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Oscillators driven by a degenerate wave mixing process are bistable in the phase of the generated radiation.
In systems with a large Fresnel number, domains of opposite phase form therefore spontaneously. A simple
model predicts a real field in which phase domains are separated by Ising-type walls. In this paper we show
experimentally(using complex field reconstruction from measurements) and theoretically(by an extended
model) that the optical field can be real as well as complex valued and that complex field fronts are related to
the front curvature.
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I. INTRODUCTION

Systems close to a symmetry breaking bifurcation are of-
ten describable by a real-valued order-parameter equation as,
e.g., the Swift-Hohenberg equation(SHE) [1]. We found in
Ref. [2] that such a description is qualitatively adequate for
pattern formation in a degenerate four-wave mixing resona-
tor. In this article we show that such approximation is insuf-
ficient, if one leaves the bifurcation point. We investigate
here degenerate four-wave mixing in a photorefractive crys-
tal sBaTiO3d in a cavity. Above the emission threshold light
has two possible phase values with respect to the pump field
phase, differing byp, thus the field is a real variable[1]. As
a consequence, domains of opposite phase coexist in systems
with a large Fresnel number. In case of real-valued fields as
described by the SHE[1] one would expect these phase do-
mains to be separated by “black” domain walls, across which
the amplitude of the field crosses zero(“Ising walls” [3]).

A closer inspection of the experimentally generated fields,
however, showed that the SHE approximation is insufficient.
The fronts separating phase domains are not always black
(i.e., the field goes through zero) but are often “gray”(Fig.
1). Hence, the field connects the two opposite phase values
along a path in the complex plane without touching the zero
point (“Bloch wall” ) and, generally speaking, an asymmetry
has developed. Asymmetric domain walls can form for two
reasons. First a spontaneous symmetry breaking can occur
already in the respective one-dimensional system. A transi-
tion from a symmetric so-called Ising to an asymmetric
Bloch wall occurs[3,4]. The second reason, which we inves-
tigate in more detail, is a typical two-dimensional(2D) ef-
fect. A basically one-dimensional wall, which exists in a two-
dimensional environment, can have a curvature. This also
breaks the symmetry with the consequence of a complex
field (Bloch) wall. Both cases have two things in common.
First the asymmetry restricts the validity of real-valued mod-
els. Hence, phase structures, more complex than the steplike
phase profiles of the real-valued case, are possible. Second,

in almost every case a loss of symmetry breaks the internal
balance of forces. Consequently a motion occurs. In this pa-
per we show both experimentally and on the basis of a nu-
merical model that real as well as complex fronts occur and
we investigate the relation between curvature and complex
nature of domain fronts.

We study the structure of the fronts experimentally ob-
served, on the one hand, by fitting the front profiles by ana-
lytic front expressions. On the other hand, to measure the
front structures in 2D we use a technique permitting to re-
construct the full 2D complex field from the experiment. It
uses a reference field for spatial heterodyning in recording
the emitted field, and a Fourier technique for extracting the
complex field from the recorded interferograms. This permits
to study the 2D fronts in detail.

In addition a more complete model than the real SHE
approximation is used to study the fronts of phase domains,
providing qualitative agreement with the experimental obser-
vations.

II. EXPERIMENT

The experimental arrangement is the same as used in Ref.
[2]. It uses a BaTiO3-crystal inside a linear resonator. The
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FIG. 1. Domain boundaries showing black and gray(arrow)
fronts in the intensity picture obtained in four-wave mixing in a
BaTiO3 resonator.
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crystal is pumped by two opposed pump waves from a single
frequency 514 nm Ar+ laser. The generated waves propagate
in the same linear resonator, which forces them to be degen-
erate. To allow arbitrary field patterns to be resonant, the
resonator is of “self-imaging” type[5], which means that the
diffraction is precisely compensated by lenses. In such a
resonator all transverse modes have equal frequencies and,
correspondingly, any field pattern can be resonant. We avoid
in general the exact compensation of diffraction by the lenses
because in this case the unknown and uncontrolled aberra-
tions of the lenses become dominant. Thus we use a residual

FIG. 2. Illustration of the reconstruction of the complex optical
field by the Fourier technique.(a) Original intensity picture with
40% of grayness[amplitude minimum is 40% of maximum ampli-
tude (white)], (b) interferogram, obtained by the interference with
an inclined plane wave(reference field), (c) Fourier spectrum with
zero and ±1 diffraction orders(the distance between the orders and
the width of orders correspond to the spatial frequency offset and
spatial details of the field, respectively); the white circle shows the
width of the Gaussian filter used,(d) and (e) reconstructed ampli-
tude and phase of the complex field.X, Y are the transverse spatial
coordinates in a.u.

FIG. 3. (a) Experimental interferogram of a domain front,(b) fit
of cuts A70 and A40 of the experimental interferogram with ana-
lytical front solution of Ref.[3]; solid lines: fit, dotted lines: experi-
mental data,(c) corresponding plots of complex field across the
fronts, indicating that A70 is a complex front and A40 is very close
to a real front, units correspond to(d), (d) reconstructed phase and
amplitude of field for two cuts across the front, solid lines: cut A40,
dashed lines: cut A70. The near zero amplitude minimum of A40
and its steplike phase profile identify A40 as a(near) Ising front.
The shallow amplitude minimum and the smooth phase profile
identify A70 as a complex, Bloch front.
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uncompensated diffraction to smooth out the aberrations.
The effect is a reduction of Fresnel number, which, however,
can still be as large as 104 so that patterns with fine structural
details are possible. The tuning of the resonator on a wave-
length scale is done by piezo elements and the control tech-
nique for the detuning is described in Ref.[6].

The crystal is directly imaged into a CCD camera so that
near field intensity images are recorded. To record the com-
plex field, phase information must be obtained through inter-
ference. We use a reference wave(split from the pump laser
beam) at a certain angle to the generated field. The angle
defines the spatial frequency offset which has to be larger
than the width of the Fourier spectrum of the field in order to
reconstruct the spatial details of the complex field.

The technique is analogous, on the one hand, to the re-
construction of a complex field in holography. Figure 2 illus-
trates the technique by a numerical example. Figure 2(a)
shows the intensity of a “gray” front. Figure 2(b) shows the
interferogram. The Fourier transform[Fig. 2(c)] of the inter-
ferogram Fig. 2(b) contains the zero-order component and
the ±1 diffraction orders. The zero-order component is the
intensity fluctuation spectrum and contains no phase infor-
mation.

The ±1 diffraction orders both contain the full informa-
tion about the complex field. The complex field is therefore
retrieved by cutting away all except one of the diffraction
orders[as shown in Fig. 2(c) by a white circle around the +1
diffraction order]. The complex field in the object plane is
reconstructed by inverse Fourier transformation. Figures 2(d)
and 2(e) show the reconstructed amplitude and phase distri-
bution of the complex field corresponding to the intensity
picture [Fig. 2(a)] and the interferogram[Fig. 2(b)].

For the filter[Fig. 2(c)] which passes the selected diffrac-
tion component a Gaussian profile is used. Its width is cho-
sen to pass most of the information of the diffraction order
and at the same time to suppress the zero-order component
and the negative diffraction order as much as possible. This
filtering requires a separation of diffraction orders larger than

FIG. 4. Experimental intensity picture(a) and its interferogram
(b), showing that adjacent domains have opposite phase; 2D-phase
(c) and -amplitude(d) of four-wave mixing field reconstructed by
the Fourier method from(b) (X, Y are the transverse spatial coor-
dinates). Gray front pieces are marked by arrows(for the unphysi-
cal phase changes of 2p across certain front pieces see explanation
in text).

FIG. 5. Phase as a function ofY at X=315 of reconstructed
phase picture Fig. 4(c) (b: complex front,i: real front).

FIG. 6. Complex field plot across front for realsid and complex
sbd pieces of the cut Fig. 5.
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the width of the diffraction orders. In other words, it requires
a large enough angle with the reference field.[It may be
mentioned that this spatial reconstruction of the complex
field is completely analogous to the technique used in Ref.
[7] to reconstruct the temporal evolution of the complex field
by “temporal” heterodyning. The frequency offset used there
for the reference wave corresponds here, in the space do-
main, to the angle between generated field and reference
wave (“spatial frequency offset”)].

Another method to retrieve the phase and amplitude
changes across a front is by fitting an experimental interfero-
gram with a simple complex valued expression as

AsXd = ÎP1tanhSX − X0

W
D ± i

ÎP2

coshSX − X0

W
D . s1d

In 1D, such a formula is known for the Bloch-front and its
Ising-limit f3g and it is likely that it can also approximate a
curved structure.P1 is the power of the plane-wave state,P2
accounts for the amount of grayness of the front.X0 is the
position of the front andW is its width.

Figure 3 shows such fits to an experimental interferogram
[see Fig. 3(a)]. A phase change ofp across the front is evi-
dent from the interference fringe shift across the front. Figure
3(b) shows fits along two cuts across the front as indicated
on the interferogram. Figure 3(c) shows the trajectories of
the field across the front, and Fig. 3(d) gives respective am-
plitudes and phases. The cut A70 is clearly a “gray” front
with a smooth phase profile and a considerable imaginary
part of the field in the middle of the front. The cut A40,
conversely, is very close to an Ising(real) front as the near
zero amplitude minimum and the abrupt phase change across
the front indicate. The field trajectory lies almost on the real
axis.

We found it never quite possible, however, to reconstruct
a black front(i.e., the amplitude reaches zero, the imaginary
part of the field is zero throughout, and the phase changes by
p in step-function manner). This indicates that formula(1)
may not precisely describe curved fronts in 2D.

FIG. 7. (a) Plots of front grayness vs a rough measured front
curvature and of front velocity vs front curvature, constructed for
two fronts taking arbitrary from the experimental recording.(b)
Recordings of one of fronts straightening in time. Time between
pictures is 2 s. The succession of pictures shows that the front be-
comes darker as it becomes less curved.

FIG. 8. (a) Phase structure of moving pattern(detuning50.2), A
is a real front,B is a complex front,C is a transition point between
real and complex front,(b) grayness vs curvature of fronts con-
structed from phase pictures such as(a) [compare with Fig. 7(b)],
the relation of phase and amplitude profile was assumed to obey
Eq. (1).
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The reconstruction of the entire 2D complex field by the
Fourier method was therefore employed. Figures 4(a) and
4(b) show an experimental intensity picture and its interfero-
gram, where the reconstructed values of phase and amplitude
are displayed in Figs. 4(c) and 4(d). One can see gray front
pieces with corresponding smooth changes of phase, marked
by arrows, and black front pieces with abrupt phase change.

In the phase picture[Fig. 4(c)], the phase changes by 2p
from black to white. There appear to be changes of 2p across
the front in certain front pieces. This 2p change, however, is
an artifact stemming from the multivaluedness of the inverse
trigonometric functions. The true phase change across the
front is always,p.

Figure 5 illustrates the different front characteristics by a
cut showing a gray front on the left and a black front on the
right. One can clearly see that the phase, as expected,
changes across both fronts byp, smoothly for the gray front
and abruptly for the black front.

Figure 6 shows the field trajectory across the front pieces
b and i [analogously to Fig. 3(c)], illustrating further the
complex character of the frontb and the real character of the
front i of Fig. 5.

As pointed out previously one would expect to find some
relation between grayness, curvature and front velocity. Fig-
ure 7(a) shows, as an example, such relation between front
grayness and curvature, and velocity and curvature, obtained
by analysis of the dynamics of two different fronts recorded

experimentally. One can clearly see that fronti in the limit of
zero curvature(i.e., a straight front) becomes black(Ising
type) without any motion. On the other hand, frontb at zero
curvature has finite grayness at finite velocity, which means
that a straight gray(Bloch type) front with motion exists.
This shows that an Ising-Bloch transition for straight fronts
can occur for the experimentally accessible parameters. Fig-
ure 7(b) gives, as an example, the fronti with curved section,
straightening in time.

III. MODEL

To explain the existence of complex fronts in 2D degen-
erate four-wave mixing a model beyond the SHE approxima-
tion is needed. We use here a more microscopic description
of the photorefractive resonator. Four fields interact in the
photorefractive crystal. Two counter propagating beams

FIG. 9. Ising-Bloch transition in a one-dimensional resonator
sdetuning=0.1d.

FIG. 10. Ising-Bloch transition and formation of a moving
Bloch front in a two-dimensional resonator for small detuning
(detuning=0.1, initial condition: a curved Ising front, size of the
displayed window: 703140).
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pump the crystal under an angle of about 40° with respect to
the resonator axis. The field in the resonator is driven mainly
by two processes. First a cavity field forms an interference
pattern with one of the pump beams. As known for photore-
fractive oscillators the respective carrier grating scatters a
part of this pump beam into the cavity, thus amplifying the
same cavity field. This so-called beam-fanning or two wave
mixing only needs two waves to interact. But the grating can
also be read out by the respective counter propagating pump
wave. The respective scattered light amplifies the cavity
field, which propagates into the opposite direction. Hence,
four waves are involved. In the first case a laserlike action is
obtained, while the second process causes phase conjugation.
Note that in the linear cavity used, forward and backward
propagating waves are coupled by the mirrors. They are rep-
resented by a single complex field. The whole process can

approximately be described by the following set of normal-
ized equations:

S ]2

] X2 +
]2

] Y2 + D + iDUsX,Y,Td

= igpIpNsX,Y,Td + gcIpNsX,Y,Td* , s2ad

]

] T
NsX,Y,Td + NsX,Y,Td = UsX,Y,Tdf1 − N0sX,Y,Tdg,

s2bd

]

] T
N0sX,Y,Td +

1

T0
N0sX,Y,Td

= fuUsX,Y,Tdu2 + Ipgf1 − N0sX,Y,Tdg, s2cd

where U is the optical field in the resonator. The optical
response of the cavity(a few nanoseconds) is orders of mag-
nitude faster than that of the material(seconds). Therefore no
time derivative is present in Eq.(2a) for the optical field. The
optical field is subject to diffraction with respect to the two
transverse coordinatesX andY. The respective spatial scale
is the inverse angular half width of the resonance of the
resonator. Cavity losses are scaled to an imaginary unit. In
addition the resonator might be slightly detuned from its
resonance by a valueD in units of the half width of the
resonance. The optical field is driven by pump light scattered
from the gratings. Respective terms appear on the right-hand
side of Eq.(2a). gp andgc are the coefficients of the laserlike
and of the phase-conjugation process. Because the pump
light is not influenced by the process the only dynamical
quantity of the scattering is the amplitudeN of the respective

FIG. 11. Ising-Bloch transition and formation of a labyrintic
pattern in a two-dimensional resonator for large detuning
(detuning=0.2, initial condition: a curved Ising front, size of the
displayed window: 503100).

FIG. 12. (a) Phase pattern calculated at detuning=0.1, dotted
line shows a cut taken for(b); (b) a cut showing a gray frontb on
the left and a black fronti on the right side of the picture(compare
with Fig. 5).
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grating. Since the induced grating carries a phase imprintN
is a complex quantity. In contrast, the total amount of carriers
N0 is real valued. It accounts for the saturation of the crystal
and is scaled to the saturation density. TimeT is scaled to the
lifetime of the grating, which is mainly determined by diffu-
sion and amounts to a few seconds. The lifetime of the gen-
erated carriers is again a few orders of magnitude bigger.T0
marks its relation of the lifetime of the grating.

Since the required data of the photorefractive crystals are
not well known, we have to fit the respective constants. In
the simulations we usedT0=100, Ip<0.028, gp=53, and
gc=108. In particular, the strength of the nonlinearity and
consequently the magnitude of the scaled pump intensityIp
are not well known. However, general trends and phenomena
observed in the experiment can be well reproduced. By vary-
ing the detuning one can easily change from collapsing lo-
calized structures, for small detuning, to stable cavity soli-
tons, for larger detuning, and finally to growing labyrintic
pattern as was observed experimentally in Ref.[2]. In the
simulations (Fig. 8) we observe both real-valued domain
boundaries and complex ones. The complex-valued domain
walls are related to curvature, i.e., the larger the curvature is
the more gray the front[Fig. 8(b)] is, in agreement with the
experimental finding(Fig. 7).

The model introduced above shows an Ising-Bloch tran-
sition for the given parameter set and for a scaled pump
power of Ip<0.0085. If the system can only evolve with
respect to one transverse dimension, this transition is clearly
visible (see Fig. 9). In 1D the Ising fronts are unstable and
any perturbations will lead to the transformation of symmet-
ric stationary Ising front into asymmetric Bloch-type ones
which start to move. In 2D the dynamics is much more in-
volved because curvature driven dynamics interacts with the
Ising-Bloch transition. Starting from a slightly perturbed
symmetric front, symmetry breaking occurs on different
parts of the front in uncorrelated ways. Hence, different parts
can move into the opposite directions at the same time lo-
cally increasing the curvature. Two principal cases can be
distinguished.

(1) For small detuning(see Fig. 10) the front is modula-
tionally stable. Hence, its length as well as its curvature are
reduced and one direction of motion(driven by Bloch type
of a front) prevails. Figure 10 shows the transition at small
detuning from the unstable symmetric curved Ising frontsT
=0d to the asymmetric moving Bloch front with gradual re-
ducing of a front curvature by the system itself. Unfortu-
nately, it is hard to observe this case directly experimentally.
In the real system a front always encloses a finite domain,
which tends to shrink and disappears finally. A Bloch-type
motion is always mixed with the curvature driven dynamics.
An observation is limited by the finite lifetime of real struc-
tures.

(2) For larger detuning(see Fig. 11) the front has lost its
stability. It now tries to increase the local curvature and to
increase its length. Hence, asymmetries, which are originally
introduced by the Ising-Bloch transition, are amplified. Fi-
nally the evolution stops because the whole domain is cov-
ered by a labyrintic pattern where the minimum distance
between dark lines is given by the detuning. Bloch fronts
remain asymmetric, but are trapped in the pattern. In the
simulation this final pattern tends to move according to the
global balance of forces induced by the Ising-Bloch transi-
tion. Again it is hard to detect this effect experimentally be-
cause only a limited domain is accessible. Hence, interaction
with boundaries becomes essential. In fact, in some cases we
have observed a global motion of the resulting pattern. How-
ever, some misalignment, which also could have induced
motion, cannot be ruled out.

Hence, we can only compare the phase and amplitude
structure of experimentally and numerically determined
fronts. Figure 12(b) shows the phase along a cut marked by
the dotted line in Fig. 12(a). One can clearly see the fronts of
Bloch and Ising nature with phase change byp across the
fronts, as in the experiment(Fig. 5).

IV. RESULTS

We have experimentally observed that besides real-valued
fronts as predicted by the approximate SHE model in Ref.
[1], there are also complex-valued domain boundaries in the
field generated by degenerate four-wave mixing in a BaTiO3
resonator. We have applied a 2D Fourier transform technique
and a fitting procedure for reconstructing the complex field
and the phase and amplitude structure of the fronts. We find
the Fourier transform technique to be more generally appli-
cable and the experiment shows that it works well. The the-
oretical model given in this paper confirms that the field of
the fronts surrounding phase domains can, contrary to the
Swift-Hohenberg model, which is valid near the emission
threshold, be complex valued.

We have analyzed the relation of front velocity and of
grayness on curvature both numerically and experimentally.
From this we find experimental evidence for a 2D analog to
the 1D Ising-Bloch transition; namely, the existence of
straight black stationary fronts and straight gray moving
fronts.

ACKNOWLEDGMENTS

Ye.L. acknowledges the support by the A.v. Humboldt
foundation. A.E. and J.G. acknowledge financial support
from Spanish Ministerio de Ciencia y Tecnologia and Euro-
pean FEDER Funds through Projects Nos. BFM2002-04369-
C04-01 and BFM2001-3004.

ISING AND BLOCH WALLS OF PHASE DOMAINS IN… PHYSICAL REVIEW A 69, 033803(2004)

033803-7



[1] K. Staliunas and Victor J. Sanchez-Morcillo, Phys. Rev. A57,
1454 (1998).

[2] V. B. Taranenko, K. Staliunas, and C. O. Weiss, Phys. Rev.
Lett. 81, 2236(1998).

[3] P. Coullet, J. Lega, B. Houchmanzadeh, and J. Lajzerowicz,
Phys. Rev. Lett.65, 1352(1990).

[4] D. Michaelis, U. Peschel, F. Lederer, D. V. Skryabin, and W. J.
Firth, Phys. Rev. E63, 066602(2001).

[5] J. A. Arnaud, Appl. Opt.8, 189 (1969).
[6] M. Vaupel and C. O. Weiss, Phys. Rev. A51, 4078(1995).
[7] D. Y. Tang, M. Y. Li, and C. O. Weiss, Phys. Rev. A44, 7597

(1991).

LARIONOVA et al. PHYSICAL REVIEW A 69, 033803(2004)

033803-8


