequency and the homogeneous state
shown in(k). Further decreasing voltage from(k) the system
falls onto a homogeneous state and the above sequence is
repeated. We note that, when two-dimensional patterns are
allowed, phase domains(closed domain walls) are generic
for this system at positive detunings[19].

In order to test law(1) both the transverse wave-number
k' and the cavity detuningV must be measured. The first is
trivially determined by measuring the spatial period of rolls,
L, from the digitized images, from whichk'=2p /L. Detun-
ing measurement is more involved. In principleV can be
measured by determining the cavity free spectral range
(FSR) in terms of the applied dc voltage(in our setup one
FSR was completed after an increase of 33±1 V). However,
we need to know further at which voltage values zero detun-
ing (exact resonance) is achieved. This last part is not easy to
assess at all and we proceeded as follows. Two consecutive
series of rolls, corresponding to adjacent longitudinal modes,
were scanned. Figure 4 shows the relation between the
squared wave number of rolls and voltage for the two
consecutive series. Data corresponding to nonperiodic pat-
terns are not depicted. A linear relation betweenk'

2 and the
applied voltageV is apparent. The horizontal distance be-
tween the two straight lines is the FSR by definition, and the
intersection of these lines with the axisk'

2 =0 defines, ac-
cording to Eq.(1), the voltages at which the cavity detuning
V=0. Both series were fitted to a linear relation

k'
2 = − aDV,

DV = V − V0, s2d

with the resulta1=s5.30±0.09d310−5 mm−2 V−1 for the left
one anda2=s5.31±0.07d310−5 mm−2 V−1 for the right one.
The fact that both slopes coincide indicates that the drift of
the cavity resonances is not important in these measurements
as well as allows us to determine the cavity FSR in terms of

FIG. 2. Transmission properties of the active resonator. Squares:
measured transmitted intensity as a function of the dc voltage ap-
plied to PM2. Continuous line: the best fitting Airy function.
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the applied voltage, which evaluatesDVFSR=31.9±0.3 V.
Note that this value compares well with the direct measure-
ment of the cavity FSR, 33±1 V, based on the scanning of
the cold resonator through piezomirror PM2. We would like
to note that the indirect method is more precise than the
direct one, especially because of the lack of precision in the
measurement on the screen of the oscilloscope, due to the
low finesse(smaller than 1) of the active resonator. Once the
FSR is precisely known in terms of applied voltage, we can
relate it with its actual value. In the experiment the optical
length of the cavity wasL=1.25±0.01 m, hence the FSR is
equal toc/2L=120±1 MHz.

Finally we note two further observations from Fig. 4. On
the one hand the highest wave numbers for both series do not
fit to the straight lines as good as the others because of the
limitation induced by the diaphragm. On the other hand, the
plot is not reaching to zero wave number because the peri-
odicity for these cases does not exist as commented.

IV. WAVE-NUMBER SELECTION VERSUS CAVITY
DETUNING

From the value of FSR obtained as 120±1 MHz, the fact
that a voltage increase ofDVFSR=31.9±0.3 V is needed to
scan one FSR, and the assumed linear relation between volt-
age increase and detuning, we arrive at the correspondence
V= fDV, with f =2pFSR/DVFSR=s23.6±0.4d3106 s−1 V−1

(the factor 2p is included asV is defined in terms of angular
frequencies). Hence relation(2) can be written as

k'
2 = − V/aexpt, s3d

where

aexpt= f/a = 0.445 ± 0.015 m2 s−1, s4d

anda=s5.30±0.09d310−5 mm−2 V−1 has been used. Hence
law s1d is proven.

FIG. 3. Experimental recordings of the near(left) and far(right) fields under different detuningsD measured in percentage of the free
spectral range. Also the voltage applied on the piezomirror PM2 is indicated.
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We now study how Eq.(4) compares with the theoretical
prediction based on the assumption that wave-number selec-
tion is governed by the resonance of tilted waves in the reso-
nator. For that we note, referring to Fig. 5, that the phase
accumulated by a tilted wave of optical frequencyv and
transverse wave-numberk' along a resonator round trip can
be written, in the paraxial approximation, as

fsk'd = fs0d −
cl

v
k'

2 , s5d

where l =s−l1+ l2+d/nd is the effective length of the cavity
sthe resonator is exactly self-imaging whenl =0d, c is the
speed of light in vacuum,n is the refractive index of the
crystal, and

fs0d = 2vL/c, s6d

where L=sL1+L2− l1+ l2+ndd is the optical length of the
resonator. Note in the previous expressions thatl1 and l2 are
oriented distancesssee Fig. 5 captiond. The frequencies of
the cavity longitudinal modes,vc, are defined by the condi-
tion fs0d=2mp, m being integer, which yieldsvc,m

=mpc/L. If we express the wave frequencyv asv=vc−V,
relation s5d predicts that a transverse wave number will be

resonant, i.e.,fsk'd=2pp, p being integer, if it verifies the
following relation:

k'
2 = sqpc/L − Vd/a, s7d

whereq=p−m is an integer and

a =
c2

2v

l

L
. s8d

We observe that if we restrict to the longitudinal mode
whose frequency is closest to that of the wavesthen q=0d,
which is the single longitudinal mode approximation, rela-
tion s7d becomes laws1d. Values ofq different from zero
account for the multiconical emission observed in this type
of experiments which in our case are ruled out by the
insertion of slits in the Fourier planes. Using the experimen-
tal values l =4.50±0.01 cm, L=1.25±0.01 m, and v
=3.65931015 s−1 sl=514.8 nmd, we obtain

atheory= 0.442 ± 0.005 m2 s−1, s9d

which coincides, within the error interval, with the experi-
mentally determined diffraction coefficients4d.

It is to be pointed out that wave-number selection has
been theoretically explained in terms of the modal structure
of the cold cavity(including only linear contributions). This
means that nonlinear phase shifts possibly given by the pho-
torefractive effect or, in general, nonlinear dispersion(due,
e.g., to the nonlinear resonance effect[20]) are apparently
absent in our experiment.

We note from Eq.(8) that in our resonator the diffraction
coefficient can be controlled by means of the offsetl, and
can take both positive, negative and null values, as com-
mented.

It is instructive to think of Eq.(7) in terms of a graphical
construction as follows. In the used paraxial approximation,
the longitudinal componentki of the wave vector can
be written aski=v /c−k'

2 c/2v. Hence, from Eqs.(7) and
(8), we obtain that a wave of longitudinal wave numberki

will be in resonance with the cavity if it verifies

ki = v/c + LV/cl − qdkeff, s10d

with dkeff =p / l. Thus, the resonance condition for a tilted
wave can be seen as determined by the intersection of a
circumference of radiusk=v /c with a comb of vertical
lines separated by the fundamental wave number of the
effective cavity,dkeff, whose location depends on the cav-
ity detuningV. This construction will be used in the fol-
lowing section for understanding the behavior of the
system.

V. PHYSICAL ORIGIN OF THE NONPERIODIC
PATTERNS

Figure 6 corresponds to one of the series shown in Fig. 4,
but now the horizontal axis is detuning measured in units of
% FSR (let us call it D). For negative detuningD (ranging
from −90%FSR to 0% FSR) stripes are observed, being pe-
riodic rolls in regionA and nonperiodic patterns in regionB
[like in Figs. 3(c)–3(f)]. At zero and positiveD we observe

FIG. 4. Dependence of the spatial frequency of rolls on the
voltage applied on the piezomirror PM2, corresponding to two con-
secutive longitudinal modes. Diamonds and squares correspond to
experimental data. Straight lines correspond to fits of the data to
Eq. (2).

FIG. 5. Scheme of the nearly self-imaging resonator. Only the
main elements are depicted. PM4’ and M1’ are the image planes of
PM4 and M1(see Fig. 1) through the corresponding telescopes and
beam splitters. The distancesl1 and l2 are oriented, being positive
(negative) if they point to the right(left). The length of the crystal is
denoted byd. The optical path of tilted waves only differs from that
of on-axis waves in their propagation between PM4’ and M1’.
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either a homogeneous field or domain walls, as expected. We
finally note that for large and negative detuning(aroundD
=−90% FSR) axial emission competes with tilted waves of
high spatial frequency corresponding to the next longitudinal
mode. Owing to nonlinear competition sometimes the central
spot at the far field takes all the energy but sometimes rolls
win.

Especially interesting is regionB. Figure 7 shows a series
of patterns obtained at the two sides, close to the line that
separates regionsA and B in Fig. 6, for three consecutive
longitudinal modes. We see that these nonperiodic patterns
are robust structures of the system in the region of small,
negative detuning. We note that the transition from periodic
(roll) to nonperiodic patterns occurs at the same detuning
value, independently of the direction of the scan, i.e., both by
increasing or decreasing detuning. Clearly the transient stage
is different in both cases: if detuning is increased from region
A in Fig. 6 what is observed is the annihilation of some of
the already present stripes, whereas by decreasing detuning
from region C in Fig. 6 creation of isolated stripes is ob-
served. In any case the final state is a collection of stripes
separated by apparently random distances. In the far field
what is observed(see Fig. 7) is that these nonperiodic pat-

FIG. 6. Relation between the squared wave number of rolls and
detuning for one free spectral range. RegionsA, B, and C corre-
spond to different emission patterns, according to the labels.

FIG. 7. Experimental recordings of both the near(left) and far(right) field for three different longitudinal modes corresponding to the
transition between regionsA andB in Fig. 6. By decreasing detuning the periodicity of stripes is broken in the near field, which manifests
in the far field through the appearance of additional spots between the two which correspond to the periodic roll pattern.
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terns contain a large number of small transverse wave num-
bers. We ask why.

An explanation of this effect can be given by considering
the graphical construction already introduced at the end of
the preceding section, in combination with the fact that the
cavity resonances are not sharp(recall that that theF factor
of its associated Airy function equals 0.23). The upper row in
Fig. 8 shows a scheme of the graphical construction given by
Eq. (10) for six detuning values scanning a complete free
spectral range. Each figure displays a density plot of the Airy
function of the cavity(hence it shows its resonance structure)
which solely depends on the longitudinal wave number, to-
gether with a circumference of radiusk=v /c representing
the light wave number(its appearance is parabolic as the
horizontal axis, which corresponds to the transverse wave-
number, has been squeezed). According to Eq.(10) the inter-
sections between that circumference and the cavity reso-
nances should give the selected transverse wave number.
However, due to the low finesse of the cavity that selection
mechanism is quite tolerant and, close to resonance, it is
feasible that a broad band of small transverse wave numbers
fits simultaneously the tilted wave conditions(7) and (10).
But we can try to be more predictive if we adopt, without
trying to be rigorous, the following simplest model: Assume
that the observed emitted intensity at a given transverse wave
number,Isk'd, follows the simple law

gsk'd
1 + Isk'd/Is

= g, s11d

where gsk'd represents the linear gain for a given tilt,g
represents lossessassumed equal for all wavesd, and Is is a
saturation intensity. We are thus assuming that the amplifi-
cation mechanism is that of the simplest form of gain satu-
rationsnote that we are ignoring the phase sensitive nature of
the four-wave mixing processd. Assume further that the lin-
ear gain equals the product of a pump parameterg0 swhich
should be related with the ratio between pump beam inten-
sitiesf21gd and the Airy function of the resonatorTsk'd, i.e.,

gsk'd = g0Tsk'd, s12d

wheref22g

Tsk'd =
1

1 + F sin2fsk'd
2

, s13d

F=0.23±0.04 in ourexperiment andfsk'd is the phase
accumulated by a tilted wave of optical frequencyv and
transverse wave numberk' along a resonator round trip
and is given by Eqs.s5d ands6d. It can be written in terms
of the cavity detuningV as fsk'd=−2VL /c−k'

2 cl /v,
modulo 2p. The reason to includeT in the gain is purely
phenomenological: we are adopting a simple picture in
which those waves that are closer to the longitudinal reso-
nances experience more net gain than those which are
off-resonant, and we assume that this is just proportional
to the transmission properties of the resonatorswe could
consider, alternatively, thatT controls the cavity losses
and henceg should be inversely proportional toT; we
prefer however to use the proposed picture as, in fact,
cavity losses, understood as the parameter giving the loss
of photons per unit time, are the same for all tilts, if we
ignore diffraction lossesd. Use of Eq.s12d into Eq. s11d
yields

Isk'd/Is = mTsk'd − 1, s14d

where m=g0/g represents the linear gain to loss ratio for
waves exactly on resonance with the cavity. By fitting the
Fourier spectral intensities of the different observed patterns
to Eq. s14d we obtained thatm=1.04 is able to reproduce
the measured spectra for all cavity detuningssnote thatm
is the single fitting parameter:Is is just a proportionality
factord. The middle row in Fig. 8 displays the function
mTsk'd as a function of the transverse wave number, and
the bottom row displays the associated density plots of the
predicted far-field pattern according to Eq.s14d. Note that
the predicted far fields compare well with our experimen-
tal observationsssee Fig. 3d. Especially note, around zero
detuning, how a set of tilted wavessalso the on-axis oned

FIG. 8. Interpretation of the spatial frequency selection mechanism. Top row: density plot of the Airy function of the active resonator on
the planeki vs k'; the paraboliclike curve represents all possible wave vectors of the light. Middle row: assumed linear gain as a function
of k'; the horizontal line denotes the oscillation threshold. Bottom row: far-field intensity as predicted by Eq.(14); d1 andd2 denote the
borders of the slits located at the Fourier plane. In all figures the horizontal axis corresponds tok' and its size is indicated. Each column
corresponds to a given cavity detuning marked on the top. For details, see Sec. V.
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can be oscillating. Therefore we expect, and observesFig.
3d, dissipative structures, but they are not periodic as the
wave-number selection mechanism given by the cavity
does not work in a clean way here. Clearly the above is a
linear reasoning but we have checked experimentally that
these nonperiodic patterns are not a transient stage: some
spots can change their intensity as well as their shape, but
there is always a broad Fourier spectrumsof low spatial
frequency contentd. Under these conditions, we can see
stripes in movement in the near field.

All the previous discussions lead us to the idea that each
tilted wave has its own amplification, almost independently
of the presence of other waves[note that the gain in Eq.(11)
does not consider cross saturation]. This low nonlinearity can
be reasonably understood as the obtained value form=1.04
is only 4% over threshold[according to Eq.(14), m=1 cor-
responds to the threshold for oscillation].

VI. CONCLUSIONS

Pattern formation in a large Fresnel number(nearly self-
imaging), Fabry-Perot, BaTiO3 photorefractive oscillator in a
degenerate four-wave mixing configuration has been investi-
gated in relation with the transverse wave-number selection
problem. The system was made transversely one dimensional
in order to avoid curvature effects. The main goal of the

work was to provide evidence of the transverse wave-number
selection mechanisms existing in cavity nonlinear optics. A
careful stabilization of the cavity allowed a good control of
the cavity detuning which could be measured. The obtained
results show repetitivity and hence provide a solid base for
its study. The main conclusion is that transverse wave-
number selection is mainly brought about by the cavity ge-
ometry. This is true for negative detunings where the experi-
mentally obtained and theoretically computed diffraction
coefficients fully agree. Even more surprising, we find that
nonperiodic patterns observed at small negative detunings
can be explained on the same basis as well, when the finite
linewidth of the cavity is taken into account. Nonlinear ef-
fects, while present, do not seem to affect strongly the selec-
tion mechanism in our experiment.
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