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Abstract: A scale invariant 3D object detection method based on phase 
Fourier transform (PhFT) is addressed. Three-dimensionality is expressed in 
terms of range images. The PhFT of a range image gives information about 
the orientations of the surfaces in the 3D object. When the object is scaled, 
the PhFT becomes a distribution multiplied by a constant factor which is 
related to the scale factor. Then 3D scale invariant detection can be solved 
as illumination invariant detection process. Several correlation operations 
based on vector space representation are applied. Results show the tolerance 
of detection method to scale besides discrimination against false objects. 
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1. Introduction 

Recent interest in three-dimensional (3D) optical information systems has increased because 
of its vast potential in applications such as object recognition, image encryption as well as 3D 
display [1]. Regarding 3D object optical recognition, joint transform correlator (JTC) 
architecture in combination to electronic processing can be used [2, 3]. However it is a 
complex setup and it is computationally intensive, although it provides localization of 3D 
targets in 3D space. Other techniques use digital holography as a recording method to perform 
correlation between planar holograms of the 3D functions [4-6]. In addition, techniques based 
on Fourier transform profilometry (FTP) are used for 3D object detection [7,8]. The FTP 
technique deals with the projection of gratings onto the 3D object besides a registration of a 
2D image carrying the 3D information. It has been applied to many pattern recognition tasks, 
as rotation invariance [9, 10], color pattern recognition [11] and scale invariance [12]. 

Other recognition procedures are based on the application of optical or digital processing 
to range imagery. A range image contains the depth information of an object from a given 
view line, that defines the z axis [13]. One of the main advantages of the range image is that 
all 3D information is stored in a 2D image containing only geometrical information. The 
encoding of the depth information has been used in the literature to extend the possibilities of 
range images recognition using the phase Fourier transform (PhFT) [14,15]. They showed that 
it is possible to characterize a 3D object by using a limited number of normals which they 
calculated using the PhFT operation. The idea is to detect the planar surface of a 3D range 
image when the Fourier transform of a phase-coded image (the phase being proportional to 
the elevation) is calculated using feed-forward neural networks [14]. Another application of 
this technique is face recognition applications, for which the range image plays an important 
role since it contains richer and more accurate shape information than 2D intensity 
images [16]  

However, a main limitation of most 3D matching methods is the limited tolerance to scale 
changes in the object. Several methods have been shown in the literature to show scale 
tolerance detection applied to 3D images [12, 14, 17]. In Ref. [12] the authors combine 
profilometry techniques with optical matched filtering based on Mellin radial harmonics to 
obtained 3D scale invariant pattern recognition. Moreover, other optical methods based on 
performing a correlation between a set of images of a tested 3D scene with a logarithmic 
radial harmonic filter is applied for scale invariance [17]. However the method suffers from 
complexity and a certain limitation of the space bandwidth product. To avoid such 
inconveniences, the use of PhFT of range images is studied for shift, rotation and scale 
invariance using feed-forward neural networks [14]. However, the process of training the 
neural network may be complex if one wants to provide a good discrimination result. 
In this paper we have addressed scale invariant 3D object detection using the PhFT applied to 
range imagery in combination with nonlinear statistical operations that we have defined 
recently for intensity invariant 2D pattern recognition [18,19]. We show that scaling a 3D 
range object implies the multiplication of the PhFT distribution by a constant factor. So, a 
change of scale for a range image is transformed in a change in illumination (multiplication 
by a constant) of the PhFT amplitude. In common 2D correlation, if the illumination model 
consists in multiplying a target by an unknown constant factor, the correlation peak will 
change by the same amount. In such cases dark targets can be missed. Arsenault and 
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Lefebvre [20] used a homomorphic transformation to change a multiplicative-intensity 
problem into an additive-intensity problem that can be addressed with the synthetic 
discriminant filter mentioned above. Moreover, Lefebvre et al [18] defined a nonlinear 
filtering method known as the LACIF (Locally Adaptive Contrast Invariant Filter), which is 
invariant under any linear intensity transformation. This LACIF operation uses three 
correlations involving local statistics and nonlinearities. It was applied directly to scenes 
containing unsegmented targets. One of the advantages of the LACIF method is that no a 
priori information about the constant values involved in the linear illumination model is 
assumed. The LACIF method can also be combined with synthetic discrimination filters to 
achieve both illumination invariance and out-of-plane rotation invariance [21]. In Ref. [22] 
the authors generalized the LACIF filtering for situations where a linear intensity gradient 
across an object is presented. It is interesting to consider the LACIF technique in the context 
of a vector space interpretation. In addition, in Ref. [19], the authors applied LACIF algorithm 
to unsegmented natural camouflage scenes while maintaining intensity invariance. Recently, 
we have applied another filtering connected with LACIF to 3D shading to achieve 
illumination invariance [23]. In section 2 we review the basis of PhFT and how affects a 
change of scale in range imagery. LACIF filtering is described in Section 3. The application 
of the method to 3D scaled targets is in Section 4. 

2. Scale changes for range image phase Fourier transforms 

A range image, ( )z x, y , contains the depth information of an object from a given view line, 
that defines the z axis. One of the main advantages of a range image is that three-dimensional 
information is stored in a 2D image containing only geometrical information. In fact, the 
range image is considered as a set of facets which may be described by their normals to the 
surface. The encoding of the depth information has been used in the literature to extend the 
possibilities of range images for pattern recognition [10, 14, 15]. Those techniques are based 
on phase coding. We encode the range as a phase distribution as follows: 

( )[ ]P( x, y ) exp imz x, y=        (1) 

where m is a constant that permits the adjustment of the phase slope of the object. From now, 
without losing generality, we will assume m=1. 

A way to deal with range images keeping translation invariance is to use their Fourier 
transform. The Fourier transform of the phase encoded range image (PhFT) is 

 

( )[ ]{ }2 DzPhFT F exp iz x, y( u,v ) =                                                   (2) 

where F2D stands for two dimensional Fourier transform. 
One of the most important properties of the PhFT is that it contains information of all the 
orientations of the surfaces that defines a given 3D object [14, 15]. For instance, if the object 
is defined by a planar surface, after a phase encoding, it will become a planar phase 
distribution. Thus its Fourier transform will be peaked around a well defined location. So 
PhFT maps a facet into a peak .The position and distribution of the peak represent the 
orientation and the boundary of the facet, respectively. The intensity of the PhFT exhibits a 
crucial property: it is invariant to arbitrary translations of the object. This property is obvious 
for translation in the (x,y) plane, as they will produce just a linear phase factor in the PhFT. 
On the other hand, from the definition of the phase encoded range image [see Eq. (1)], a shift 
along the view line (z axis) will influence just as a constant phase factor. In both cases the 
PhFT is just altered by a phase that is irrelevant in intensity [15]. Furthermore, changing the 
orientation of the object (i.e. rotating all the facets that compose the range image) implies a 
translation of angular PhFTs. This connection between rotation in spatial domain and 
translation in angular PhFT domain makes it advantageous for 3D object correlation based 
recognition methods [9, 10].  
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As an example we consider Fig. 1(a), that contains a simple range image (pyramid) with four 
facets and the PhFT amplitude of Fig. 1(a) is shown in Fig. 1(b). The four facets (four 
normals) correspond to four location peaks in the Fourier plane. On the other hand, if the 
curvature of the object’s surface is a continous function (smooth object surface, i. e. with large 
number of facets), the PhFT will be continuous. 
Now we show the effect of a scale change in PhFT domain. Let assume that the scaled object 

is given by 
x y

z '( x, y ) z ,
k k

=
⎛ ⎞
⎜ ⎟
⎝ ⎠

 with k being the scale factor. Although the scale is changed, 

the shape of the object will remain the same as well as the orientation of the normals, except 
for a constant value which is related to the scale factor. In Appendix A, we show the 
connection between PhFTs of scaled objects. In fact, from Appendix A, the PhFT of the 
scaled object can be approximated as  

( ) 2

z ' z
PhFT u,v k PhFT ( u,v )≅        (3) 

So a scale change in the range image will only lead to a multiplication of the amplitude of the 
non-scaled PhFT domain by a constant factor, with no change in the pattern distribution of the 
PhFTs. Only a global change in the intensity is observed.  
Fig. 1(c) shows a scaled version of Fig. 1(a), and Fig. 1(d) shows the PhFT of Fig. 1(c). Both 
PhFTs [Fig. 1(b) and Fig. 1(c)] are the same except for a global multiplicative constant factor. 

    
Fig. 1. (a). Range image of a diamond shaped object. (b). PhFT amplitude of Fig. 1(a). (c) 
Scaled version of Fig. 1(a). (d) PhFT amplitude of Fig. 1(c). 

Moreover, if the surface of the 3D object is a bounded curve, the change of scale causes some 
new problems. Because of digitalization processes, a larger curved surface contains more 
small facets than those corresponding to a smaller curved surface (See Fig. 2). 

    
Fig. 2. (a). Range image. (b). PhFT amplitude of Fig. 2(a). (c) Scaled range image. (d) PhFT amplitude of Fig. 2(c) 

 
Note that the relation between the PhFTs shown in Figs. 2(b) and 2(d), respectively, is not a 
global constant factor. In section 4 we will deal with this factor in more details. But, except 
for those digitalization errors, changes in scale involve changes in intensity or amplitude. 
There are several methods for intensity invariant pattern recognition based on correlations 
[18-22, 24]. In this paper we will apply the LACIF method. Following section briefly review 
the essentials. 

3. Intensity invariant correlation method 

Images may be considered as vectors in a Hilbert space. Then any vector can be expressed in 
terms of a given basis. Correlation is a measure of the similarity between images, because one 

(a) (b) (c) (d) 

(a) (b) (c) (d) 
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way to understand the correlation operation is to consider it as an inner product between two 
functions, the object and the reference. From the point of view of vector spaces, intensity 
invariant pattern recognition consists of recognizing vectors independently of their length, 
which can be viewed as an angle measurement between vectors in vector spaces. The vector 
space defined here consists of PhFT amplitude distributions. 

Because a change of intensity implies a change in the length of the vector, two equal 
targets with different illuminations will be parallel, so the normalized correlation and the 
cosine will be equal to one. For 2-D images, Lefebvre et al [18] defined LACIF operation, 
which is invariant under any linear intensity transformation. This LACIF uses three 
correlations involving local statistics and nonlinearities. It was applied directly to scenes 
containing unsegmented targets. One of the advantages of the LACIF method is that no a 
priori information about the constant values involved in the linear illumination model is 
assumed. We will consider that the target is the PhFT amplitude in the Fourier domain. So, a 
linear transformation of intensity over a target can be expressed as 

( ) ( )' , , ( , )z zPhFT u v PhFT u v u vα β= + ◊         (4) 

 

where ( , )u v◊  is the binary support which is equal to unity over the support of the target 

( ),zPhFT u v , and equals to zero everywhere else, and α, β, are unknown constants. An 

orthogonal basis for the subspace is selected. We define ( ),o
zPhFT u v  as 

( ) ( ) ( ), , ,
f

o
z zPhFT u v PhFT u v u vμ= − ◊        (5) 

where 
f

μ  is the mean of ( ),zPhFT u v . Note that ( ),o
zPhFT u v  is a zero-mean target in the 

region of support. Then, the target can be defined as a linear combination of two orthogonal 
images (a silhouette and a zero-mean target) as 

( ) ( ) ( )' , ' , ' ,o
z zPhFT u v PhFT u v u vα β= + ◊        (6) 

where α’ and β’ are constants. The basis defined by ( ){ }, , ( , )o
zPhFT u v u v◊  is not 

orthonormal, but we can normalize it to unit length 

as { }1 2
( , ) ( , ) ( , ) ( , ) ( , ) ( , ); o o

z z
u v u v u v u v PhFT u v PhFT u vφ φ= ◊ ◊ = , where

( , ) ( , ) ( , )o o o
z z zPhFT u v PhFT u v PhFT u v= ∗ , and ∗  denotes the correlation, which is the 

inner product. Taking into account this orthonormal basis, { }1 2
( , ), ( , )u v u vφ φ , the target can 

now be defined as 

( ) ( ) ( )1 2' , '' , '' ,zPhFT u v u v u vα φ β φ= +        (7) 

LACIF filtering operation at the output is defined as Refs. [18,19] 

( )
( ) ( )

2

2

22

1 1

( , ) ( , )
( , )

( , ) ( , ) ( , ) ( , )
LACIF

s

s s

PhFT u v u v
C u v

N PhFT u v u v PhFT u v u v

φ

φ φ

∗
=

∗ − ∗
     (8) 

where N is the number of pixels inside the region of support. Then for a given range target 

( , )s x y , if ( , )sPhFT u v  is a linear combination of the orthonormal basis, then the correlation 

peak will be equal to one, and it will be smaller than one if it is not. We have applied LACIF 
filtering for scale invariant 3D object detection codified in terms of PhFTs. Note that for our 

3D detection process only constant α is considered (see Eq. (3), where 2kα = ), whereas the 
constant β equals zero. It means that there is no global constant added to the PhFT, but 
multiplied. Moreover, the definition of Eq. (8) in terms of correlations makes the approach 
feasible to be implemented optoelectronically. The correlations can be performed by 
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conventional optical correlators like Vander Lugt correlator or joint transform correlator 
architectures and the local calculations can be obtained using computer interface. 

4. Results of detection 

We have carried out experiments to show the performance of the detection method. All of 
those experiments are based on the calculation of Eq. (8) when the reference target is scaled 
between 0.6 and 1.2 factors. We have used a square window around the PhFT amplitude 
distribution as the region of support for all the experiments. We have chosen as reference 
target the average between different scaled reference targets in order to minimize the possible 
sampling errors due to scaling digitalization process. Results are shown in Fig. 3. As we see 
from Fig. 3(a), the LACIF is almost constant for all scale factors (60%-120%) and its value 
oscillates between 0.7 and almost 0.9 correlation peak value. A multimedia file shows the 
appearance of the range images and the result of the detection. 

 

 
Fig. 3. (a). LACIF value for different scale factors (b). Multimedia file (1.09MB). Scaled 
Range Targets (c). Profile 1-D with the LACIF correlation peak value 

 
Note from Fig. 3 that the LACIF correlation is not equal to one. In terms of vector space, a 
correlation value which is not a maximum means that the average target is not an element of 
the basis. However, the average target is a good candidate to represent of all the scaled 
targets, and it contains enough information to give a higher correlation peak value. 
Another experiment deals with face recognition. Since the surface of human face can be 
expressed as a set of facets, the PhFT of the human face provides a new signature of the face. 
Ref. [16] deals with invariant to scale, translation and rotation for face human recognition. 
However the tolerance of the method presented in Ref. [16] to all the changes is quite limited. 
Our results with LACIF show an improvement of the robustness of the method. At the same 
time we will consider other false object to verify the discrimination capability of the LACIF 
method. 

Figure 4(a) shows a human face target and Fig. 4(b) shows a false target (a different 
person) to discriminate. Results are shown in Fig. 4(c) and 4(d), respectively. Note that the 
different scaled faces are correctly detected above around 70%, whereas the false target is 
rejected with 35% of discrimination. This means that choosing a detection threshold of around 
value 0.3 the correct object will be detected and the false rejected. So the method is robust for 
detection and discrimination for all scale factors considered. 

    
Fig. 4. (a). Target range image. (b). False range image. (c). LACIF peak value for different 
scaled targets of Fig. 4(a). (d). Idem for the false target. 

(a) (b) (c) (d) 

(a) 
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In summary, scale invariant 3D object recognition is converted to intensity invariant pattern 
recognition technique. This can be possible if the recognition method implies a phase 
codification and a Fourier transformation of the 3D range images. A scale change of the PhFT 
of a range images is a multiplication of a constant factor in the PhFT of the reference range 
target. LACIF filtering detects targets which have been multiplied by constant values. Then, 
applying LACIF to Fourier phase encoded range images will solve the scale changes in 3D 
range images detection. Various experiments were carried out to validate the scale invariance. 
For real applications, the method has applied to face human recognition. We successfully 
tested the method when other false targets are tested. 
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Appendix A 

This appendix justifies Eq. (3), which shows the effect of a scale change in the PhFT 
distribution. The PhFT contains information of all the orientations of the surfaces that defines 
a 3D object. It can be assumed that a 3D object is composed by multiples planar facets in 
different position and orientation. All of them define the object. Then, the PhFT of the 
complete 3D object is the contribution of all the PhFTs of the different facets. 

Let consider one individual facet defined as 

( ) ( ) ( ), ,f x y a x b y c w x y= ⋅ + ⋅ + ⋅  (A.1) 

where ( ),w x y  is a boundary function equals to one if the point (x,y) belongs to the 
plane and zero otherwise. Its phase Fourier transform is 

 

( ) ( ){ } ( ) ( ) ( )

( ) ( )

( )

( )

( )

( )

, , 2

2

2 2

, ,

,

, ,
2 2

i f x y i ax by c w x y i ux vy
f

i ax by c i ux vy i ux vy

x y w x y w

ic

PhFT u v FT e e e dxdy

e e dxdy e dxdy

a b
e u v W u v

�

π

π π

δ
π π

⋅ + + ⋅ − +

⋅ + + − + − +

∈ ∉

= =

= +

⎛ ⎞⎟⎜= − − ⊗⎟⎜ ⎟⎜⎝ ⎠

∫

∫ ∫  (A.2) 

 
where ( ),u vδ  is the delta function, ⊗  is the convolution and ( ) ( ){ }, ,W u v FT w x y= . Note 

from Eq. (A.2) that the integral outside the boundary area is infinite and the exponential is a 
periodical function, so the integral of the second term of Eq. (A.2) is zero. Then, the PhFT of 
an individual facet is centered in a peak given by the orientation of the normal to the plane 
and the shape of the peak is given by a certain factor of form which is the Fourier transform of 
the boundary. This result is similar to the interpretation of diffraction limited coherent optical 
imaging due to the pupil of the lenses. 

A scale change can be described as 

( ) ( ) ( )' , ,f x y a x b y c w x k y k= ⋅ + ⋅ + ⋅  (A.3) 

where k is the scale factor. Note that a scale change has no influence in the orientation of the 
individual facets. The PhFT of the scaled object, ( )' ,f x y , is  

 

(a) 
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( ) ( )2
' , , ,

2 2
ic

f

a b
PhFT u v k e u v W ku kvδ

π π

⎛ ⎞⎟⎜= − − ⊗⎟⎜ ⎟⎜⎝ ⎠
 (A.4) 

 
The PhFT of the scaled object is given by a peak in the same position than the non-scaled 
object, but it is convolved by a scaled factor of form. Considering that a continuous 3D object 
is formed by numerous facets and the range of scale factors is not too large (i.e. k varies from 
0.6-1.2), it can be shown from the experiments (see Fig. 1) that a scale change in the factor of 
form will be negligible in comparison with the influence of the peaks position, so in a first 
approximation we can assume that 
 

( ) ( ) ( )2 2
' , , , ,

2 2
ic

f f

a b
PhFT u v k e u v W u v k PhFT u vδ

π π

⎛ ⎞⎟⎜≅ − − ⊗ =⎟⎜ ⎟⎜⎝ ⎠
 (A.5) 
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