
INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF OPTICS A: PURE AND APPLIED OPTICS

J. Opt. A: Pure Appl. Opt. 8 (2006) 427–435 doi:10.1088/1464-4258/8/5/010

Ray matrix analysis of anamorphic
fractional Fourier systems
Ignacio Moreno1,4, Carlos Ferreira2 and Marı́a M Sánchez-López3
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Abstract
In this work we extend the application of the ray matrix approach to analyse
anamorphic fractional Fourier systems, i.e., fractional Fourier optical systems
where the fractional power is different for two orthogonal directions. The
application of the ray matrix approach allows for easily obtaining the
properties of the optical system, and it is therefore a powerful tool to design
and simplify complicated systems. For simplicity we consider fractional
Fourier systems with real orders and systems without apertures. We start by
presenting the analysis of some previously reported anamorphic Fourier and
fractional Fourier systems, and we end by proposing a simple optical system
with tunable anamorphic fractional orders that can be varied continuously
without changing the input and output planes.
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1. Introduction

Anamorphic optical systems are very well known and widely
used for several applications, including metrology [1], read-out
optical disc systems [2], laser diode beam shaping [3], or laser
mode transformations [4, 5]. In optical data processing, the
so-called astigmatic processor [6] was employed as a device
for one-dimensional (1D) Fourier transforming and imaging in
two mutually perpendicular directions. But was Szoplik and
co-workers who for the first time proposed an anamorphic two-
dimensional (2D) Fourier transformer composed of crossed
cylindrical lenses of different focal lengths [7], working under
parallel beam illumination. In their paper, Szoplik and co-
workers proposed two systems. The first, composed of
only two lenses, provided a non-exact Fourier transform; the
second, composed of four cylindrical lenses, was designed
to provide an exact anamorphic Fourier transform. Later on,
the association in cascade of two such Fourier transformers
permitted the obtention of an anamorphic coherent 2D optical
processor [8].

4 Author to whom any correspondence should be addressed.

Based on these articles, several papers were published
in order to extend the performance of such systems. Using
spherical wave illumination, the simplest 2D anamorphic
Fourier transformer becomes more flexible than one working
under parallel illumination and, under given conditions, is
able to provide an exact Fourier transform [9]. Different
combinations of these systems allowed their applications in
optical processing, as for instance in pseudocolouring [10], for
improving the angular discrimination in the Fourier plane [11]
or for building anamorphic multiple matched filters [12, 13].

More recently, with the development of optical fractional
Fourier transform (FRFT) processors [14], the combination
of FRFT and anamorphic systems resulted in different
fractional orders along the two main axes of an optical
system [15]. This capability considerably extends the number
of applications of the FRFT systems. For instance they can be
applied to the space-variant simultaneous detection of several
objects by the use of multiple anamorphic fractional Fourier
transform filters [16], or for optical encryption in holographic
memories [17]. In addition, the use of the FRFT tool to
analyse propagation in optical resonators [18, 19] makes the
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anamorphic FRFT a very interesting tool to study laser mode
converters based on cylindrical lenses [4, 5].

The key elements in all these anamorphic systems
are anamorphic lenses. Refractive [7] or diffractive [20]
cylindrical lenses have been employed to build anamorphic
optical processors. Recently, the advances in optical
technology has permitted the use of programmable lenses to
build adaptive anamorphic optical processors [21, 22].

On the other hand, it is well known that the use of simple
matrix algebra has been successfully applied in the study of
several optical topics [23]. These matrix methods are very
useful for numerical analysis when a large number of elements
are considered, but also for theoretical derivation of optical
properties. In particular, the relationship between diffraction in
paraxial systems and ray matrices [24] permits one to simplify
complex diffraction problems in beam propagation [25, 26],
and Fourier optics [27]. The ray matrix approach was
applied to describe anamorphic lenses in [28, 29]. It has
been also employed to analyse FRFT rotationally symmetric
systems [30]. To our knowledge, the use of ray matrices to
deal with an anamorphic FRFT is limited to systems with
independent behaviour in two orthogonal (x–y) directions [31],
which can be described in a simpler way by a pair of standard
ray matrices. The use of extended 4 × 4 ray matrices is
required when the action of the anamorphic system is not x–
y independent. Thus, taking into account all these previous
works, we propose to extend the use of the ray matrix
formalism to study anamorphic Fourier and FRFT optical
systems, where the x–y action is not independent.

Therefore, the outline of the paper is as follows. For
simplicity, here we only consider fractional Fourier systems
with real orders and systems without apertures, and therefore
all matrix elements are real-valued [25]. In section 2 we start
by reviewing previous studies on symmetrical systems and
their application to FRFT systems. In section 3, we extend the
ray matrix approach to anamorphic systems by using 4 × 4 ray
matrices. We use an alternative notation compared to previous
studies in anamorphic systems, which presents the advantage
of simplifying orthogonal anamorphic systems. We find the
conditions of the ray matrix to obtain an optical system that
performs an optical anamorphic 2D Fourier transform and use
this formalism to review earlier proposed anamorphic systems.
In section 4 we apply the formalism to the analysis of FRFT
anamorphic systems providing different fractional orders in
two orthogonal directions. Finally, in section 5, and on the
basis of the previously developed formalism, we propose a
simple system that allows a tunable anamorphic FRFT without
changing the input and output planes.

2. Ray matrices and fractional Fourier transform in
rotationally symmetric systems

The standard 2 × 2 ray matrix formalism applies to regular
centred rotationally symmetric geometrical optical systems
working under the paraxial approximation. The rays are
assumed to travel only within a single plane, so that the
formalism is applicable to systems with planar geometry
and to meridional rays [32]. A ray crossing a plane
z = z0 perpendicular to the optical axis is described with
two components, the height r(z0) and the angle σ(z0) at

(b)

(a)

Optical axis

Optical 
axis

Input ray

σ

Figure 1. Coordinates for the ray matrix formalism. Input rays in
rotationally symmetric systems are characterized by the height r and
the angle σ they cross with respect to the optical axis.

which it crosses the plane (figure 1(a)). Since the paraxial
approximation indicates that the ray travels close to the z-axis,
σ follows the small angle approximation and can be considered
as the slope of the ray σ ∼= tan(σ ) = dr/dz. Here r is the
coordinate in a plane perpendicular to the optical z-axis, as
indicated in figure 1(b).

An optical system changes the position and the angle of
the ray. An input ray with coordinates (r1, σ1) at the input
plane is changed to an output ray with coordinates (r2, σ2) at
the output plane. In the paraxial approximation, the relations
between these coordinates are linear, and therefore they can be
related in the form of an ABC D matrix M, as

(
r2

σ2

)
=
(

A B
C D

)(
r1

σ1

)
. (1)

In this section we review some very well known properties of
the ray matrix M that will be exploited in the rest of the paper.
We use bold font notation to indicate the standard 2 × 2 ray
matrix.

We consider the two simplest basic elements to build bulk
optical systems: a free space propagation and a refractive thin
lens. The ray matrix D describing a free space propagation of
a distance d in a homogeneous medium is given by

D(d) =
(

1 d
0 1

)
, (2)

while the refraction of a ray by a spherical refractive thin lens,
with back focal length f ′, is given by the ray matrix L

L( f ′) =
(

1 0
−1/ f ′ 1

)
. (3)

An optical system providing an exact Fourier transform (FT)
between the input and output planes is obtained when the A and
D parameters of the ray matrix vanish [27]. For simplicity we
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(a) (b)

Figure 2. Two Lohmann fractional Fourier transform systems:
(a) propagation–lens–propagation, (b) lens–propagation–lens.

consider standard optical systems where the refractive index
of the incident and the final media are equal. Therefore the
determinant of the ray matrix is equal to one, and the ray matrix
describing an exact Fourier optical system is given by

F( f ) =
(

0 f ′
−1/ f ′ 0

)
, (4)

where f ′ represents the back focal length of the Fourier
transform system. The scale of the Fourier transform is given
by the relations u = x2/λ f ′ and v = y2/λ f ′, where (x2, y2)

are the spatial coordinates at the output plane, (u, v) are the
spatial frequencies, and λ is the wavelength of the light.

The generalization of the Fourier transform operation to
fractional orders, the so-called fractional Fourier transform
(FRFT), has received intensive attention during the last
15 years. The ray matrix formalism has been also successfully
applied to the description of FRFT optical systems [30]. The
ray matrix describing an FRFT system has the property of
having equal A and D parameters, and it can be written as

P(p, b) =
(

cos(φ) b sin(φ)

− 1
b sin(φ) cos(φ)

)
, (5)

where b is a scaling factor that depends on the specific optical
system, and φ is an angle that determines the fractional
order p of the Fourier transform through the relation φ =
pπ/2. Figure 2 shows two bulk FRFT optical systems
proposed by Lohmann [33], following a propagation–lens–
propagation scheme (system I) and a lens–propagation–lens
scheme (system II). The ray matrices for these two systems
are respectively

PI =
(

1 − d
f ′ d

(
2 − d

f ′

)
− 1

f ′ 1 − d
f ′

)
, (6a)

PII =
(

1 − d
f ′ d

− 1
f ′

(
2 − d

f ′

)
1 − d

f ′

)
. (6b)

For both systems the fractional order of the FRFT is
determined by the ratio between the focal length f ′ and the
distance d through the same relation

cos(φ) = cos

(
p
π

2

)
= 1 − d

f ′ . (7)

However, the scaling factors bI and bII are different in each
system (the scaling factor b in equation (5) corresponds to the
parameter f1 in [33]). Some simple calculations lead to the
following scaling factors for the two Lohmann systems:

bI = f ′
√

d

f ′

(
2 − d

f ′

)
, (8a)

 

 

(b)

(a)

System II

System I

Figure 3. Evolution of the fractional order p and the scaling factor b
as a function of the ratio d/ f ′ in the two FRFT Lohmann systems in
figure 2.

bII = f ′√
2

d/ f ′ − 1
. (8b)

The two FRFT systems become exact Fourier transform
systems when d = f ′.

In figure 3 we show the evolution of the fractional order p
and the scaling factors bI and bII as a function of the ratio d/ f ′,
in the range [0, 2] (this range corresponds to real values of the
fractional order p). It is noticeable that the scaling factors only
coincide for the trivial solution d/ f ′ = 0 and for the exact
Fourier transform systems d/ f ′ = 1. It is also noticeable that
in the limit d/ f ′ = 2 the scaling factor bII diverges to infinity,
while bI becomes zero.

The importance of these scaling factors arises from the
additive property of two FRFT systems in cascade, which
states that the fractional orders must be added. This property
is valid only if the scaling factor of the two consecutive FRFT
systems is the same [34, 35]. The ray matrix formalism easily
demonstrates this property. Let us consider two FRFT systems
described with ray matrices given by equation (4). The order
and the scaling factors of the two FRFT systems are (p1, b1)

and (p2, b2) respectively. The concatenation of these two
FRFT systems leads to the ray matrix multiplication, i.e.,

P(p2, b2) · P(p1, b1)

=
( cos φ1 cos φ2 − b2

b1
sin φ1 sin φ2

−cos φ1 sin φ2

b2
− sin φ1 cos φ2

b1

b1 sin φ1 cos φ2 + b2 cos φ1 sin φ2

cos φ1 cos φ2 − b1
b2

sin φ1 sin φ2

)
, (9)

where φi = piπ/2, i = 1, 2. In general, if b1 �= b2,
equation (9) does not correspond to an FRFT system, since
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the A and D parameters of the ray matrix are not equal. Only
when b1 = b2 does equation (9) adopt the form of equation (5),
where the fractional angle φ = φ1+φ2, and therefore the FRFT
orders add, p = p1 + p2.

This matrix formalism can be generalized to describe
skewed paraxial rays in circularly symmetric systems, and to
astigmatic systems with the use of 4 × 4 matrices. In the
next section we extend the previous FT and FRFT systems to
anamorphic systems by the use of cylindrical lenses. For the
analysis of such anamorphic systems we use the 4 × 4 matrix
formalism.

3. Extension to 4 × 4 matrices for anamorphic
systems

When the action in x and y coordinates is different but
independent, the anamorphic system can be described with two
independent standard 2 × 2 ray matrices, one describing the
action in the x direction and one describing the action in the
y direction. However, when the action in x–y coordinates is
not independent, a 4 × 4 matrix formalism is required. In this
case, the ray coordinates are described using a four-component
column vector: the height x and the angle σx at which the
ray crosses a plane in the horizontal direction, and equivalent
parameters in the vertical direction, y and σy respectively. This
decomposition leads to 4 × 4 ray matrices, like those proposed
by Arsenault and Macukow [28, 29]. In this work we use
an alternative notation introduced by Siegman [36], where the
first and third components of the vector are the heights in the
x and y directions, while the second and fourth components
refer to the angles. The connection between input and output
ray coordinates, i.e., the extension of equation (1), is provided
through a 4 × 4 matrix M̂ as




x2

σ2x

y2

σ2y


 = M̂ ·




x1

σ1x

y1

σ1y


 . (10)

We add the upper triangular symbol to indicate that the
matrices are 4 × 4. When the action of the anamorphic system
is independent in the x and y directions, the 4 × 4 ray matrix
of the system can be written as

M̂ =
(

Mx 0
0 My

)
(11)

where Mx and My are the standard 2 × 2 ray matrices
corresponding to the systems in the x and y directions, and
0 represents a null 2 × 2 matrix defined as

0 ≡
(

0 0
0 0

)
. (12)

In the following, in order to simplify the equations, we will
also employ the 2 × 2 identity matrix:

1 ≡
(

1 0
0 1

)
. (13)

Equation (11) shows clearly the independence of the x and y
action of the anamorphic system though the cancellation of

(a)

(b)

α

Figure 4. (a) Anamorphic lens with curvatures along the x and y
directions. (b) Cylindrical lens with arbitrary orientation.

the anti-diagonal 2 × 2 submatrices of M̂. For instance, it is
straightforward to derive the matrix for a free propagation in a
homogeneous medium, which now takes the form

D̂(d) =
(

D(d) 0
0 D(d)

)
. (14)

Now the four components in the matrix in equation (14) are
2 × 2 matrices given in equations (2) and (12) respectively.

Figure 4(a) shows an anamorphic thin lens, with different
focal lengths f ′

x and f ′
y along the x and y directions. Again,

since the action in the x and y directions is independent, the
anti-diagonal submatrices vanish and the 4 × 4 ray matrix is
given by

L̂x y( f ′
x , f ′

y) =
(

L( f ′
x ) 0

0 L( f ′
y)

)
. (15)

These two simple examples evidence that the use of 4 × 4
matrices is not required in x–y independent systems, since they
can be reduced to two 2 × 2 matrices.

Cylindrical lenses are particular cases of anamorphic
lenses, when there is no curvature in the x or y directions. The
corresponding ray matrices are

L̂x y( f ′,∞) =
(

L( f ′) 0
0 1

)
≡ L̂0( f ′), (16a)

L̂x y(∞, f ′) =
(

1 0
0 L( f ′)

)
≡ L̂90( f ′), (16b)

where we use the notation L̂α( f ′) to denote a cylindrical lens,
α being the relative angle between the direction of the lens
curvature and the x direction.

The simplest example which is not x–y independent is a
cylindrical lens with an arbitrary orientation α (figure 4(b)). In
this case the same lens is affecting both the x and y directions,
and the ray matrix is obtained by an in-plane rotation of the
cylindrical lens given by

L̂α( f ′) = R̂(−α) · L̂0( f ′) · R̂(+α), (17)

430



Ray matrix analysis of anamorphic fractional Fourier systems

(b)

+

(a)

Object
plane

Object
plane

Inexact
anamorphic

FT plane
Exact

anamorphic
FT plane

Intermediate
image plane

Figure 5. Inexact (a) and exact (b) anamorphic Fourier transformers.

where L̂0( f ′) is the ray matrix in equation (16a), and R̂ (α) is
a rotation-type matrix defined as

R̂(α) ≡
(

cos(α) · 1 sin(α) · 1
− sin(α) · 1 cos(α) · 1

)
. (18)

Note that this is a 4 × 4 matrix since the sine and cosine terms
multiply the 2×2 identity matrix 1 in equation (13). The result
of the matrix multiplication in equation (17) leads to the ray
matrix

L̂α( f ′) =




1 0 0 0
− 1

f ′ · cos2(α) 1 − 1
f ′ · sin(α) · cos(α) 0

0 0 1 0
− 1

f ′ · sin(α) · cos(α) 0 − 1
f ′ · sin2(α) 1


 .

(19)
Note that now the off-diagonal 2×2 matrices do not vanish. For
α = 0◦ and 90◦ the ray matrices in equations (16a) and (16b)
are recovered.

In the next section we use these matrices to analyse
and design anamorphic lens systems to produce anamorphic
Fourier and fractional Fourier transformations.

4. Anamorphic Fourier and fractional Fourier
transformers

In this section we deal with the design of 2D Fourier and
fractional transformers and their analysis based on the above
ray matrix formalism. We start by considering the two
anamorphic Fourier transformers proposed by Szoplik et al [7].
Then we analyse an orthogonal anamorphic fractional Fourier
transformer.

4.1. Inexact anamorphic Fourier transform system

The first system was based on using two crossed cylindrical
lenses with different focal length (figure 5(a)). 1D Fourier
transforms are obtained in orthogonal directions despite the
rear focal planes of both lenses coinciding. A redistribution of
information is obtained at the common focal plane, depending
on the degree of anamorphism, i.e., depending on the ratio of
the focal lengths. The object distance can only match one of
the two focal distances, and therefore a quadratic phase factor
appears in the Fourier plane oriented along the coordinate that
does not match the Fourier condition.

The analysis of this situation is straightforward with the
ray matrix formalism. Since the lenses are orthogonal, we can
treat the system as two standard 2 × 2 matrices. A simple
calculation leads to the two following matrices from the object
to the Fourier plane, for the x and y directions:

SIn
x =

(
0 f ′

x
−1/ f ′

x 1 − d/ f ′
x

)
, (20a)

SIn
y = F( f ′

x ) =
(

0 f ′
x−1/ f ′

x 0

)
. (20b)

Equation (20b) reveals the exact Fourier transform relation for
the y coordinate. However, since D �= 0 in equation (20a), a
quadratic phase factor appears in the x direction. This phase
factor multiplies the Fourier transform in this direction, and
can be easily calculated from the matrix since it is proportional
to the ratio between the parameters D and B of the matrix [27],
being equal to

g(x) = exp

[
j
πx2

λ f ′
x

(
1 − d

f ′
x

)]
= exp

[
j
2πx2

λ f ′
x

(1 − c)

]
,

(21)
where we used that d = 2 f ′

y − f ′
x and we employ the

anamorphism factor (c) of the Fourier transform, defined as
the ratio of the focal lengths [7]:

c = f ′
y

f ′
x

. (22)

4.2. Exact anamorphic Fourier transform system

The second anamorphic optical system proposed in [8]
performs an exact anamorphic Fourier transform. Figure 5(b)
shows a scheme of this optical system, which uses four
cylindrical lenses, three of them active in the y direction, and
one active in the x direction. Since all lenses are orthogonal,
again the system can be analysed with two independent
standard 2 × 2 ray matrices for the x and y directions.

In this case the optical system for the x direction is
equivalent to the 2 f Fourier transformer and the ray matrix
SEx

x describing this system is equivalent to equation (4) with
the focal length f ′

x . However, for the y direction the system is
composed of three 2 f Fourier transformers in cascade. The
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(a)

(b)

Anamorphic
FRFTplane

Anamorphic
FRFTplane

Input
plane

Input
plane

Figure 6. Anamorphic FRFT transform system in the x–y directions.

two first lenses, with focal lengths f ′
y1 and f ′

y2, compose
the two first 2 f Fourier transformers. The ray matrix for
this system is given by the product of two Fourier transform
matrices, i.e.,

F( f ′
y2) · F( f ′

y1) =
(− f ′

y2/ f ′
y1 0

0 − f ′
y1/ f ′

y2

)

≡
(

m y 0
0 1/m y

)
. (23)

This ray matrix corresponds to a perfect imaging with
magnification m y = − f ′

y2/ f ′
y1. Since both lenses are

considered convergent, this magnification is negative and the
image is inverted. The final y active lens provides an exact
Fourier transform of this intermediate image. In order to
obtain the anamorphic Fourier transform, it is necessary that
the Fourier transforms in the x and y directions appear in
the same plane, which happens provided the condition f ′

x =
f ′

y1 + f ′
y2 + f ′

y holds. The ray matrix describing the transition
from the object to the anamorphic Fourier transform plane in
the y direction is therefore given by

SEx
y = F( f ′

y) · F( f ′
y2) · F( f ′

y1) =
(

0 f ′
y−1/ f ′

y 0

)

×
(

m y 0
0 1/m y

)
=
(

0 f ′
y/m y

−m y f ′
y 0

)
. (24)

Viewed from the anamorphic fractional Fourier transform point
of view, an FRFT of order 1 is obtained in the x direction,
while an FRFT of order 3 is obtained in the y direction.
The anamorphic Fourier transform is obtained since the focal
lengths applied in each direction are different. In this system
the anamorphism factor is now given by

c = f ′
y/m y

f ′
x

= − f ′
y1

f ′
y2

f ′
y

f ′
x

. (25)

4.3. Anamorphic fractional Fourier transform system with
orthogonal lenses

The extension of the FRFT symmetrical systems to anamorphic
FRFT is straightforward, with the generalization of the
Lohmann-type systems described in figure 3 to cylindrical
systems. Figure 6 shows to possible extensions. The simplest
case is shown in figure 6(a) where the Lohmann type I system
is used, but with an anamorphic lens. In figure 6(b) the
anamorphic FRFT employs the two Lohmann-type systems:
type I for the x direction, and type II for the y direction. For
both cases it is straightforward to obtain the ray matrix for the
system, which is

M̂a =
(

PI(px ) 0
0 PI(py)

)
, (26a)

M̂b =
(

PI(px ) 0
0 PII(py)

)
, (26b)

P(p) being the FRFT 2 × 2 matrix in equation (5). In both
systems, and taking into account equation (7), the fractional
orders in the x and y directions are equivalent, and they are
given by

px = 2

π
arccos

(
1 − d

f ′
x

)
py = 2

π
arccos

(
1 − d

f ′
y

)
.

(27)
However, according to the discussion at the end of section 2,
systems in figures 6(a) and (b), although yielding equal values
of the fractional orders px and py , provide different scaling
factors in the y direction.

5. Tunable anamorphic fractional Fourier transform
system with non-orthogonal doublet

The previous systems allow for obtaining anamorphic FRFTs.
In these systems, tuning the fractional order requires a change
in the distance d or on the focal lengths f ′

x and f ′
y . It is

desirable to design optical systems that can produce FRFTs
with tunable fractional orders, without changing the object and
FRFT planes. A diffractive lens displayed onto a liquid crystal
display has been demonstrated to be a useful tool to obtain this
kind of tuning [37]. Here we exploit the formalism developed
in section 3 to design an anamorphic FRFT system with tunable
fractional orders, maintaining the input and output planes fixed,
and using standard glass cylindrical lenses.

The key element for this optical system is the cylindrical
non-orthogonal doublet shown in figure 7. Let us consider that
the first cylindrical lens has focal length f ′

a , and it is active
along the x direction. The second cylindrical lens has focal
length f ′

b, and it is active along a direction with an angle α

with respect to the x axis (we consider α in the range from 0◦
to 90◦). The 4 × 4 ray matrix describing this doublet is given
by the following product:

M̂ = R̂ (−α) · L̂0
(

f ′
b

) · R̂ (+α) · L̂0
(

f ′
a

)
, (28)

where matrices R̂ and L̂0 are given by equation (17) and
equation (16a) respectively. The result of this multiplication
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α Anamorphic
FRFT plane

Input
plane

Figure 7. Cylindrical non-orthogonal doublet, and its application to
perform an anamorphic fractional Fourier transformer with tunable
fractional orders.

is

M̂ =




1 0 0 0
− 1

f ′
a
− cos2(α)

f ′
b

1 − sin α cos α
f ′
b

0
0 0 1 0

− sin α cos α
f ′
b

0 − sin2(α)

f ′
b

1


 . (29)

In general the off-diagonal submatrices are non-zero,
showing that the x and y directions are not independent. This
non-orthogonal doublet is equivalent to a virtual orthogonal
doublet rotated with respect to the coordinate system [29]. The
focal lengths f ′

x and f ′
y and orientation ϕ of the equivalent

orthogonal doublet in terms of the real non-orthogonal doublet
are

1

f ′
x

= 1

2 f ′
a

+ 1

2 f ′
b

+ 1

2

√
1

f ′
a

+ 1

f ′
b

+ 2 cos(2α)

f ′
a f ′

b

(30a)

1

f ′
y

= 1

2 f ′
a

+ 1

2 f ′
b

− 1

2

√
1

f ′
a

+ 1

f ′
b

+ 2 cos(2α)

f ′
a f ′

b

(30b)

and

tan(2ϕ) = f ′
a sin(2α)

f ′
b + f ′

a cos(2α)
. (31)

The focal lengths of the equivalent orthogonal doublet range
from f ′

a and f ′
b when the cylindrical lenses are orthogonal

(α = 90◦) to infinite and f ′
a f ′

b/( f ′
a + f ′

b) when they are parallel
(α = 0). In the case where the two cylindrical lenses have
equal focal length, f ′

a = f ′
b = f ′, these equations reduce to

1

f ′
x

= 1 + cos α

f ′ (32a)

1

f ′
y

= 1 − cos α

f ′ (32b)

and

tan(2ϕ) = sin(2α)

1 + cos(2α)
= tan(α). (33)

In this situation the rotation angle of the equivalent orthogonal
doublet goes as ϕ = α/2. The optical power is doubled in the
x direction when the two lenses are parallel, being zero in the
y direction. When the two lenses are orthogonal (α = 90◦),
the focal length is equal to f ′ in both directions.

Thus, rotating the relative angle α between the cylindrical
lenses permits one to tune the two focal lengths of the

equivalent orthogonal doublet. Therefore, this simple
system permits obtaining anamorphic fractional Fourier
transforms with different fractional orders, without having
to move the input or the output planes. For that purpose
we choose the FRFT system I proposed by Lohmann
(propagation–lens–propagation), with this anamorphic doublet
in between (figure 7). Figure 8 shows some calculated
results corresponding to this anamorphic fractional Fourier
transformer. We select the propagation distance d equal to
the focal distance f ′

b of the second cylindrical lens. We
show two cases, when f ′

a = f ′
b and when f ′

a = 2 f ′
b.

Figures 8(a) and (c) show the evolution of the orientation
ϕ of the equivalent orthogonal doublet as a function of the
relative angle α between the two cylindrical lenses. The angle
ϕ changes continuously and therefore the equivalent doublet
rotates with α according to figures 8(a) and (c). The two focal
lengths f ′

x and f ′
y of the equivalent doublet also change with

α according to equations (30), and their action is produced
along angles ϕ and ϕ + 90. Therefore, for each angle α two
different fractional orders px and py are obtained in orthogonal
orientations at angles ϕ and ϕ + 90◦. For each value of the
propagation distance d there is a tunable range of the fractional
Fourier orders, the rotation angle α being the tuning parameter.

The system does not provide a complete set of independent
anamorphic fractional orders, as for instance could be obtained
with a programmable anamorphic liquid crystal lens [36].
In addition, the object should be rotated by the angle ϕ to
be aligned with the two anamorphic axes of the equivalent
doublet (or alternatively the complete doublet should be
rotated in order to maintain the equivalent orthogonal doublet
fixed). However, its simplicity, and the fact that it does
not require programmable lenses, can make it interesting
for applications requiring a certain degree of tunability of
anamorphic fractional orders, without moving the input and
output planes. The selection of the distance d and the focal
lengths f ′

a and f ′
b of the cylindrical lenses defines the degree

of tunability of the anamorphic fractional orders provided by
the system.

6. Conclusions

In summary, we have presented the extension of the ray matrix
formalism to anamorphic systems, in its application to Fourier
and fractional Fourier optics. We have employed an alternative
notation to previous works on ray matrices for anamorphic
Fourier optics, which helps to identify orthogonal systems. We
have applied this formalism to easily derive the properties of
anamorphic Fourier transformers proposed in the literature and
we have extended it to the application to anamorphic fractional
Fourier transformers.

Finally we have used this powerful tool to analyse
a tunable fractional optical Fourier transform system that
produces anamorphic fractional orders in two orthogonal
directions as a function of the relative angle of two cylindrical
lenses of a compound doublet. The system maintains the input
and output planes fixed. The two fractional orders change with
the relative orientation of the cylindrical lenses.
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b . Fractional orders

are calculated for propagation distances d = f ′, d = 0.8 f ′, d = 0.6 f ′ and d = 0.5 f ′.
(This figure is in colour only in the electronic version)
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Appendix

This appendix is devoted to obtain the transformation rule
between previously reported 4 × 4 matrices proposed by
Macukow and Arsenault in [29], and the 4 × 4 ray matrices we
are using in this work. The difference comes from a different
ordering in the components of the ray coordinates column
vector in equation (10). We have selected a different ordering
because it provides a very simple visualization when x and
y coordinates are independent, since the off-diagonal 2 × 2
submatrices cancel. The 2 × 2 diagonal matrices correspond
to the standard ray matrices for symmetrical systems. For
completeness, here we present how to transfer anamorphic ray
matrices from our system to the one in [29], where the order
of the ray components in a column was (x, y, σx , σy). The two
columns are related through a 4 × 4 matrix as




x
y
σx

σy


 =




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


 ·




x
σx

y
σy


 . (A.1)

The 4 × 4 matrix in the previous equation, which we denote
from now on as �̂, has the property that �̂−1 = �̂. Therefore,
the transformation rule from a 4 × 4 matrix M̂′ using the
formalism in [29], and the equivalent 4 × 4 matrix M̂ using

the convention we follow here is

M̂′ = �̂ · M · �̂. (A.2)

As two simple examples we consider the free space
propagation and the cylindrical lens active in x direction from
equations (14) and (16a) respectively. The application of
the transformation rule in equation (A.2) gives the following
results:

D̂′(d) = �̂ ·
(

D(d) 0
0 D(d)

)
· �̂ =




1 0 d 0
0 1 0 d
0 0 1 0
0 0 0 1


 ,

(A.3)
and

L̂′
0( f ′) = �̂ ·

(
L( f ′) 0

0 1

)
· �̂ =




1 0 0 0
0 1 0 0

−1/ f ′ 0 1 0
0 0 0 1


 .

(A.4)
Although these two examples are x–y independent propaga-
tions, the corresponding 4 × 4 matrices do not evidence this
property as clearly as it does the notation we are selecting.
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