PHYSICAL REVIEW A 69, 033803(2004)

Ising and Bloch walls of phase domains in two-dimensional parametric wave mixing
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Oscillators driven by a degenerate wave mixing process are bistable in the phase of the generated radiation.
In systems with a large Fresnel number, domains of opposite phase form therefore spontaneously. A simple
model predicts a real field in which phase domains are separated by Ising-type walls. In this paper we show
experimentally(using complex field reconstruction from measuremeatsd theoreticallyby an extended
mode) that the optical field can be real as well as complex valued and that complex field fronts are related to
the front curvature.
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I. INTRODUCTION in almost every case a loss of symmetry breaks the internal

S | breaking bif . fbalance of forces. Consequently a motion occurs. In this pa-
ystems close to a symmetry breaking bifurcation are ofye\ve show both experimentally and on the basis of a nu-

ten describaple by a real-valued _order—parameter equa.tion rerical model that real as well as complex fronts occur and
e.g. the SW|ft-H0henberg' equaﬂQﬁ‘HE)l [1.]' We found in we investigate the relation between curvature and complex
Ref. [2] that such a description is qualitatively adequate fornature of domain fronts.

pattern formation in a degenerate four-wave mixing resona- We study the structure of the fronts experimentally ob-

tor. In this article we show that such approximation is i”SUf'served on the one hand, by fitting the front profiles by ana-
ficient, if one leaves the bifurcation point. We investigate|ytiC fr(;nt expressions. én the other hand. to measure the
here degenerate four-wave mixing in a photorefractive CIYSfront structures in 2D we use a technique ’permitting to re-
tal (BaTiOy) in a cavity. Above the emission threshold light 41t the full 2D complex field from the experiment. It

has two possible phase values with respect to the pump fielgsas 5 reference field for spatial heterodyning in recording
phase, differing bym, thus the field is a real variab[@]. AS o emitted field, and a Fourier technique for extracting the

a consequence, domains of opposite phase coexist in syStegism jex field from the recorded interferograms. This permits
with a large Fresnel number. In case of real-valued fields ag, study the 2D fronts in detail.

described by the SHEL] one would expect these phase do- |, aqdition a more complete model than the real SHE

mains to be separated by “black” domain walls, across whichy,oroximation is used to study the fronts of phase domains,

the amplitude of the field crosses zeftsing walls” [3]). ~  roviding qualitative agreement with the experimental obser-
A closer inspection of the experimentally generated fields, 4tions.

however, showed that the SHE approximation is insufficient.
The fronts separating phase domains are not always black
(i.e., the field goes through zerbut are often “gray’(Fig. Il. EXPERIMENT

1). Hence, the field connects the two opposite phase values The experimental arrangement is the same as used in Ref.

along a path in the complex plane without touching the zerq;. |t uses a BaTi@crystal inside a linear resonator. The
point (“Bloch wall”) and, generally speaking, an asymmetry

has developed. Asymmetric domain walls can form for two
reasons. First a spontaneous symmetry breaking can occur
already in the respective one-dimensional system. A transi-
tion from a symmetric so-called Ising to an asymmetric
Bloch wall occurg3,4]. The second reason, which we inves-
tigate in more detall, is a typical two-dimension@bD) ef-

fect. A basically one-dimensional wall, which exists in a two-
dimensional environment, can have a curvature. This also
breaks the symmetry with the consequence of a complex
field (Bloch) wall. Both cases have two things in common.
First the asymmetry restricts the validity of real-valued mod-
els. Hence, phase structures, more complex than the steplike
phase profiles of the real-valued case, are possible. Second,

FIG. 1. Domain boundaries showing black and gtayrow)
fronts in the intensity picture obtained in four-wave mixing in a
*Email address: yevgeniya.larionova@ptb.de BaTiO; resonator.
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FIG. 3. (@) Experimental interferogram of a domain froft) fit
of cuts A70 and A40 of the experimental interferogram with ana-
lytical front solution of Ref[3]; solid lines: fit, dotted lines: experi-
mental data,c) corresponding plots of complex field across the
fronts, indicating that A70 is a complex front and A40 is very close
to a real front, units correspond td), (d) reconstructed phase and
amplitude of field for two cuts across the front, solid lines: cut A40,
dashed lines: cut A70. The near zero amplitude minimum of A40
and its steplike phase profile identify A40 agreeap Ising front.
100 300 500 The shallow amplitude minimum and the smooth phase profile
X (a_u.) identify A70 as a complex, Bloch front.

Y
(a.u.) 300

(e)
crystal is pumped by two opposed pump waves from a single
frequency 514 nm Arlaser. The generated waves propagate
in the same linear resonator, which forces them to be degen-
erate. To allow arbitrary field patterns to be resonant, the

FIG. 2. lllustration of the reconstruction of the complex optical
field by the Fourier techniqu&a) Original intensity picture with
40% of graynesgamplitude minimum is 40% of maximum ampli-

tude (white)], (b) interferogram, obtained by the interference with ; . : L .
an inclined plane waveéreference fieli (c) Fourier spectrum with '€SONAator'is of “self-imaging” typgs], which means that the

zero and +1 diffraction orderghe distance between the orders and difffaction is precisely compensated by lenses. In such a
the width of orders correspond to the spatial frequency offset and€Sonator all transverse modes have equal frequencies and,
spatial details of the field, respectiviglyhe white circle shows the Correspondingly, any field pattern can be resonant. We avoid
width of the Gaussian filter use¢d) and (e) reconstructed ampli- N general the exact compensation of diffraction by the lenses
tude and phase of the complex fiekl.Y are the transverse spatial because in this case the unknown and uncontrolled aberra-
coordinates in a.u. tions of the lenses become dominant. Thus we use a residual
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FIG. 5. Phase as a function &f at X=315 of reconstructed
phase picture Fig.(4) (b: complex front,i: real frony.

The crystal is directly imaged into a CCD camera so that
near field intensity images are recorded. To record the com-
plex field, phase information must be obtained through inter-
ference. We use a reference waselit from the pump laser
beam at a certain angle to the generated field. The angle
defines the spatial frequency offset which has to be larger
than the width of the Fourier spectrum of the field in order to
reconstruct the spatial details of the complex field.

The technique is analogous, on the one hand, to the re-
construction of a complex field in holography. Figure 2 illus-
trates the technique by a numerical example. Figua 2
shows the intensity of a “gray” front. Figurgl® shows the
interferogram. The Fourier transforfig. 2(c)] of the inter-
ferogram Fig. o) contains the zero-order component and
the £1 diffraction orders. The zero-order component is the
intensity fluctuation spectrum and contains no phase infor-
mation.

The £1 diffraction orders both contain the full informa-
tion about the complex field. The complex field is therefore
retrieved by cutting away all except one of the diffraction
orders[as shown in Fig. @) by a white circle around the +1
diffraction ordet. The complex field in the object plane is
reconstructed by inverse Fourier transformation. Figu(ds 2
and Ze) show the reconstructed amplitude and phase distri-
bution of the complex field corresponding to the intensity
picture[Fig. 2a)] and the interferograrfFig. 2(b)].

For the filter[Fig. 2(c)] which passes the selected diffrac-
tion component a Gaussian profile is used. Its width is cho-
sen to pass most of the information of the diffraction order
and at the same time to suppress the zero-order component
and the negative diffraction order as much as possible. This
filtering requires a separation of diffraction orders larger than

FIG. 4. Experimental intensity pictur@) and its interferogram
(b), showing that adjacent domains have opposite phase; 2D-phase
(c) and -amplitudeg(d) of four-wave mixing field reconstructed by
the Fourier method frongb) (X, Y are the transverse spatial coor-
dinates. Gray front pieces are marked by arro¢sr the unphysi-
cal phase changes of2across certain front pieces see explanation
in text).

uncompensated diffraction to smooth out the aberrations.
The effect is a reduction of Fresnel number, which, however,
can still be as large as 480 that patterns with fine structural

details are possible. The tuning of the resonator on a wave-

length scale is done by piezo elements and the control tech- FIG. 6. Complex field plot across front for re@) and complex
nigue for the detuning is described in RES)]. (b) pieces of the cut Fig. 5.
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is a real frontB is a complex frontC is a transition point between
real and complex front(b) grayness vs curvature of fronts con-
structed from phase pictures such(as[compare with Fig. #®)],

the relation of phase and amplitude profile was assumed to obey
Eq. (D).

—  [X=Xo) . P
A(X) = VP4tan )i 2 . (1
W X_XO
osh ——
W

l‘(——i" In 1D, such a formula is known for the Bloch-front and its

Ising-limit [3] and it is likely that it can also approximate a
curved structureP is the power of the plane-wave stai,
accounts for the amount of grayness of the frofy.is the

FIG. 7. (a) Plots of front grayness vs a rough measured frontposition of the front andV is its width.

curvature and of front velocity vs front curvature, constructed for Figure 3 shows such fits to an experimental interferogram
two fronts taking arbitrary from the experimental recordiril) 9 P 9

Recordings of one of fronts straightening in time. Time betweenS€€ Fig. 83)]. A phase change of across the front is evi-

pictures is 2 s. The succession of pictures shows that the front béiem from thg interference fringe shift across the fror)t. Figure
comes darker as it becomes less curved. 3(b) shows fits along two cuts across the front as indicated

on the interferogram. Figure(® shows the trajectories of

the field across the front, and Figd} gives respective am-
the width of the diffraction orders. In other words, it requiresplitudes and phases. The cut A70 is clearly a “gray” front
a large enough angle with the reference fidlid.may be with a smooth phase profile and a considerable imaginary
mentioned that this spatial reconstruction of the complexpart of the field in the middle of the front. The cut A40,
field is completely analogous to the technique used in Refconversely, is very close to an Isirigeal) front as the near
[7] to reconstruct the temporal evolution of the complex fieldzero amplitude minimum and the abrupt phase change across
by “temporal” heterodyning. The frequency offset used therghe front indicate. The field trajectory lies almost on the real
for the reference wave corresponds here, in the space daxis.
main, to the angle between generated field and reference We found it never quite possible, however, to reconstruct
wave (“spatial frequency offse}]. a black front(i.e., the amplitude reaches zero, the imaginary

Another method to retrieve the phase and amplitudepart of the field is zero throughout, and the phase changes by

changes across a front is by fitting an experimental interferosr in step-function manngr This indicates that formulél)
gram with a simple complex valued expression as may not precisely describe curved fronts in 2D.
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FIG. 9. Ising-Bloch transition in a one-dimensional resonator
(detuning=0.1

The reconstruction of the entire 2D complex field by the
Fourier method was therefore employed. Figurés) 4nd
4(b) show an experimental intensity picture and its interfero-
gram, where the reconstructed values of phase and amplitude

are d'SpI?;ed n Flgs.Ef) and 4d)tiqoﬂe can se%\e r(_]:]ray frontk FIG. 10. Ising-Bloch transition and formation of a moving
gleces wi Coérgfp?(nf Ing SF“OO C. ﬁn%es 0 ph ase, :Par eéiloch front in a two-dimensional resonator for small detuning
y arrows, an ack front pieces with abrupt phase ¢ ang?detuning=0.1, initial condition: a curved Ising front, size of the

In the phase picturgFig. 4(c)], the phase changes byr2 displayed window: 76« 140).
from black to white. There appear to be changesm®b2ross

the front in certain front pieces. Thisz2change, however, is . tallv. O learl that froit the limit of
an artifact stemming from the multivaluedness of the invers§XPermentally. One can clearly see that Iro elimito
ero curvaturgi.e., a straight frontbecomes blacklsing

trigonometric functions. The true phase change across the : .
front is always~ . type) without any motion. On the other hand, frdmat zero

Figure 5 illustrates the different front characteristics by gcurvature has finite grayness at finite velocity, which means

cut showing a gray front on the left and a black front on thethat a straight grayBloch typg front with motion exists.

fight. One can clearly see that the phase, as expecteah's shows that an Ising-Bloch transition for straight fronts

changes across both fronts fy smoothly for the gray front can oceur for the experimentally acc_:es_sible parameters. Fig-
and abruptly for the black front. ure _7(b) gives, as an example, the franwith curved section,

Figure 6 shows the field trajectory across the front pieceStraightening in time.

b andi [analogously to Fig. @)], illustrating further the
complex character of the frobtand the real character of the IIl. MODEL
fronti of Fig. 5.

As pointed out previously one would expect to find some To explain the existence of complex fronts in 2D degen-
relation between grayness, curvature and front velocity. Figerate four-wave mixing a model beyond the SHE approxima-
ure 7a) shows, as an example, such relation between frontion is needed. We use here a more microscopic description
grayness and curvature, and velocity and curvature, obtaineaf the photorefractive resonator. Four fields interact in the
by analysis of the dynamics of two different fronts recordedphotorefractive crystal. Two counter propagating beams
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FIG. 12. (a) Phase pattern calculated at detuning=0.1, dotted
line shows a cut taken fab); (b) a cut showing a gray frorit on
the left and a black fronton the right side of the pictureompare
with Fig. 5).

approximately be described by the following set of normal-
ized equations:

# &P .
m + W +D+i|UXY,T)
=iypl ]NOGY,T) + el NOX, Y, T, (2a)

:—TN(X,Y,T) +N(X, Y, T) =U(X,Y,T)[1-Nyo(X,Y,T)],

(2b)
FIG. 11. Ising-Bloch transition and formation of a labyrintic P 1
pattern in a two-dimensional resonator for large detuning —No(X,Y,T) + —Np(X,Y,T)
(detuning=0.2, initial condition: a curved Ising front, size of the aT To
displayed window: 5& 100). — [|U(X,Y,T)|2 + |p][1 —No(X,Y,T)], (20)

pump the crystal under an angle of about 40° with respect tavhere U is the optical field in the resonator. The optical
the resonator axis. The field in the resonator is driven mainlyesponse of the cavitya few nanosecong$s orders of mag-

by two processes. First a cavity field forms an interferencanitude faster than that of the materiaeconds Therefore no
pattern with one of the pump beams. As known for photoretime derivative is present in EqRa) for the optical field. The
fractive oscillators the respective carrier grating scatters aptical field is subject to diffraction with respect to the two
part of this pump beam into the cavity, thus amplifying thetransverse coordinateé andY. The respective spatial scale
same cavity field. This so-called beam-fanning or two waves the inverse angular half width of the resonance of the
mixing only needs two waves to interact. But the grating carresonator. Cavity losses are scaled to an imaginary unit. In
also be read out by the respective counter propagating pungdition the resonator might be slightly detuned from its
wave. The respective scattered light amplifies the cavityesonance by a valuB in units of the half width of the
field, which propagates into the opposite direction. Hencefesonance. The optical field is driven by pump light scattered
four waves are involved. In the first case a laserlike action igrom the gratings. Respective terms appear on the right-hand
obtained, while the second process causes phase conjugatiside of Eq.(2a). v, andy, are the coefficients of the laserlike
Note that in the linear cavity used, forward and backwardand of the phase-conjugation process. Because the pump
propagating waves are coupled by the mirrors. They are regight is not influenced by the process the only dynamical
resented by a single complex field. The whole process caquantity of the scattering is the amplitubleof the respective
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grating. Since the induced grating carries a phase imptint  (2) For larger detuningsee Fig. 11the front has lost its
is a complex gquantity. In contrast, the total amount of carrierstability. It now tries to increase the local curvature and to
Ny is real valued. It accounts for the saturation of the crystaincrease its length. Hence, asymmetries, which are originally
and is scaled to the saturation density. Timis scaled to the introduced by the Ising-Bloch transition, are amplified. Fi-
lifetime of the grating, which is mainly determined by diffu- nally the evolution stops because the whole domain is cov-
Sion and amounts to a feW SecondS. The ||fet|me Of the gerbred by a |abyrintic pattern where the minimum distance
erated _carriers_ is again a_few orders of ma_gnitUde bigger. petween dark lines is given by the detuning. Bloch fronts
marks its relation of the lifetime of the grating. remain asymmetric, but are trapped in the pattern. In the
Since the required data of the photorefractive crystals argjmation this final pattern tends to move according to the
not well knqwn, we have ‘9 fit the respective Eonstants. Ir]global balance of forces induced by the Ising-Bloch transi-
the simulations we used,=100, 1,~0.028, ¥,=53, and tion. Again it is hard to detect this effect experimentally be-

v.=108. In particular, the strength of the nonlinearity and o S . . -
consequently the magnitude of the scaled pump interisity cause only a_llmlted domain is aqces&ble. Hence, interaction
ith boundaries becomes essential. In fact, in some cases we

are not well known. However, general trends and phenomen ; .
g b have observed a global motion of the resulting pattern. How-

observed in the experiment can be well reproduced. By var cali hich al id h induced
ing the detuning one can easily change from collapsing lo€Ve!: Some misalignment, which also could have induce

calized structures, for small detuning, to stable cavity solimotion, cannot be ruled out. _
tons, for larger detuning, and finally to growing labyrintic ~ Hence, we can only compare the phase and amplitude

pattern as was observed experimentally in R&f. In the  Structure of experimentally and numerically determined
simulations (Fig. 8) we observe both real-valued domain fronts. Figure 1) shows the phase along a cut marked by
boundaries and complex ones. The complex-valued domaiffi€ dotted line in Fig. 1@). One can clearly see the fronts of
walls are related to curvature, i.e., the larger the curvature i§!0ch and Ising nature with phase change dyacross the
the more gray the frorjiFig. &b)] is, in agreement with the TONts, as in the experimexFig. 5).
experimental findingFig. 7).

The model introduced above shows an Ising-Bloch tran- IV. RESULTS

sition fo; Ithf Ogglgsns pﬁrarr? eter set and forla scalled p!Jrr]“p We have experimentally observed that besides real-valued
power of fp="1. - I the system can only evolve With ¢, g predicted by the approximate SHE model in Ref.
respect to one transverse dimension, this transition is clearlm there are also complex-valued domain boundaries in the
visible (see F!g. 3. '.” 1D the Ising fronts are unstable and field generated by degenerate four-wave mixing in a BaTiO
any perturbations will lead to the transformation of symmet-oqqnai0r We have applied a 2D Fourier transform technique
rlil_sLatlonary Ising fr?ntz:;toh asaymmefmc _Bloch-:]ype ON€Sand a fitting procedure for reconstructing the complex field
which start to move. In t. € dynamics IS much more in-5,q e phase and amplitude structure of the fronts. We find
volved because curvature driven dynamics interacts with thﬂwe Fourier transform technique to be more generally appli-
Ismg-Bchh transition. Starting frqm a slightly per"turbed cable and the experiment shows that it works well. The the-
symmetric front, symmetry breaking occurs on different  qiica| model given in this paper confirms that the field of
parts of the front in uncorrelated ways. Hence, different partg,o fronts surrounding phase domains can, contrary to the
can move into the opposite directions at .the same time IOSWift—Hohenberg model, which is valid near the emission
cally increasing the curvature. Two principal cases can b, ashold. be complex valued

d'StTgll:J'Shed' I d : Fia. 10the f . dul We have analyzed the relation of front velocity and of
(1) For small detuningsee Fig. 19 the front is modula- rayness on curvature both numerically and experimentally.
tionally stable. Hence, its length as well as its curvature areg, o this we find experimental evidence for a 2D analog to
reduced and one direction of motigdriven by Bloch type 0 1y Ising-Bloch transition; namely, the existence of

of a fronf) prevails. Figure 10 shows the transition at small ;... : - .
. . ) straight black stationary fronts and straight gray movin
detuning from the unstable symmetric curved Ising froht frontg. y ght gray g

=0) to the asymmetric moving Bloch front with gradual re-

ducing of a front curvature by the system itself. Unfortu- ACKNOWLEDGMENTS
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